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ABSTRACT

Nonlinear optimal control problems are challenging to solve due to the prevalence of local

minima that prevent convergence and/or optimality. This paper describes nearest-neighbors

optimal control (NNOC), a data-driven framework for nonlinear optimal control using indirect

methods. It determines initial guesses for new problems with the help of precomputed

solutions to similar problems, retrieved using k-nearest neighbors. A sensitivity analysis

technique is introduced to linearly approximate the variation of solutions between new and

precomputed problems based on their variation of parameters. Experiments show that

NNOC can obtain the global optimal solution orders of magnitude faster than standard

random restart methods, and sensitivity analysis can further reduce the solving time almost

by half. Examples are shown on optimal control problems in vehicle control and agile

satellite reorientation demonstrating that global optima can be determined with more than

99% reliability within time at the order of 10–100 milliseconds.
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1 Introduction

Nonlinear optimal control problems are observed in

many engineering applications, but despite decades of

research, they are still difficult to solve globally with high

confidence. Methods for solving optimal control problems

mainly fall into two categories: direct and indirect

methods [1]. Direct methods, such as transcription and

collocation, convert the optimal control problem into an

optimization problem through a parameterization of the

state trajectory. Indirect methods derive the necessary

conditions for optimality using costate variables, and

convert the optimal control problem into a two-point

boundary value problem (TPBVP) [2]. Indirect methods

can be more efficient than direct methods. However, they

are difficult to apply successfully because the TPBVP has

a narrow convergence domain [3].

The main difficulty of indirect methods is that the

costate variables lack physical meaning, so good starting

values are difficult to provide. For problems with strong

nonlinearity, the convergence domain is so narrow that

a large number of initial guesses have to be tried to

obtain convergence. Hence, they must be augmented
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with another approach like random restarts to have

any chance of obtaining a global optimum. Such a

shortcoming makes these methods impractical for real-

time applications.

In recent years, the approach of using precomputed

data to initialize optimization processes has received

some attention, with some success in trajectory

optimization [4] and global nonlinear optimization [5].

The general idea is that a database of solutions can be

precomputed among a parameterized set of optimization

problems. If the parameters specifying a novel problem

are sufficiently close to the parameters of an example

in the database, then the existing solution should be

near the solution of the new problem. Using the prior

solution as a seed improves both the solution time

and the success rate of optimization. Although this

approach pays a price in precomputation of thousands

or millions of optimization problems, the speed

gains may be worthwhile for systems with minimal

computing resources, or on-line control applications

that require repeated solution of similar problems,

like model predictive control (MPC). Moreover, high-

performance computing resources can be used to make
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the precomputation phase relatively practical. To our

knowledge, this approach has not yet been applied to

indirect solution of optimal control problems.

This paper presents Nearest Neighbor Optimal

Control (NNOC), a data-driven implicit optimal control

method that uses a precomputed database of solutions

and performs k nearest neighbors lookups to determine

initial costate guesses for solving TPBVPs. In addition

to the basic approach, we develop a sensitivity analysis

(SA) technique to approximate how solutions vary with

respect to problem parameters. Using this technique to

guess initial costates is more accurate than the basic

approach.

We evaluate this work in simulation on two vehicle

control problems with 4D and 5D state spaces, as

well as a satellite reorientation problem with a 6D

state space. Experiments study how the technique

performs compared to random restart optimization

on computation time and likelihood of successfully

determining global near-optima. NNOC exhibits

success rates close to 100% and is 1–2 orders of

magnitude faster than random restarts. As the size of

the database grows, NNOC demonstrates increasingly

high success rates and lower computation time. The

use of our proposed SA technique also reduces solution

times by approximately 50% beyond plain NNOC.

2 Related work

For nonlinear optimal control problems solved by

indirect methods, the difficulty comes from non-

continuous control, i.e., bang-bang control [2],

inaccurate numerical integration, and strong sensitivity

of the TPBVP. As a result, shooting methods have

narrow convergence domain and require an initial

guess of costates sufficiently close to optimum in order

to converge. Moreover, since TPBVP is built on

necessary condition of optimality, shooting methods

might converge into a local optimum.

In Refs. [3,6] a homotopic approach is used to address

these challenges, in which the solver starts from an

easier problem and gradually improves the approxima-

tion of the original problem. In Ref. [3] a distribution

of initial costates is proposed which roughly overcomes

the problem of not knowing the bounds of costate

variables. Other techniques have been proposed to guess

costates, including grid search of costate variables [7],

initialization by direct methods [8] and initialization

from linearization [9]. Each of these methods are

proposed for specific problems and require researchers’

understanding of the problem being studied so they are

not easily applied to other problems.

The idea of learning from experience has attracted

researchers’ interest for decades in robotics field.

Machine learning techniques have been used in

trajectory optimization to predict the outcome of a

starting point [10] or to predict good initial trajectories

[11] for local optimization. The grasps of novel objects

are generated using the experience of grasps [12]. In

Ref. [13] precomputed examples of optimal trajectory

are generalized to enable the optimizer to work in real-

time, as applied to a robot ball-catching problem. With

the advance of deep learning, both deep reinforcement

learning [14] and supervised learning [15] have been

used to learn a policy for robot control. Other works

use supervised learning to directly learn the optimal

trajectories [16, 17].

