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ABSTRACT

The aim of this paper is to evaluate the minimum flight time of a solar sail-based spacecraft

towards Earth-synchronous (heliocentric) circular displaced orbits. These are special

displaced non-Keplerian orbits characterized by a period of one year, which makes them

suitable for the observation of Earth’s polar regions. The solar sail is modeled as a flat

and purely reflective film with medium–low performance, that is, with a characteristic

acceleration less than one millimeter per second squared. Starting from a circular parking

orbit of radius equal to one astronomical unit, the optimal steering law is sought by

considering the characteristic acceleration that is required for the maintenance of the target

Earth-synchronous displaced orbit. The indirect approach used for the calculation of the

optimal transfer trajectory allows the minimum flight time to be correlated with several

Earth-synchronous displaced orbits, each one being characterized by given values of Earth–

spacecraft distance and displacement over the ecliptic. The proposed mathematical model is

validated by comparison with results available in the literature, in which a piecewise-constant

steering law is used to find the optimal flight time for a transfer towards a one-year Type I

non-Keplerian orbit.
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1 Introduction

Closed non-Keplerian orbits have attracted the scientific

interest in recent years, due to their unique advantages

in astronomical missions [1]. A very promising class

is represented by displaced non-Keplerian orbits

(DNKOs), which are so called because their orbital

plane does not contain the primary body [2, 3]. These

orbits require a continuous thrust to be maintained, in

such a way that the centrifugal and gravitational forces

acting on the spacecraft balance each other. A good

approximation of a DNKO may be obtained through

a sequence of Keplerian arcs patched by impulsive

maneuvers, as has been proposed by McInnes [4] in the

special case of DNKOs of circular shape, while a more

general solution has been recently obtained by Caruso

et al. [5] for approximating an elliptic DNKO with a

sequence of azimuthally equally spaced impulses.

The propellant necessary to generate the required

� a.quarta@ing.unipi.it

thrust limits the use of conventional propulsion systems

(such as chemical or electric thruster) for those

applications, and promotes the employment of pro-

pellantless propulsion systems, such as the photonic

solar sail [6–9] or the more recent Electric Solar Wind

Sail [10, 11]. In particular, DNKOs generated by

solar sails have been proposed in mission applications

both in heliocentric and planetocentric frameworks, as

is discussed in the comprehensive survey by McKay

et al. [1]. For example, Ceriotti et al. [12, 13] inves-

tigated the concept of a pole-sitter mission, in

which the spacecraft is always above one of Earth’s

poles to obtain a continuous observation of zones

with high geographic latitude. Also, Ceriotti and

McInnes [14] proposed the use of doubly-symmetric,

eight-shaped orbits in the Earth–Moon system for

continuous coverage of the Earth’s high-latitude zones.

Heiligers et al. [15] investigated solar sail periodic

orbits in the Earth–Moon circular restricted three-body
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Nomenclature

a propulsive acceleration vector (mm/s2)

ac characteristic acceleration (mm/s2)

ar, aθ, aγ components of a in TS (mm/s2)

d Earth–spacecraft distance (AU)

D spacecraft orbital plane

E Earth’s center-of-mass

E ecliptic plane

H distance between plane E and plane D (AU)

H Hamiltonian function

Hc part of Hamiltonian function that depends on the controls

î, ĵ, k̂ unit vectors of T
J performance index

n̂ unit vector normal to the sail plane

N number of control segments

O Sun’s center-of-mass

O′ displaced orbit center

P plane passing through {O, O′, E}
p̂r, p̂θ, p̂γ unit vectors of TS

r Sun–sail vector, with r � ‖r‖ (AU)

r⊕ Sun–Earth reference distance (AU)

S spacecraft center-of-mass

t time (days)

tf total flight time (days)

T orbital period (days)

T⊕ Earth’s orbital period (days)

vr, vθ, vγ components of spacecraft inertial velocity in TS (km/s)

{x, y, z} axes of T
α cone angle (rad)

β lightness number

γ elevation angle (rad)

δ clock angle (rad)

θ polar angle (rad)

λ Lawden’s primer vector, with λ � [λvr , λvθ
, λvγ ]

T

λi variables adjoint to the ith state

μ� Sun’s gravitational parameter (km3/s2)

