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ABSTRACT

In this paper, the performance of two distinct classes of feedback guidance algorithms is

evaluated for a spacecraft rendezvous problem utilizing a continuous low-thrust propulsion

system. They are the DG (Differential Geometric) and ZEM/ZEV (Zero-Effort-Miss/Zero-

Effort-Velocity) feedback guidance algorithms. Even though these two guidance algorithms do

not attempt to minimize the onboard fuel consumption or ΔV directly, the ΔV requirement

is used as a measure of their orbital rendezvous performance for various initial conditions and

a wide range of the rendezvous time (within less than one orbital period of the target vehicle).

For the DG guidance, the effects of its guidance parameter and terminal time on the closed-loop

performance are evaluated by numerical simulations. For the ZEM/ZEV guidance, its near-

fuel-optimality is further demonstrated for a rapid, short-range orbital rendezvous, in comparison

with the corresponding open-loop optimal solutions. Furthermore, the poor ΔV performance of

the ZEM/ZEV guidance for a slow, long-range orbital rendezvous is remedied by simply adding

an initial drift phase. The ZEM/ZEV feedback guidance algorithm and its appropriate variants

are then shown to be a simple practical solution to a non-impulsive rendezvous problem, in

comparison with the DG guidance as well as the open-loop optimal guidance.
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1 Introduction

On-orbit satellite servicing missions, currently being

envisioned by commercial space industry, DARPA

(Defense Advanced Research Projects Agency), and

NASA, will certainly require fuel-optimal, autonomous

rendezvous and proximity operations. A variety of

techniques for rendezvous and proximity operations have

been developed and successfully flight demonstrated for

various space missions in the past few decades. They

include the classical methods, such as V-bar, R-bar, and

glideslope hopping approaches, which basically employ

multiple impulsive ΔV maneuvers for rendezvous and

proximity operations [1–4]. However, such flight-proven,

classical multi-impulse approaches may not be directly

applicable to future on-orbit servicing missions, such

as refuelling geosynchronous (GEO) satellites [5] and

removing space debris [6, 7], that employ servicing

� bongwie@iastate.edu

spacecraft equipped with continuous low-thrust electric

propulsion systems.

In the past two decades, a considerable amount of

research effort has also been devoted to developing

a variety of optimal autonomous orbital rendezvous

techniques. The DG (Differential Geometric) guidance

and the ZEM/ZEV (Zero-Effort-Miss/Zero-Effort-Velocity)

guidance are two distinct classes of feedback guidance

approaches. The continuous (non-impulsive) feedback

control nature of these two approaches makes them

more suitable to deal with various uncertainties and

perturbations.

The trajectories of space vehicles can be characterized

as space curves. Classical differential geometry theory

characterizes space curves in terms of the curvature

and torsion parameters, resulting in a somewhat

mathematical approach to design a guidance algorithm.

On account of this, a class of feedback guidance relying
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on the Frenet–Serret formula of classical differential

geometry theory has been developed in the past few

decades. The DG guidance algorithm was first presented

in Ref. [8] for a three-dimensional missile interception to

guarantee the capture of a maneuvering target, which

has some advantages of robustness and low control

thrust. The acceleration of the DG guidance algorithm

was then transformed from the arc-length system to

the time domain, and the target capturability was

investigated under various initial conditions in Refs. [9–

12]. The two-dimensional DG guidance algorithm was

developed as well without using the torsion parameter,

and improved by fuzzy PID and gain-varying techniques

in Refs. [13–15]. In fact, the DG guidance algorithm

shares the same spirit with the classical proportional

navigation (PN) guidance approach or its variants [16].

Drawing lessons from the PN guidance, a simple and

explicit three-dimensional DG guidance algorithm was

designed and its guidance performance was qualitatively

analyzed by a Lyapunov-like approach in Refs. [17–

20]. Apart from the above researches, some distinct

guidance algorithms also have been proposed for missile

interception using the differential geometry concepts in

Refs. [21, 22]. Recently, a two-dimensional spacecraft

rendezvous DG guidance algorithm is proposed in

Ref. [23], which requires proper selection of three design

parameters: the navigation ratio and the two velocity

control gains. In this paper, expanding upon the research

results described in Ref. [23], we will further examine the

DG rendezvous guidance algorithm in comparison with

the ZEM/ZEV guidance as well as the corresponding

open-loop optimal solutions.