Our technique is related to explicit model predictive

control (MPC) [18], a technique for linearly constrained

linear systems with quadratic costs, that analytically

computes the piecewise-linear optimal MPC control

function over all initial states. Our approach takes

a similar approach to nonlinear optimal control using

data.

NNOC is similar to a numerical continuation

approach where the solution of a similar problem is used

to solve a novel problem [15]. In that work, a random

walk approach is used to generate optimal trajectories

to train deep neural network. However, in Ref. [15]

the issue of local optima is not considered and the data

distribution is not uniform. In our approach, multiple

neighbors are used to solve novel problems so the chance

of obtaining the global optimum is higher.

Recently, a great deal of attention has been devoted

to the idea of applying machine learning, especially

deep learning, to optimal control problems [15, 16,

19–22]. These learning approaches use a function

approximator, like a neural network, to build a policy

function, an estimate of the optimal trajectory, or a

surrogate model for the value function. NNOC is

related, but uses a nonparametric machine learning

method to approximate initial costates for each state.

We note that for indirect methods a trajectory is fully

determined by the state and costate at initial time.

As a result, approximating initial costate is equivalent

to approximating the optimal trajectory. From now
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on, we use trajectory and costate approximation

interchangeably. In our experiments, we observe that

applying a small amount of trajectory optimization

greatly improves learned estimates, and furthermore we

are able to better handle discontinuities in the function

using multiple initializations from k > 1 nearest-

neighbors.

This work is an extended version of a previous

conference publication [23]. In this version, we

extend the discussion of related work, perform

extended experiments to analyze the performance of

our technique, and add a new satellite reorientation

example.

3 Data-driven framework

3.1 Indirect methods for optimal control

Indirect methods essentially convert an optimal control

problem to a system of nonlinear differential equations.

Suppose a nonlinear optimal control problem is given as

Minimize J = ϕ(t0,x0, tf ,xf ) +

∫ tf

t0

L(t,x,u)dt

(1)

s.t. ẋ = f(t,x) (2)

c(u(t)) � 0 for all t (3)

h(t0,x0, tf ,xf ) = 0 (4)

where x(t) ∈ R
n is the state variable, u(t) ∈ R

m

is the control, and t ∈ [t0, tf ] is time. The path

constraint c collects inequality constraints on control.

h is a collection of equality constraint on state variables

at initial and final time. In this paper, we consider

problems where c constrains the bounds on control

and h constraints the exact values of initial and final

states. For simplicity we will ignore other types of

path constraints. The indirect method introduces

corresponding costate variables λ(t) ∈ R
n and the

Hamiltonian [2]

H = L(t,x,u) + λTẋ = L(t,x,u) + λTf(t,x,u) (5)

and derives the Euler–Lagrange equations⎧⎪⎪⎨
⎪⎪⎩

ẋ =
∂H

∂λ

λ̇ = −∂H

∂x

(6)

and the optimal control

u�(t) = argmin
u | c(u)�0

H(t,x(t),u) (7)

If the control u has no constraint, we use ∂H/∂u = 0

to calculate u�. For example, suppose

L(t,x,u) = xTQx+ uTRu

be a quadratic cost and

f(t,x,u) = f0(t,x) +

m∑
i=1

fi(t,x)ui

be the dynamics function. Then

∂H

∂u
= 2Ru+

⎡
⎢⎢⎣

λTf1(t,x)
...

λTfm(t,x)

⎤
⎥⎥⎦ = 0 (8)

and hence u can be determined by multiplying the

second summand by −R−1/2. In cases where control u

is indeed constrained, the optimum u∗ is found subject

to those constraints.

Then, to solve for the optimal trajectory given two-

point boundary conditions including an initial state,

x(t0) = x0 (9)

and final state

x(tf ) = xf (10)

a shooting method is used to determine the unknowns so

that the boundary condition at tf in Eq. (10) is satisfied.

For the fixed-time problem where t0 and tf are fixed, the

unknowns s are the initial costate variables λ(t0).

In this paper we also consider problems with free tf .

In those problems the final time tf is also a unknown,

so we let s ≡ (λ, tf ) and impose another boundary

condition at tf :

H(tf ) = 0 (11)

The TPBVP solver guesses all the unknowns s and

integrates Eqs. (6) simultaneously from time t0 to tf
using the optimal control derived from Eq. (7). The

unknowns are updated until the boundary conditions

(i.e., Eq. (10) for fixed tf ) at tf are satisfied up to a given

tolerance. We implement a TPBVP shooting method

using the nonlinear least-squares software Minpack

[24]. In general, the convergence of a nonlinear

equation solver depends on several parameter choices,

and whether a relaxation technique is used, which
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usually increases convergence time but also success rate.

Experiments in this paper set all of the parameters of

Minpack to their defaults. We observe when the initial

guess is quite close to an optimum, as it is in NNOC,

the performance of the solver is relatively insensitive to

the parameter settings.