ρ non-Keplerian orbit radius (AU)

T heliocentric-ecliptic reference frame

TS spherical reference frame

ω spacecraft angular velocity (rad/s)

ω⊕ Earth’s angular velocity (rad/s)

Subscripts

d required

λ referred to λ

0 initial

Superscripts

˜ dimensionless
� optimal

˙ time derivative

∧ unit vector

problem for the observation of the polar regions of the

two bodies. Ozimek et al. [16] studied potential orbits

for continuous surveillance of the Moon’s south pole with

a single solar sail-based spacecraft, and Wawrzyniak and

Howell [17] proposed to use solar sails as a communication

relay for a base at the lunar south pole. In a heliocentric

framework, Heiligers and Scheeres [18] analyzed the

possibility of employing a solar sail to generate artificial

equilibrium points and displaced periodic orbits around

asteroids or binary asteroid systems. Moreover, an

attractive application is represented by an Earth–Mars

interplanetary communication relay [19] in support of
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crewed missions to Mars. Other applications include

solar wind monitoring [20], and real-time stereographic

investigations of a planetary surface [21–23]. Similar

applications have been studied also using an Electric

Solar Wind Sail as primary propulsion system [24, 25]

and in the context of formation flying control design.

Of particular interest are those orbits with a period

equal to 1 year and whose orbital plane is parallel to

the ecliptic plane. These DNKOs are useful for the

aim of observing the polar regions of the Earth and,

to maximize their effectiveness, it is important that the

spacecraft angular position matches that of our planet,

in such a way that the spacecraft and the Earth move

synchronously at a (roughly) constant distance [26].

For that reason, and according to the nomenclature

adopted by Powers and Coverstone [27], such a special

kind of non-Keplerian orbits is here referred to as

Earth-synchronous displaced orbit (ESDO). Assuming a

circular Earth’s heliocentric orbit, the required solar sail

(reference) propulsive acceleration (or the sail lightness

number) may be found as a function of the displaced

orbit radius and the displacement relative to the ecliptic

[2]. The aim of this paper is to address the problem of

calculating the minimum flight time required to reach a

heliocentric circular ESDO by considering a spacecraft

whose primary propulsion system is a medium–low

performance ideal solar sail. This problem was first

discussed by Hughes and McInnes [28], who obtained

some interesting results with a direct optimization

method, combining a genetic approach with a sequential

quadratic programming algorithm. In their analysis

[28], the spacecraft trajectory was divided into a given

finite number of arcs with equal duration. In particular,

within each arc the sail attitude has been held constant

in a typical orbital reference frame, in order to obtain a

simpler expression of the spacecraft thrust vector.

Even though optimal transfers to ESDOs are a

challenging problem due to their nonintuitive nature

[28], the approach suggested in this paper uses an

indirect method, which allows a global minimum

solution to be found for a number of ESDOs, with

different values of orbit radius and displacement. The

optimal steering law gives a continuous variation of the

thrust vector control angles (that is, the cone and clock

angles), and the obtained solutions show substantial

improvements with respect to the literature results [28].

Moreover, the knowledge of the truly optimal solution

offers also an useful benchmark when the continuous

steering law is approximated by means of a prescribed

(and discrete) number of thrust vector directions [29]. In

that case, a piecewise-constant steering law is the least

complex law possible, though the instantaneous changes

in the sail orientation is still disadvantageous from the

attitude control point of view.

2 Problem description

Consider a solar sail-based spacecraft S, which initially

covers a circular ecliptic orbit of radius r⊕ � 1AU

and period T⊕ � 2π
√

r3⊕/μ� = 1year, where μ�
is the Sun’s gravitational parameter. This situation

is representative of a sail deployment just outside

the Earth’s sphere of influence, when the spacecraft

leaves the planet with zero hyperbolic excess speed and

the Earth’s heliocentric orbit eccentricity is neglected.