The ZEM/ZEV feedback guidance algorithm is based

on an optimal control formulation of minimizing the total

control energy, given the terminal-time value, assuming

that the gravity field is either constant or an explicit

function of time [24,25]. This algorithm is conceptually

simple and easy to apply, thus has great potential

for autonomous onboard implementation. For many

practical missions, the gravity vector is neither constant

nor an explicit function of time, but is a function of the

orbital position vector, which causes the non-optimality

of the ZEM/ZEV guidance algorithm. However, even

for such space missions, the desired acceleration of

the ZEM/ZEV algorithm can still be obtained by

integrating or propagating the orbital dynamics and

its near-optimal performance has been observed for

various illustrative applications in Refs. [26–31]. The

ZEM/ZEV guidance algorithm and its variants, such

as predictive guidance and pulsed PN guidance, have

been also studied for a future advanced space mission

for deflecting or disrupting a hazardous asteroids in

Ref. [32]. A slower orbital rendezvous (i.e., with a

larger terminal time) is known to be always better

in minimizing the total control energy regardless of

the initial conditions. This somewhat nontrivial issue

is discussed in Ref. [30] by generating the open-loop

optimal solutions via general pseudo-spectral optimal

control software (GPOPS) package. Unfortunately,

the ZEM/ZEV guidance algorithm wrongfully indicates

a local optimal-ΔV rendezvous time because the

ΔV performance of ZEM/ZEV rapidly deteriorates as

the rendezvous time approaches the orbital period.

To improve the ZEM/ZEV guidance performance for

long-range missions, a waypoint-optimized ZEM/ZEV

algorithm was proposed in Refs. [27, 28], which

divides the terminal time into several segments with

intermediate waypoints. In Refs. [27, 28], it was shown

that the waypoint-optimized ZEM/ZEV algorithm can

even compete with the corresponding open-loop optimal

solutions for long-range orbital transfer and Mars

landing problems.

In this paper, expanding upon the previous research

results as discussed above, we will compare the orbital

rendezvous performance of the DG and ZEM/ZEV gui-

dance algorithms in terms of their actual fuel consump-

tion (characterized by ΔV ) for various initial conditions

and a wide range of rendezvous time (but within less

than one orbital period of the target vehicle). This paper

is organized as follows. The mathematical formulation

of DG guidance algorithm will be briefly reviewed and

further analyzed in Section 2. The optimal feedback

guidance problem and the generalized ZEM/ZEV

guidance algorithm will also be reviewed briefly in

Section 3. Additionally, a waypoint ZEM/ZEV algorithm

is developed to improve the guidance performance of a

slower orbital rendezvous in this section, which provides

a drift phase at the beginning of the engagement. Note

that the algorithm presented here is an extension of

the two-phase ZEM/ZEV concept proposed in Ref. [31]

for the Mars and Lunar landing problems. The per-

formance of the two distinct guidance algorithms will

be evaluated and compared for various initial conditions

and a wide range of terminal time in Section 4. The

effectiveness of the new two-phase ZEM/ZEV guidance

concept will also be demonstrated in Section 4, which
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results in an improved ΔV performance of the ZEM/ZEV

guidance algorithm, especially for a slower, non-impulsive

rendezvous.

2 Differential Geometric (DG) guidance

2.1 Dynamical modeling for an orbital ren-

dezvous

For a point-mass model of the chaser and target

spacecraft, their flight trajectories can be characterized

as continuous smooth curves in space. The Frenet–

Serret formula of classical differential geometry theory

are then used to describe the characteristics of space

curves with respect to arc-length, as follows:⎡
⎢⎣ t′(s)
n′(s)
b′(s)

⎤
⎥⎦ =

⎡
⎢⎣ 0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0

⎤
⎥⎦
⎡
⎢⎣ t(s)

n(s)

b(s)

⎤
⎥⎦ (1)

where κ(s) and τ(s) are respectively the curvature and

torsion parameters of the curve; t(s), n(s), and b(s) are

unit vectors associated with the tangential, normal, and

binormal directions of the space curve, respectively; ( )′

represents the derivative with respect to the arc-length s.

According to the classical differential geometry theory,

the curve shape in the plane spanned by vectors t(s) and

n(s) is determined by the curvature κ(s), while in the

plane spanned by vectors t(s) and b(s) it is determined

by the torsion τ(s). For a two-dimensional rendezvous

problem illustrated in Fig. 1, the curvature κ(s) is

considered as the control command which needs to be

properly designed by ignoring the torsion.

Fig. 1 Geometric description of a near-distance rendezvous

problem. Reproduced from Ref. [23], ©IAA 2006.

As shown in Fig. 1, we have

rm = rt − r (2)

where rt and rm are the position vectors of the target

and chaser spacecraft in the Earth-Centered Inertial

(ECI) coordinate system; r is the line-of-sight (LOS)

vector. In this paper, we adopt the same notations rm,

rt, and r used in Ref. [23], which is often employed in

the missile guidance literatures. In addition, the relative

range between the chaser and target is denoted by r,

that is, the magnitude of the LOS vector.