Note that these least-squares solvers, typically based

on Gauss–Newton or Levenberg–Marquardt methods,

are only local optimizers, they may indeed fail to find

a solution that successfully meets all the boundary

conditions. The basin of attraction of the optimum is

often quite small and cannot be predicted easily from

the problem specification. In practice, a random restart

method is usually employed to increase the likelihood

of finding an initial guess in the basin of attraction of

a solution. Multiple solutions can be generated and

the minimum cost kept, which increases the likelihood

of finding a globally optimal solution. This is not

particularly reliable without using a large number of

guesses, which makes the approach too slow for real-

time application.

3.2 Problem-solution mapping

NNOC addresses the scenario where a family of optimal

control problems has to be solved and each problem

is parameterized by a vector p ∈ R
p. For example,

in model predictive control we may set p = x0 to be

the initial state. In problems where a target or cost

function may be chosen by an operator, p can contain

a parameterization of these choices.

A complete, globally optimal method for solving a

parametric optimal control problem can be viewed as

a mapping g from p to the optimal solution of the

unknowns, denoted as s∗:

g : p→ s� (12)

Of course, in nearly all practical problems, the solution

g cannot be obtained analytically.

NNOC approximates this map using finite instances

of problems that have been solved to global optima

in a precomputation step. Assuming p is defined

in set X, the first step to build the database is

sampling from X and calculating the corresponding

global optimal solution. We can thus form a database

of N parameter-solution pairs where p is the parameter

and s� is the solution. Specifically, the database D =

{(p(i), s�(i))|i = 1, . . . , N} where we denote (p(i), s�(i))

as an optimal control pair. Since the computation

of the database is offline, we employ heuristic global

optimization techniques such as random restarts. It

should be noted that for a general nonlinear optimal

control problem there is no guarantee that a global

optimal solution can be found. The best local optimal

solution is considered as the global optimal solution so

a sufficiently large number of restarts is used. However,

it is possible that for certain initial states no solution

exist or we fail to find a feasible solution. In that case

we simply mark that no solution exists.

3.3 Extending the database along trajec-

tories

We observe that each successful trajectory solve

provides not only the optimal costate at the initial time

t0, but also all times thereafter. For problems that

obey the stationary property, such as our MPC-like

formulations below, we can populate the database more

quickly by generating optimal problem–solution pairs

(x(t), s(t)) along the trajectory. So, after calculating

an optimal trajectory x(t), costate trajectory λ(t),

and optionally the final time tf , we evenly sample M

states and costates along the trajectory and add their

examples to the database. Specifically, we divide the

time range [t0, tf ] at intermediate values ti, i = 1, . . . ,M ,

and add all of (x(ti), s(ti)) to the database. In the case

where the final time is a free variable, we set the final

time for point i to be t0 + tf − ti.

3.4 Function approximator

During a query, NNOC approximates g : p → s�

based on database D to generate initial guesses.

This problem has been widely studied in statistical

learning community and several models have been

proposed as function approximator. Typical function

approximators including linear regression, neural

network, and Gaussian process assume continuity of the

function and tend to perform worse in the presence

of function discontinuity. However, for nonlinear

optimal control problems the problem-solution mapping

can be discontinuous due to the existence of

multiple local optima. As a result, NNOC applies

a k-Nearest Neighbor (k-NN) optimization model

that determines multiple candidates for optimization,

without performing undesirable interpolation between

candidates.
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The standard k-NN function approximator appro-

ximates an arbitrary function using a piecewise constant

function:

g(p) ≈ 1

k

∑
i∈Nk(p)

s�i (13)

where Nk(p) are the indices of the k nearest neighbors

in D. But rather than averaging the neighbors as

in standard function approximation, NNOC uses all

k nearest neighbors as initial guesses for optimization.

By doing so, we obtain multiple local minima zi ←
Opt(s�i ,p) where Opt(s,p) uses the costate s as an

initial seed for the TPBVP problem defined by p. We

then pick the best as follows:

g(p) ≈ arg min
z∈{z1,...,zk}

Cost(z) (14)

and returns the objective function value. We adopt the

convention that Cost(zi) = ∞ if no feasible solution is

found for the ith optimization. To make the nearest

neighbors lookup fast, our implementation performs

the NN query using the approximate nearest-neighbors

library FLANN �.

By returning multiple candidate function values, k-

NN increases the probability of obtaining a global

optimum. Other function approximators that only

return one function value run a higher risk of obtaining a

local optimum, and moreover can obtain poorer results

by interpolating across discontinuities.

We present the option to employ sensitivity analysis

(SA) when determining an initial guess to a novel

problem. Rather than using precomputed solutions

directly as the initial guess for new problems, SA builds

a first-order approximation of g at each sample point

to determine a better guess. This method is described

below.