Introduce a heliocentric-ecliptic (inertial) reference

frame T (O;x, y, z) centered at the Sun’s center-of-mass

O, with unit vectors î, ĵ, and k̂. The plane (x, y)

contains the circular parking orbit, î points to the vernal

equinox, and k̂ points to the north ecliptic pole; see

Fig. 1 in which E is the ecliptic. Assume a flat sail

and an ideal force model [30] without degradation [31],

that is, an ideal rigid mirror characterized by a full

and specular reflection of the incident light. In this

simplified case, the spacecraft propulsive acceleration

vector is [32]:

a = ac

(r⊕
r

)2

cos2 α n̂ (1)

where r is the Sun–spacecraft distance, n̂ is the

unit vector normal to the sail nominal plane in

the direction opposite to the Sun, α ∈ [0, π/2] rad

is the (cone) angle between the Sun–spacecraft line

and the direction of n̂, and ac is the spacecraft

characteristic acceleration, defined as the maximum

propulsive acceleration magnitude ‖a‖ (obtained with

a Sun-facing sail with α = 0) at a reference Sun–

spacecraft distance of 1AU; see Fig. 1.

The spacecraft mission is to reach a circular non-

Keplerian orbit of radius ρ < r⊕ and period T = T⊕,
whose orbital plane D is displaced at a distance H

relative to the ecliptic E ; see Fig. 2. Also, O′ is the

displaced orbit center that coincides with the point of

intersection between the plane D and the z-axis. The

spacecraft covers the circular displaced orbit with a

constant angular velocity ω = 2π/T , which matches
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Fig. 1 Inertial reference frame T (O;x, y, z) and sail cone angle α.

Fig. 2 Conceptual scheme of heliocentric circular displaced orbit.

that of Earth along its heliocentric orbit, i.e., ω = ω⊕ =√
μ�/r3⊕ � 0.986 deg/day.

In particular, at the end of the transfer, the spacecraft

must belong to the plane P that contains the z-axis,

the origin O, and the Earth’s center-of-mass E; see

Fig. 3. The final (ESDO type) orbit is a special case

of the so called Type I non-Keplerian orbits [32], which

gives the minimum distance between the spacecraft

and the Earth’s center-of-mass E. In particular, the

minimum Earth–spacecraft distance d may be written

in a dimensionless form as

d̃ � d

r⊕
=

√
H̃2 + (1− ρ̃)2 (2)

where {H̃, ρ̃} are the dimensionless values of {H, ρ},
that is

H̃ � H

r⊕
, ρ̃ � ρ

r⊕
< 1 (3)

For a given pair {H, ρ}, the solar sail performance (in

terms of characteristic acceleration and sail cone angle)

Fig. 3 Earth-synchronous displaced orbit concept.

required to maintain the ESDO depends on the thermo-

optical characteristics of the reflective film. More

precisely, the characteristic acceleration acd necessary

for an ideal sail can be obtained by adapting the

equation proposed by McInnes [32], viz.

acd =
μ�
r2⊕

√
1 +

(
H̃/ρ̃

)2

×

√{(
H̃/ρ̃

)2
+
[
1−

√
(H̃2 + ρ̃2)3

]2}3

[(
H̃/ρ̃

)2
+ 1−

√
(H̃2 + ρ̃2)3

]2 (4)

while the required sail cone angle αd has a constant

value given by [32]:

tanαd =

(
H̃/ρ̃

)√(
H̃2 + ρ̃2

)3
(
H̃/ρ̃

)2
+ 1−

√
(H̃2 + ρ̃2)3

(5)

Actually, the original expressions obtained by McInnes

[32] are given in terms of sail lightness number β = βd,

which, for an ideal sail, can be written as a function of

the characteristic acceleration as

β � ac
μ�/r2⊕

(6)

with μ�/r2⊕ � 5.93mm/s2. The level curves acd =

acd(H̃, ρ̃) and αd = αd(H̃, ρ̃), given by Eqs. (4) and (5),

are drawn in Fig. 4 for a medium–low performance solar

sail, that is, for a sail with a characteristic acceleration

less than 1mm/s2. In particular, Fig. 4 shows both

the Earth–spacecraft dimensionless distance d̃ given by

Eq. (2), and the Earth’s sphere of influence (SOI), whose

dimensionless radius is roughly d̃ = 0.01. Note that



Optimal solar sail transfers to circular Earth-synchronous displaced orbits 197

Fig. 4 Solar sail required performance {acd
, αd} and Earth–

spacecraft dimensionless distance ˜d as a function of ESDO

characteristics { ˜H, ρ̃}.

a maximum displacement over the ecliptic of about

H = 0.07AU can be obtained with a solar sail of ac =

1mm/s2, while assuming ac = 0.3mm/s2, the maximum

value of H is roughly 0.02AU. When ac < 0.135mm/s2,

the spacecraft falls inside the Earth’s SOI, and

Eqs. (4) and (5) cannot be used to model the required

solar sail performance to cover an ESDO.