To simplify the guidance algorithm design, the target

is assumed in a two-dimensional circular or near-circular

orbit, which means that the target speed Vt is constant,

while the speed of chaser spacecraft Vm is not constant.

Defining the arc-lengths of the chaser and target flight

trajectories as sm and st, we have

dsm
dt

= Vm,
dst
dt

= Vt (3)

Taking the derivative of Eq. (2) with respect to sm, we

obtain the kinematical equation and its associated scalar

components along the tangential and normal directions

of the LOS vector, as follows:

tm =
Vt

Vm
tt − r′tsi − rωnsi (4)

r′ =
Vt

Vm
tt · tsi − tm · tsi (5)

rω =
Vt

Vm
tt · nsi − tm · nsi (6)

where subscriptsm, t, and si represent the chaser, target,

and LOS, respectively; ω is the LOS rotation rate in arc-

length system (i.e., ω = θ′si); θsi denotes the LOS angle

from a reference line as shown in Fig. 1. Moreover, r′

can be taken as the closing speed between the chaser

and target which is expressed in the arc-length system.

Taking the derivative of Eq. (4) with respect to sm
again, and applying the Frenet–Serret formula, we then

obtain the following set of orbital rendezvous dynamical

equations [23]:

r′′−rω2 =
V2

t

V2
m

κt(nt ·tsi)−κm(nm ·tsi)− Vt

V3
m

dVm

dt
(tt ·tsi)

(7)

rω′+2r′ω =
V2

t

V2
m

κt(nt·nsi)−κm(nm·nsi)− Vt

V3
m

dVm

dt
(tt·nsi)

(8)
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2.2 DG guidance algorithm for rendezvous

As mentioned previously, the DG approach focuses

on the shape of flight trajectories, which leads to a

novel and direct approach for guidance algorithm design.

To the best of authors’ knowledge, most of the DG

guidance algorithms were developed for the problem of

missile interception, except for Ref. [23] which addressed

the orbital rendezvous example. Different from the

interception problem, the following constraints should

be considered when the DG guidance is applied for

the near-distance rendezvous. (1) The relative range

r should decrease to zero, i.e., r → 0, which guarantees

the approach. (2) As the relative range decrease, the

closing speed should also decrease to zero, i.e., r′ → 0,

which is necessary condition for the rendezvous problem.

(3) The LOS rotation rate should decrease.

The DG algorithm is often developed in the arc-length

system with respect to sm. However, the curvature

command is not practical because the arc-length cannot

be measured by onboard sensors. In order to resolve this

problem, the acceleration command of the DG guidance

algorithm is transformed from the arc-length system to

the time domain, and was applied to the ballistic missile

defense scenario in Ref. [13].

Finally, we can obtain a two-dimensional DG

rendezvous algorithm according to the dynamical

equations (7) and (8). The curvature command κm and

acceleration command avc in time domain are proposed

in Ref. [23], as follows:

κm=
1

V2
m

(
V2

tκt
nt · nsi

nm · nsi
−avc

Vt

Vm

tt · nsi

nm · nsi
−N

ṙθ̇si
nm · nsi

)

(9)

avc =
dVm

dt
= Mrr+Mvṙ (10)

where N is the navigation ratio; Mr and Mv are the

Vm-control gains; κt is the curvature of the target flight

trajectory; ṙ and θ̇ are the expressions in time domain

for the closing speed and the LOS rotation rate.

Analysis in the arc-length system: Transforming the

curvature command (9) to the arc-length system by

using Eq. (3) and substituting the result into Eq. (8),

we obtain

rω′ + 2r′ω = Nr′ω (11)

The closed-form solution of the LOS rotation rate is

then obtained as [23]:

ω = ω0(r/r0)
N−2 (12)

where ω0 is the initial value of the LOS rotation rate. If

N > 2, ω will decrease as r decreases and it will approach

to zero at the end of the rendezvous. Thus, the first

constraint mentioned previously is satisfied.

Analysis in the time domain: In classical differential

geometry theory, the curvature κ(s) represents the

lateral acceleration, which is perpendicular to the

velocity vector and changes the flight direction only.

This acceleration is a normal component of the general

acceleration composed of the control acceleration and

gravitational acceleration. For the chaser and target in

this paper, their normal acceleration magnitudes can be

calculated as

am = V2
mκm, at = V2

tκt (13)

Transforming Eq. (8) to the time domain and combining

with Eqs. (9) and (13), we obtain

amθ = am(nm · nsi) = at(nt · nsi)−Nṙθ̇si (14)

where amθ is used to control of the LOS rotation. Then,

for a two-dimensional rendezvous problem, Eq. (13) can

be rewritten as

amθ = am cos θm = at cos θt −Nṙθ̇si (15)

where θm and θt are respectively the angles between the

LOS vector and the velocity vectors of the chaser and

target.