3.5 Sensitivity analysis

Assuming the mapping from parameters to solutions is

continuous and differentiable, SA can be used to build

a first-order approximation to their variations. We can

thus obtain a better initial guess than directly using the

solutions of precomputed problems. Specifically, for a

neighbor i of problem p, we derive a better guess s via

a first-order approximation

s = s�i + Si(p− pi) (15)

� http://www.cs.ubc.ca/research/flann/,retrieved Dec/25/2018.

in which the sensitivity matrix Si links the variation of

parameters and the variation of solutions. We derive

the form of this matrix below.

Let us first explain the method for the fixed-time case

where problem parameter is the initial state. Denote

λ0≡λ(t0). We take the variation of Eq. (10) and obtain

∂x(tf )

∂x0
δx0 +

∂x(tf )

∂λ0
δλ0 = 0 (16)

where
∂x(tf )

∂x0
and

∂x(tf )

∂λ0
are easily obtained by

integrating the variational equation of the system

dynamics. We refer to Ref. [25] for further details.

Using Eq. (16) we can obtain a linear relationship

between the change of initial state and the change of

initial costate variables

δλ0 =
∂λ0

∂x0
δx0 = −∂x(tf )

∂λ0

−1
∂x(tf )

∂x0
δx0 (17)

It should be noted that the matrix
∂λ0

∂x0
can be com-

puted offline since it is determined by x0 and λ0 and

can be computed when the database is being built.

Then, when a query problem p = x is matched to an

example pi = x0, s
�
i = λ0 in the database, we seed the

solver with the initial costate

λ = λ0 +
∂λ0

∂x0
(x− x0) (18)

In other words, the sensitivity matrix is Si =
∂λ0

∂x0
(pi,s

�
i ).

For free-time problems, we must compute the sen-

sitivity of both λ0 and tf with respect to x0. To do so,

compute the variation of Eqs. (10) and (11), obtaining⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂x(tf )

∂x0
δx0 +

∂x(tf )

∂λ0
δλ0 +

∂x(tf )

∂tf
δtf = 0

∂H(tf )

∂x0
δx0 +

∂H(tf )

∂λ0
δλ0 +

∂H(tf )

∂tf
δtf = 0

(19)

Here,
∂x(tf )

∂x0
and

∂x(tf )

∂λ0
are obtained as before;

∂x(tf )

∂tf
= ẋ(tf ) is obtained by substituting the optimal

control into the dynamics function;
∂H(tf )

∂tf
= 0 since

H does not depend on time [2];
∂H(tf )

∂x0
=

∂H(t0)

∂x0
=

−λ̇(t0); and ∂H(tf )

∂λ0
=

∂H(t0)

∂λ0
= ẋ(t0). Then we can

calculate δλ0 and δtf by solving a system of n+1 linear
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equations:

[
δλ0

δtf

]
= −

⎡
⎢⎢⎢⎣

∂x(tf )

∂λ0

∂x(tf )

∂tf

∂H(tf )

∂λ0

∂H(tf )

∂tf

⎤
⎥⎥⎥⎦
−1 ⎡

⎢⎢⎢⎣
∂x(tf )

∂x0

∂H(tf )

∂x0

⎤
⎥⎥⎥⎦ δx0

(20)

As with the fixed-time case, the sensitivity matrix can be

done offline and stored with the example in the database.

3.6 Summary

The overall NNOC procedure is listed below.

Precomputation phase

1) Determine a parameterization p of the set of

problems that will be encountered during the query

phase.

2) Determine a representative distribution over

problem parameters.

3) SampleN/M problem parameters, and use a global

optimization such as random-restarts to solve them.

4) Apply the method of Section 3.3 to extend the

database by a factor of M examples.

5) Store the database D and precompute data

structures for nearest-neighbor lookup.

Query phase

1) For a new problem p, determine the k nearest

neighbor examples (pi, s
�
i ).

2) Optionally (NNOC+SA), for each of k examples, use

sensitivity analysis (Section 3.5) to determine a seed si.

3) For each of k examples, run a local optimization

zi = Opt(si,p). Return the one with minimum cost.

Several hyperparameters affect performance, including:

(1) Database size N . If N is too small, the distance

between new parameters and the nearest neighbors

might be too large so the solutions might not lead to

convergence. Larger N is needed for problems that

are highly nonlinear with small convergence domain.

Nearest-neighbor lookup time is fairly insensitive to N

due to the use of approximate methods.

(2) Distribution of the examples in the database

should approximate the query distribution. A naive

method is to sample each state component uniformly at

random in a range, but if knowledge is available about

which states are encountered in practice, it should be

employed.

(3) Number of neighbors k determines how many

precomputed solutions are used as tentative values for

new problems. A larger k contributes to the robustness

by combating the effects of local optimal solutions.

However, larger values increase running time.

4 Numerical examples

We test NNOC in three problems:

• Planar Car: a minimum effort problem on a second-

order Dubins car.

• Quadcopter: a minimum-time problem on a dynamic

quadcopter model.

• Satellite: an agile satellite rest-to-rest reorientation

problem.

In each case we seed the database using randomly

sampled initial states, solved using a random restart

method. The test set is randomly generated from the

same distribution as the training set. We study the

effects of parameters such as the database size, stopping

criteria for random restart, database size, number of

neighbors queried, and whether SA is used.