2.1 Equations of motion

The solar sail-based heliocentric motion during the

transfer phase is analyzed in a spherical reference frame

TS(O; r, θ, γ) of unit vector p̂r, p̂θ, and p̂γ defined as

p̂r = r̂ � r/r, p̂θ =
k̂ × r̂∥∥∥k̂ × r̂

∥∥∥ , p̂γ = p̂r × p̂θ (7)

where r is the Sun–spacecraft position vector. In

particular, θ ∈ [0, 2π) rad is the polar angle measured

counterclockwise from the x-axis (vernal equinox

direction), and γ ∈ [−π/2, π/2] rad is the elevation

angle relative to the ecliptic plane; see Fig. 5.

According to Ref. [33], the spacecraft equations of

motion in the spherical reference frame are

ṙ = vr (8)

θ̇ =
vθ

r cos γ
(9)

γ̇ =
vγ
r

(10)

v̇r =
v2θ + v2γ

r
− μ�

r2
+ ar (11)

v̇θ =
vθ vγ tan γ − vr vθ

r
+ aθ (12)

v̇γ = −v2θ tan γ + vr vγ
r

+ aγ (13)

where {vr, vθ, vγ} are the components of the spacecraft

inertial velocity in TS, and {ar, aθ, aγ} are the

components of a in TS. The latter, with the aid of

Eq. (1) and Fig. 6, may be written as a function of

the sail cone angle α and clock angle δ ∈ [0, 2π) rad as

ar = ac

(r⊕
r

)2

cos3 α (14)

aθ = ac

(r⊕
r

)2

cos2 α sinα cos δ (15)

aγ = ac

(r⊕
r

)2

cos2 α sinα sin δ (16)

Fig. 5 Spherical (heliocentric) reference frame TS(O; r, θ, γ) .
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Fig. 6 Ideal solar sail thrust vector control angles {α, δ}.

Because the spacecraft initially covers a circular

ecliptic orbit of radius r⊕ around the Sun, Eqs. (8)–(13)

are completed by the initial conditions (at time t0 � 0)

r(t0) = r⊕, θ(t0) = γ(t0) = 0,

vr(t0) = vγ(t0) = 0, vθ(t0) =
√

μ�
r⊕

(17)

where, for symmetry reasons, the polar angle θ(t0) is set

equal to zero without loss of generality.

For a given control law α = α(t) and δ = δ(t), with

t ∈ [t0, tf ] (where tf is the total flight time), the time

variation of the propulsive acceleration components are

given by Eqs. (14)–(16) and the transfer trajectory is

obtained by numerical integration of Eqs. (8)–(13) with

initial conditions (17). The control law analysis and

design is discussed in the next section.

2.2 Trajectory optimization

The solar sail trajectory is now analyzed in an optimal

framework, by minimizing the flight time tf required to

transfer the vehicle from the circular parking orbit to

the final circular ESDO of given characteristics {H, ρ}
(or {H̃, ρ̃}). Note that, in this case, the spacecraft

characteristic acceleration is obtained from Eq. (4) by

enforcing the condition ac = acd , which allows the

spacecraft to cover the target ESDO. On the other hand,

a value of ac > acd(H̃, ρ̃) could theoretically be selected

with the aim to reduce the flight time. Nevertheless, a

value of the characteristic acceleration greater than acd
would imply a reduction of ac over the target ESDO

which, in its turn, could be obtained by covering part

of the sail surface with a set of electrochromic panels

[34,35], or through variations in the sail area [36,37].