4.1 Planar Car

We consider a simplified planar car with the following

dynamics [26]:

ẋ = v sin θ, ẏ = v cos θ, θ̇ = uθv, v̇ = uv (21)

where the state x = [x, y, θ, v] includes the planar

coordinates, orientation, and forward velocity of the

vehicle. The control u = [uθ, uv] includes the control

variables, which indicate steering angle rate of change

and velocity rate of change, respectively.

4.1.1 Optimal control formulation

The performance index is given by the quadratic control

effort

J =

∫ tf

t0

uTRudt (22)

where R is a diagonal matrix with entries r1 = 0.2 and

r2 = 0.1, as chosen in accordance with Ref. [26].

We arbitrarily choose fixed initial and final time,

i.e., t0 = 0, tf = 2.5. Initial states are sampled from

the range x ∈ [−3, 0], y ∈ [−3, 3], θ ∈ [−π, π], v = 0.

It should be noted that due to the symmetry of the

problem we do not have to consider positive x. The

target state is the origin, so that final orientation and

velocity is 0.

The costate variables λ = [λx, λy, λθ, λv] are governed

by the Hamiltonian [2]



A data-driven indirect method for nonlinear optimal control 351

H = λTẋ+ uTRu

= λxv sin θ + λyv cos θ + λθvuθ + λvuv + r1u
2
θ + r2u

2
v

(23)

and the Euler–Lagrange equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇x = −∂H

∂x
= 0

λ̇y = −∂H

∂y
= 0

λ̇θ = −∂H

∂θ
= −λxv cos θ + λyv sin θ

λ̇v = −∂H

∂v
= −λx sin θ − λy cos θ − λθuθ

(24)

Then we readily derive the optimal control which

minimizes H as

u∗θ = −vλθ

2r1
, u∗v = − λv

2r2
(25)

4.1.2 Estimation of costate magnitudes

The difficulty for providing tentative λ(t0) is partially

caused by the its unknown bounds. Admittedly, with

the help of the normalization of initial costate variables

[3] we can sample them on the surface of a high-

dimension ball. Here we use a non-rigorous formula

to help provide bounds for initial costate variables.

Experiments show that it helps to increase success rate

of random restart technique. The formula we use for

estimation of the magnitude of λv is⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s̄ = 2
√

x2 + y2

v̄ =
s̄

t

ā =
4v̄

t

λ̄v = 2ār2

(26)

where (̄·) denotes the magnitude. We first estimate

the length of the trajectory, then average velocity and

average acceleration assuming a constant acceleration

and deceleration. Then the formulation of the optimal

control is used to get the magnitude of λv. Using a

similar way, we obtain the magnitude of λθ as

λ̄θ =
16|θ0|r1
t2v̄2

. (27)

It should be noted that an additional term v̄2 is

multiplied in the denominator because the additional

multiplication of v in Eqs. (25) and (21).

4.1.3 Simulation result

We evaluate four methods that differ in how initial

guesses are provided and how the iteration is terminated.

(1) RR: Random Restart using k restarts, where k =

5, 10, 50, 100.

(2) RL: Random restart, terminating after k Locally

optimal solutions are solved, where k = 1, 3, 5, 10.

(3) NNOC: our method with k neighbors and without

sensitivity analysis, where k = 1, 5, 10.

(4) NNOC+SA: our method with k neighbors and

with sensitivity analysis, where k = 1, 5, 10.

In RL, the maximum number of restarts is limited

to 100 in order to avoid an infinite loop. For random

restart techniques, the normalization of initial costates

is used [3].

To build the database, we randomly generate N =

20,000 initial states and calculate the corresponding

costates. No database extension is performed (M = 1).

Then 5 databases having size 1,250, 2,500, 5,000, 10,000,

20,000 are constructed. In the database construction

phase, it is important to make sure the solutions are

indeed global optimal. We adopt a random restart

technique with 100 initial guesses. As experiments

will later show in Fig. 4, such a choice does achieve

about 95% global optimal rate. To further reduce the

likelihood of the database containing local optima, for

each example we use NNOC to adapt the solutions

from its neighbors, and keep the optimized solution

with lowest cost. This also suggests an incremental

construction technique, whereby random restarts is used

to solve a subset of examples and then NNOC is used

to propagate to other examples. Building the database

in this manner takes a few hours on a single core of a

CPU.

In Fig. 1 we plot the optimal trajectories of 30

examples where the arrow shows the direction the car

is heading. We record the running time, number

of solutions, and the best performance index of each

method. In the presented results, the Global Optimum

Rate denotes the fraction of times a method obtains

a globally optimal solution; and Avg. Time is the

average computation time for solving the TPBVP using

shooting methods. To calculate global optimum rate,

for each test example we compute the minimum cost

solution found over all methods tested. This value is

then considered the globally minimum cost. A local

optimum returned by each method is considered global
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Fig. 1 Sample of optimal trajectories for the Planar Car example.

The arrow shows the initial angle.

if its cost is close to the minimum cost (the difference is

less than 1× 10−3).

The results of average computation time and global

optimum rate are shown in Figs. 2 and 3 for NNOC with

different choice of hyperparameters including database

size N , neighbor count k, and whether SA is used.

The average computation time decreases with

increasing N since larger N indicates closer distance

from novel problem to its nearest neighbors. The

influence of N on average computation time is more

significant for larger k. This is reasonable since when k

is large, the distance of some neighbors might be quite

large and increasing N can help avoid initial guesses

that takes a long time to converge. Larger k causes more

trial of initial guess and increases average computation

Fig. 2 Average computation time for the Planar Car example.

Fig. 3 global optimum rate of for Planar Car example.

time. SA significantly reduces the computation time

since the linear approximation leads to a guess closer to

the optimum.

For global optimum rate, similar trends are observed.

With larger N and k the global optimum rate for NNOC

related methods also increases. Furthermore, SA also

helps to improve it.

To compare between random restart technique and

NNOC, the trade-off between computation time and

solution optimality is shown in Fig. 4. We note that in

this figure, the results for NNOC+SA use the largest

database size. For random restart techniques, the

Fig. 4 Trade-off between average computation time and global

optimum rate for between random restart and NNOC+SA with

different choice of initial guesses. The upper left corner is ideal.

To achieve the same level of global optimum rate, NNOC+SA is

much faster than random restart.
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computation time increases as the stopping criteria

increases. With increasing stopping criteria for random

restart methods, the global optimum rate increases, too.

We note that for this problem with many local optima, a

random restart technique has pretty low global optimum

rate unless many initial guesses are tried, while NNOC

with only 1 trial outperforms random restart with more

than 10 initial guesses. To achieve the same global

optimum rate with NNOC+SA with 1 guess, random

restart techniques cost two orders of magnitude more

time.

4.2 Planar Quadcopter

The Quadcopter example defines the following dynamics

[27]:

ẍ =
FT

m
sin θ, z̈ =

FT

m
cos θ − g, θ̇ = ω (28)

where g is the gravitational acceleration; m the mass

of the quadcopter; FT the total thrust force; and ω

the pitch rate. The state x = [x, z, ẋ, ż, θ] includes the

x, z coordinates, the velocity, and the pitch angle. The

control is defined as u = [u, ω] where u = FT /m. Both

controls are subject to saturation:

u � u � u, |ω| � ω (29)

where u = 1, u = 20, ω = 5. The initial state of

the quadcopter is randomly sampled such that x ∈
[−10, 0], z ∈ [−10, 10], ẋ = ż = θ = 0. Due to symmetry

of the problem, we do not have to sample the cases with

positive x.

4.2.1 Optimal control formulation

The objective in this problem is to move to and hover

at the origin in minimum time. The time-optimal

performance index is

J =

∫ tf

0

1dt (30)

where tf is a free variable. However, the resulting

optimal control is bang-bang control which is numeri-

cally challenging to solve [27]. Hence, we use an

alternate formulation that adds regularization para-

meters to the performance index so the resulting optimal

control is continuous [28]. We introduce a logarithmic

barrier function to the performance index, which is a

widely-used method in the field of aerospace engineering

[6, 29], as follows:

J =

∫ tf

0

L dt

=

∫ tf

0

1− ε1 ln[û(1− û)]− ε2 ln[ω̂(1− ω̂)] dt (31)

where û ∈ [0, 1] and ω̂ ∈ [0, 1] are nondimensionalized

controls such that u ≡ u + (u − u)û and ω ≡
ω + (ω − ω)ω̂. It can be shown that with this

modification, the resulting optimal control is continuous

and differentiable. The parameters ε1 and ε2 control the

magnitude of the logarithmic barrier. Smaller values

lead to a better approximation to the bang-bang control,

but they also enlarge numerical sensitivity and thus

reduce the convergence domain. In this work we initially

choose the values ε1 = ε2 = 1 which are relatively large

compared with Ref. [29], but also have a larger con-

vergence domain as the optimal control problem becomes

less ill-conditioned.

With costate variables λ = [λx, λz, λẋ, λż, λθ], we

write the Hamiltonian as

H = λxẋ+λz ż+λẋu sin θ+λż(u cos θ−g)+λθω+L (32)

and derive the Euler–Lagrange equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ̇x = −∂H

∂x
= 0, λ̇y = −∂H

∂x
= 0

λ̇ẋ = −∂H

∂ẋ
= −λx, λ̇ż = −∂H

∂ż
= −λz

λ̇θ = −∂H

∂θ
= λżu sin θ − λẋu cos θ

(33)

Then the non-dimensionalized optimal control that

minimizes H is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u∗ =
2ε1

2ε1 + ρ1 +
√

4ε21 + ρ21

ω∗ =
2ε2

2ε2 + ρ2 +
√

4ε22 + ρ22

(34)

where ρ1 and ρ2 are called switching functions and are

defined as

ρ1 = (u− u)(λẋ sin θ + λż cos θ), ρ2 = (ω − ω)λθ (35)

4.2.2 Simulation result

To build the database, we randomly generate 2,000

initial states and calculate the corresponding costates.