The trajectory optimization problem consists in

finding α = α(t) and δ = δ(t) that maximize the

performance index:

J � −tf (18)

with an indirect approach. The Hamiltonian function

H is

H =λr vr + λθ
vθ

r cos γ
+ λγ

vγ
r

+ λvr

(
v2θ+v2γ

r
−μ�

r2

)

+ λvθ

vθ vγ tan γ−vr vθ
r

−λvγ

v2θ tan γ + vr vγ
r

+Hc

(19)

where {λr, λθ, λγ , λvr , λvθ , λvγ} is the set of variables

adjoint to the states {r, θ, γ, vr, vθ, vγ}, whose time

derivatives are given by the Euler–Lagrange equations:

λ̇r = −∂H
∂r

, λ̇θ = −∂H
∂θ

,

λ̇γ = −∂H
∂γ

, λ̇vr = −∂H
∂vr

,

λ̇vθ = − ∂H
∂vθ

, λ̇vγ = − ∂H
∂vγ

(20)

The whole expression of the Euler–Lagrange equations

is here omitted for the sake of conciseness, but their

calculation is straightforward. In Eq. (19), the term

Hc is that portion of the Hamiltonian function that

depends on the thrust vector control angles {α, δ}, see
also Eqs. (14)–(16), viz.

Hc � ac

(r⊕
r

)2

cos2 α(λvr cosα+ λvθ
sinα cos δ

+ λvγ sinα sin δ) (21)

According to Pontryagin’s maximum principle [38], the

optimal control law α = α�(t) and δ = δ�(t) is obtained

by maximizing, at each time t ∈ [t0, tf ], the function

Hc in Eq. (21). It may be verified that the optimal

cone and clock angles coincide with the classical Sauer’s

result [39], viz.

sin δ� =
λvγ√

λ2
vr + λ2

vθ
+ λ2

vγ

, cos δ� =
λvθ√

λ2
vr

+ λ2
vθ

+ λ2
vγ

(22)

tanα� =

√
8 + cos2 αλ − 3 cosαλ

4 sinαλ
(23)
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where αλ ∈ [0, π] rad is the cone angle of Lawden’s

primer vector [40] λ � [λvr , λvθ , λvγ ]
T, that is

αλ � arccos

⎛⎝ λvr√
λ2
vr + λ2

vθ
+ λ2

vγ

⎞⎠ (24)

Note that Eq. (22) can be rewritten in a more compact

form by introducing the primer vector clock angle δλ
defined as

sin δλ =
λvγ√

λ2
vr + λ2

vθ
+ λ2

vγ

, cos δλ =
λ2
vr + λvθ√

λ2
vr + λ2

vθ
+ λ2

vγ

(25)

in such a way that Eq. (22) reduce to

δ� = δλ (26)

which states that λ̂ � λ/ ‖λ‖, r̂, and n̂ belong to the

same plane [41,42]; see Fig. 7.

The optimal control law α� = α�(αλ), given by

Eq. (23), is shown in Fig. 8.

Finally, the two-point boundary value problem

(TPBVP) associated with the optimization problem is

completed by the following constraints at the (unknown)

final time tf :

r(tf) = r⊕
√

H̃2 + ρ̃2, θ(tf) = ω⊕ tf ,

γ(tf) = arctan

(
H̃

ρ̃

)
,

vr(tf) = vγ(tf) = 0, vθ(tf) = ρ̃

√
μ�
r⊕

,

H(tf) = 1 + ω⊕ λθ(tf) (27)

where the last relation comes from the transversality

condition [43]. The TPBVP has been solved by means

of a hybrid numerical technique that uses global

Fig. 7 Optimal configuration of λ̂, r̂, and n̂.

Fig. 8 Optimal sail cone angle α� as a function of the primer

vector cone angle αλ.

optimization techniques to obtain a first guess of the

adjoint variables, while the solution is then refined with

gradient-based and direct methods [41]. The differential

Eqs. (8)–(13) and Eq. (20) have been integrated

in double precision using a variable order Adams–

Bashforth–Moulton solver scheme [44] with absolute

and relative errors of 10−12.

3 Numerical simulations

The previous procedure for calculating the optimal

transfer to displaced orbits has been validated with

results taken from the literature. More precisely, the

simulations have been compared with the results

obtained by Hughes and McInnes [28] with a hybrid

optimization method in which the optimal time-

variation of the control angles is approximated through

a piecewise-constant steering law with N equally-spaced

control segments. In particular, Ref. [28] shows the

optimal orbit-to-orbit flight time (that is, the transfer

without any constraint on the final polar angle θ) of an

ideal sail transfer towards a one-year Type I displaced

orbits [32], for a set of three pairs {H, ρ}. Accordingly,

the mathematical model has been adapted to this

particular mission scenario by changing the boundary

constraints of Eq. (27), that is, the second and the last

of Eq. (27) are now replaced with λθ = 0 and H(tf) = 1,

respectively.
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The simulation results and a comparison with the

data obtained from Ref. [28] when N = 10, are

summarized in Table 1, while the optimal transfer

trajectories are shown in Fig. 9.