In Fig. 5 we plot the optimal trajectories of 50 examples.

Then the database extension technique of Section 3.3

is applied using M = 100 to get 200,000 state-costate
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Fig. 5 Sample optimal trajectories for the Quadcopter example.

The short line shows orientation of the quadcopter.

pairs. Databases of size 25,000, 50,000, 100,000, and

200,000 are constructed. As for the test set, 500 samples

of initial states are randomly generated. The database

extension technique is also used to extend the test set

by sampling 10 states along each trajectory. As a result,

the test set has 5,000 samples.

Figure 6 shows solving time for NNOC for varying

parameters. The trends agree with the planar car

problem. Figure 7 shows the trade-off between

computation time and global optimum rate. A

comparison between random restart and NNOC is

presented. Observe that for this problem, the difficulty

is convergence to a solution, not to a local optimal

solution. The low global optimum rate for RR is

they fail to find a solution within the given number of

Fig. 6 Average computation time of NNOC for the Quadcopter

problem.

Fig. 7 Trade-off between average computation time and global

optimum rate for the Quadcopter problem. A detailed description

is in Fig. 4.

trials, not the sub-optimality of the found solutions. In

practice, with 100 random initial guesses, the success

rate is 99.4%. Since existence of multiple local optima

is not an issue, the global optimum rate of RL is

determined by if convergence can be achieved within

the maximum trials numbers, which is chosen to be the

same with maximum number of initial guesses for RR.

As the result, RL has the same global optimum rate

with whatever stopping criteria. For problems without

multiple local optima, RL is surly a better choice than

RR since returning the first found solution turns out

to be sufficient. However, in general this property

is unknown in advance. Besides, for problems with

multiple local optima, such as the planar car problem,

RL tends to achieve lower global optimum rate, as Fig. 7

shows, unless the same amount of initial guesses are

used. However, random restart techniques still cost

much higher computation time than NNOC+SA which

is less than 4ms with k = 1 and achieves 99.9% global

optimum rate.

4.3 Agile satellite reorientation

A satellite is modeled as a rigid body under torque control

and without perturbation. The system dynamics are

Jω̇ + ω × Jω = Mu (36)

where ω = [ω1, ω2, ω3]
T is the the vector of angular

velocities; “×” is the cross product operator; J =

diag([J1, J2, J3]) is the inertia matrix (along the

principal axes so it is diagonal); M is the maximum
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torque magnitude; and u = [u1, u2, u3]
T denotes the

vector of the torque directions. It should be noted that

here the subscript 1, 2, 3 denotes the component along

x, y, z axis, respectively. We assume that the maximum

torque magnitudes along all axes are the same so the

constraint

−1 � u � 1 (37)

where the inequality denotes element-wise inequality. It

should be noted that Eq. (36) can be expanded into

matrix-vector form by expressing the cross product as

the multiplication of a skew-symmetric matrix and a

vector, i.e.,

ω̇ = −J−1[ω]×Jω + J−1Mu (38)

where

[ω]×
def
=

⎡
⎢⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎥⎦ (39)

In order to describe the attitude of the satellite, a variety

of attitude coordinates have been developed each of

which has its advantages and weakness [30]. We use

the modified Rodrigues parameters (MRPs) defined as

σ = e tan(Φ/4) (40)

where e and Φ are the eigenaxis and rotation angle.

Although MRP is a minimal parameterization, it has

singularity at Φ = 2π. However, in this paper we

only consider rotation within one revolution and by

choosing the eigenaxis direction properly we constrain

the rotation angle to be within [0, π].

From Ref. [30] the differential equation of MRPs is

derived as

σ̇ =
1

4
Bω (41)

where the matrix B is defined as

B =

⎡
⎢⎢⎣
1− σ2 + 2σ2

1 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ1σ2 + σ3) 1− σ2 + 2σ2
2 2(σ2σ3 − 2σ1)

2(σ1σ3 − σ2) 2(σ2σ3 + σ1) 1− σ2 + 2σ2
3

⎤
⎥⎥⎦
(42)

where σi(i = 1, 2, 3) denotes the three components of

MRP and σ2 ≡ σ2
1 + σ2

2 + σ2
3 .

The overall 6D state consists of (σ,ω) and the system

dynamics consist of Eqs. (41) and (38).

4.3.1 Optimal control formulation

We want to solve the time-optimal problem and use

homotopic approach to bypass the issue of control

discontinuity. The cost function is defined as

J =

∫ tf

t0

1−
3∑

i=1

ε ln[(ui − 1)(1− ui)]dt (43)

where ε controls the magnitude of the perturbation.

By introducing costate variables λσ and λω, the

Hamiltonian is defined as

H = 1−
3∑

i=1

ε ln[(ui − 1)(1− ui)] + λT
σ σ̇ + λT

ω ω̇ (44)

and the terms that depends on ui(i = 1, 2, 3) are

−ε ln[(ui − 1)(1− ui)] +
λωiM

Ji
ui (45)

and the optimal control can be calculated by solving the

ui such that the derivative of Eq. (45) with respect to

ui is zero, i.e.,

ui =
−ρi

ε+
√

ε2 + ρ2i
(46)

where
ρi =

λωiM

Ji
(47)

The Euler–Lagrange equations are derived by Eq. (6)

and found in Refs. [31,32].

For the rest-to-rest time-optimal problem, the initial

and final orientation of the satellite, denoted as σ0

and σf , respectively, are already known. Specifically,

any reorientation problem between two orientations is

essentially equivalent to the reorientation from σ0 = 0

to another σ′f . From now on we assume σf has already

been converted for simplicity. The TPBVP is built and

s ≡ [λσ(t0),λω(t0), tf ] is solved to satisfy boundary

conditions:

σ(tf ) = σf , ω(tf ) = 0 (48)

and

H(tf ) = 0 (49)

4.3.2 Simulation result

For simplicity, a symmetric satellite with J =

diag([1, 1, 1]) with maximum torque magnitude M =

1 is considered. The parameters are the target

orientations which are sampled and the corresponding

solutions are computed. In order to generate a uniform

distribution in SO(3), the method in Ref. [33] is used and

the corresponding program � is used. 10,000 samples

� http://msl.cs.uiuc.edu/~yershova/software/so3sampling/so3sampling.

htm, retrieved Oct/16/2018.
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of orientations are generated. For each sample, the time-

optimal control problem with homotopic approach (ε =

0.01) is solved using a random restart technique with a

maximum iteration number of 100. The normalization

of initial costate variables [3] is used and the initial

guesses of costate variables are generated randomly.

Numerical results show that a corresponding solution is

found for every sample. In order to see how the database

size N affects the computation time for novel problems,

the first 1,250, 2,500, 5,000 and all the 10,000 samples

are used to build databases, respectively. We show in

Fig. 8 three trajectories of reorientation. It should be

noted that these results are obtained with a homotopic

approach, so the optimal reorientation time is a little

lower than the ones obtained here.

Figure 9 compares the running time of NNOC for

different database size N , neighbor count k, and

whether SA is enabled. The trends agree with previous

two benchmark problems except that SA does not

decrease average computation time when dataset size

N is small. As N increases, the improvement by SA

also increases. The reason is that SA is based on

linearization and is only locally valid. As a result,

such linearization causes larger error as difference in

p increases, caused by increasing k. Again, for this

problem the global optimum rate is not a serious issue

and the comparison is thus omitted.

The comparison between random restart and NNOC

is shown in Fig. 10. Compared to NNOC+SA with 1

initial guess, random restarts take one to two orders

of magnitude more time to obtain the same global

optimum rate.

Fig. 8 Three example trajectories of reorientation. The red, green, blue axis denotes the x, y, z axis, respectively. The solid and

dashed lines show the initial and final axes. The stars show the trace of the tails of the unit vectors.
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Fig. 9 Average computation time of NNOC for random satellite

reorientations.

Fig. 10 Trade-off between computation time and global

optimum rate for random satellite reorientations.

5 Conclusions

In this paper a data-driven technique is proposed to help

solve nonlinear optimal control problems quickly and

reliably. NNOC addresses the major difficulty faced in

indirect optimal control—providing tentative values for

the unknowns—by retrieving the solutions to problems

that have already been solved using brute force methods.

The effects of several crucial parameters such as the

database size, number of neighbors, and whether to use

sensitivity analysis are investigated. Compared with

brute-force random restart technique, this method can

obtain the global optimal solution an order of magnitude

faster and has the potential for real-time application in

nonlinear MPC.

In future work we intend to enhance the suitability

of NNOC for real time control of physical systems.

Although current results are promising, robustness

could be improved in a number of ways. One approach

so might use NNOC to calculate a reference trajectory

for a trajectory-tracking controller. Or, we could

explicitly optimize robust trajectories for use in the

database. In some applications it may be challenging to

define the problem parameterization, such as obstacles

observed through sensor data, and one approach may be

to compute a feature mapping from sensor information

directly. Future work should also address scalability to

higher-dimensional systems as well as state and model

uncertainty.
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[24] Moré, J. J., Garbow, B. S., Hillstrom, K. E. User guide

for MINPACK-1. Argonne National Laboratory Report

ANL-80-74, Argonne National Laboratory, 1980.

[25] Maurer, H., Augustin, D. Sensitivity analysis and real-

time control of parametric optimal control problems

using boundary value methods. Online Optimization of

Large Scale Systems, 2001, 17–55.

[26] Xie, Z. M., Liu, C. K., Hauser, K. K. Differential

dynamic programming with nonlinear constraints. In:

Proceedings of 2017 IEEE International Conference on

Robotics and Automation, 2017, 695–702.

[27] Ritz, R., Hehn, M., Lupashin, S., D’Andrea, R.

Quadrocopter performance benchmarking using

optimal control. In: Proceedings of 2011 IEEE/RSJ

International Conference on Intelligent Robots and

Systems, 2011, 5179–5186.
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