Hughes and McInnes [28] also show the optimal,

ephemeris-constrained transfer to a ESDO with H =

ρ = 0.5 AU using N = 10 control segments and a

lightness number β = 0.88 (i.e., ac � 5.2mm/s2). In

that case, the hybrid numerical technique of Ref. [28]

gives an optimal launch date at July 29th 2001 and

an arrival date at February 24th 2002, with a flight

time of about 210 days. Assuming the same ESDO

characteristics, and enforcing the final conditions of

Eqs. (27), the proposed approach gives a minimum

flight time tf = 191 days, with a difference of about 9%,

although such a result has been obtained by neglecting

the Earth’s orbital eccentricity. The transfer trajectory

is drawn in Fig. 10 (which also shows the plane P),

while the time-history of the optimal control law is

shown in Fig. 11. Note that the functions α = α(t)

and δ = δ(t), while different from those obtained in

Fig. 9 Optimal orbit-to-orbit transfer trajectories for the mission

scenarios discussed (T = 1 year).

Fig. 10 Optimal transfer trajectory towards an ESDO with

H = ρ = 0.5 AU.

Fig. 11 Optimal control law for a transfer towards an ESDO

with H = ρ = 0.5 AU.

Ref. [28] using a piecewise-constant steering law with

equally-spaced control segments, are however consistent

with the results from the literature. In fact, the average

values of α(t), corresponding to the first and second half

of the whole transfer, approximately coincide with the

values of the cone angle shown in Fig. 3 of Ref. [28].

Having validated the mathematical model and the

simulation routines, the proposed approach will be used

to calculate the minimum flight time of a transfer

towards an ESDO with a medium-low performance ideal

solar sail. For symmetry reasons, a value of H > 0

has been chosen, that is, an ESDO which belongs to

the half-space z > 0. Using the graphs of Fig. 4(a),
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Table 1 Comparison with results obtained in Ref. [28] using a piecewise-constant steering law with N = 10 control segments

ESDO characteristics H = 0.2 AU, ρ = 0.9 AU H = 0.5 AU, ρ = 0.5 AU H = 0.7 AU, ρ = 0.3 AU

β 0.4328 0.8808 0.973

ac (mm/s2) 2.5665 5.2233 5.7697

tf (days) from Ref. [28] 158.99 202.71 224.08

tf (days) 156.46 190.8 211.92

Difference (%) −1.59 −5.87 −5.42

the optimal value of tf has been calculated assuming

H ∈ [0, 0.07]AU and ρ ∈ [0.94, 1)AU. More than

370 optimizations have been performed to numerically

obtain the function tf = tf(H, ρ) that describes figure

of merit of the transfer as a function of the ESDO

characteristics. The function tf = tf(H, ρ) is shown

in Fig. 12, while an excerpt of the numerical results

is reported in Table 2.

The use of Fig. 4 and Table 2 allows us to obtain

a rapid estimation of the transfer performance for a

preliminary mission design. For exemplary purposes,

consider an ESDO at a distance from the Earth’s center-

of-mass of about 0.03 AU � 4.5 × 106 km, that is,

assume d̃ � 0.03. In that case, Fig. 4(a) indicates

that the minimum value of characteristic acceleration

necessary to track the ESDO is about acd � 0.4 mm/s2.

With such a characteristic acceleration, Fig. 4(a) shows

that the ESDO displacement is about H � 0.026 AU

and the radius is ρ � 0.985 AU, while Table 2 gives

a minimum flight time tf � 168 days. These results

are confirmed by the numerical simulations, which

give a minimum flight time of 169 days and a transfer

trajectory drawn in Fig. 13, where the z-axis has been

exaggerated for the sake of clarity.

Fig. 12 Minimum flight time as a function of {H, ρ}.

Table 2 Optimal transfer towards an ESDO for a medium–low

performance solar sail: minimum flight time (days) as a function

of {H, ρ}
�������H (AU)

ρ (AU)
0.94 0.95 0.96 0.97 0.98 0.99

0.0100 181.97 181.70 181.23 180.25 177.80 170.95

0.0120 181.72 181.35 180.69 179.36 176.23 169.65

0.0140 181.43 180.94 180.08 178.38 174.71 169.02

0.0160 181.11 180.48 179.41 177.36 173.32 168.76

0.0180 180.75 179.99 178.69 176.33 172.14 168.59

0.0200 180.36 179.46 177.95 175.32 171.19 168.32

0.0220 179.95 178.90 177.19 174.37 170.47 167.86

0.0240 179.51 178.32 176.43 173.48 169.97 167.19

0.0260 179.05 177.73 175.69 172.69 169.64 166.32

0.0280 178.58 177.13 174.97 172.01 169.43 165.27

0.0300 178.10 176.54 174.29 171.43 169.32 164.09

0.0320 177.61 175.95 173.65 170.95 169.26 162.81

0.0340 177.13 175.38 173.06 170.58 169.21 161.46

0.0360 176.64 174.83 172.54 170.29 169.15 160.07

0.0380 176.16 174.31 172.07 170.08 169.07 158.66

0.0400 175.69 173.82 171.67 169.94 168.94 157.25

0.0420 175.24 173.36 171.32 169.85 168.76 155.86

0.0440 174.80 172.94 171.04 169.80 168.52 154.49

0.0460 174.38 172.56 170.81 169.77 168.22 153.14

0.0480 173.98 172.21 170.62 169.76 167.87 151.84

0.0500 173.61 171.91 170.48 169.76 167.46 150.57

0.0520 173.27 171.65 170.38 169.75 166.99 149.34

0.0540 172.95 171.43 170.32 169.73 166.48 148.15

0.0560 172.66 171.24 170.28 169.70 165.93 147.00

0.0580 172.40 171.08 170.26 169.65 165.33 145.90

0.0600 172.16 170.96 170.25 169.57 164.71 144.83

0.0620 171.95 170.86 170.26 169.47 164.06 143.81

0.0640 171.78 170.79 170.28 169.34 163.39 142.83

0.0660 171.62 170.75 170.29 169.19 162.70 141.89

0.0680 171.49 170.72 170.31 169.00 161.99 140.98

0.0700 171.39 170.71 170.32 168.79 161.28 140.11

The corresponding time history of the control angles

α and δ is shown in Fig. 14, while Fig. 15 shows the

time variation of the spacecraft displacement above the

ecliptic z and the spacecraft elevation angle γ. Note
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Fig. 13 Optimal transfer trajectory towards an ESDO with

H = 0.026 AU and ρ = 0.985 AU.

Fig. 14 Optimal control law for a transfer towards an ESDO

with H = 0.026 AU and ρ = 0.985 AU.

that the final value of z matches the constraint H =

0.026 AU. Notably, during the transfer the Earth–

spacecraft distance is less than 0.03 au, as is confirmed

by Fig. 16. This is an important result, because a small

Earth–spacecraft distance reduces the complexity of the

spacecraft communication subsystem.

Fig. 15 Spacecraft ecliptic displacement and inclination angle for

a transfer towards an ESDO with H = 0.026 AU and ρ = 0.985 AU.

Fig. 16 Time history of Earth-spacecraft distance for a transfer

towards an ESDO with H = 0.026 AU and ρ = 0.985 AU.

4 Conclusions

This paper has presented an optimal approach to

calculate the minimum flight time of a solar sail-

based spacecraft towards an Earth-synchronous circular

displaced orbit. The optimal flight time and the transfer

trajectory correspond to a medium–low performance

ideal solar sail with a characteristic acceleration

sufficient for maintaining the final working orbit. The
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optimal solution has been obtained as a function of

the orbit radius and displacement of the target Earth-

synchronous displaced orbit. The suggested technique

shows that the minimum flight time necessary for a

transfer from the Earth to the target orbit is less

than 182 days when the distance between the two orbits

ranges in the interval [0.014, 0.092]AU.

A natural extension of the current analysis may

be formulated for heliocentric elliptic displaced orbits,

based on the work by Gong and Li [21].
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