The term at cos θt in Eq. (15) is to compensate

the target maneuvering in the normal direction of the

LOS vector. Thus, the chaser can rendezvous with

an arbitrarily maneuvering target, even if the target

maneuver strategy is unpredictable. Consequently, the

DG rendezvous algorithm performs as the augmented

true proportional navigation (ATPN) guidance algorithm.

For this reason, the DG rendezvous algorithm has the

same performance as the ATPN guidance algorithm in

the normal direction of the LOS vector.

Transforming Eq. (7) into the time domain and

combining with Eq. (9), we obtain a time-varying

second-order differential equation, as follows:

r̈ = −Kr−Dṙ+ d (16)

where

K =
Vt

Vm

[
tt · tsi − tt · nsi

nm · nsi
(nm · tsi)

]
Mr
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D =
Vt

Vm

[
tt · tsi − tt · nsi

nm · nsi
(nm · tsi)

]
Mv−Nθ̇si

nm · tsi
nm · nsi

d = V2
t

[
nt · tsi − nt · nsi

nm · nsi
(nm · tsi)

]
κt + rθ̇2si

The time-varying parameters K and D can be considered

as the proportional and derivative gains of a PD-

type controller and d can be considered as a time-

varying external disturbance to a close-loop system.

The relative range between the chaser and target r is

then actively controlled, which means that the second

constraint can also be guaranteed by selecting the three

parameters N, Mr, and Mv properly. An equation

similar to Eq. (16) can be found in Ref. [23], and a

further study is needed to compare the two equations.

In summary, it has been shown that the two-

dimensional DG rendezvous algorithm [23] controls the

LOS rotation like an ATPN guidance algorithm in the

normal direction of the LOS vector and it also controls

the closing speed like a PD control law in the direction

of the LOS vector.

3 ZEM/ZEV feedback guidance algorithm

In this section, the position vector of a chaser spacecraft

is expressed simply as r without its subscript m for the

purpose of notational simplicity.

3.1 Optimal control problem formulation

The orbital motion of a chaser spacecraft can be simply

described in the ECI coordinate system as

ṙ = V (17)

V̇ = g(r) + a (18)

where r and V are respectively the position and

velocity vectors of a chaser spacecraft; a is the control

acceleration provided by the chaser’s thrusters; g(r)

represents the gravitational acceleration acting on the

chaser that is generally a function of r.

Given the initial time t0 and the final terminal time tf ,

the performance index J to be optimized is assumed as

J =
1

2

∫ tf

t0

aTadt (19)

This objective function is not to minimize the fuel

consumption or ΔV directly. However, it provides a

near-fuel-optimal characteristics for various practical

examples [26–31].

The gravitational acceleration is, in general, a

function of r, which will not lead to an analytical

solution of the optimal control problem. If the

gravitational acceleration is assumed to be an explicit

function of only time, the analytical optimal solution

can be found [24,25]. The rendezvous problem can then

be regarded as an optimization problem of determining

the acceleration time history a(t) of the chaser subject

to Eqs. (17) and (18) and a given set of initial and final

conditions.

3.2 ZEM/ZEV feedback guidance algorithm

for rendezvous

In order to find the analytical optimal solution, the final

states (position and velocity vectors) of the target at

tf in the ECI coordinate system should be known in

advance, which is different from the case of DG feedback

guidance. Assuming that the target is moving in space

subject to gravity only and that the final states can

be predicted accurately, we have the given boundary

conditions as

r(t0) = r0, r(tf ) = r f, V(t0) = V0, V(tf ) = Vf

The Hamiltonian function for this problem is defined as

H =
1

2
aTa+ pT

r V+ pT
v (g(t) + a) (20)

where pr and pv are the costate vectors associated with

the position and velocity vectors, respectively. Notice

that g is assumed as g(t) here.

The costate equations provide the optimal control

solution expressed as a linear combination of the

terminal values of the costate vectors pr(tf ) and pv(tf ).

The optimal acceleration at any time t is then expressed

as

a = −tgopr(tf )− pv(tf ) (21)

where tgo = tf − t is the time-to-go.

Solving the two-point boundary value problem

in optimal control, we obtain the optimal control

acceleration as

a =
6 [r f − r(tf)]

t2go
− 2 [v f − v(tf)]

tgo
(22)

where the term r f−r(tf) denotes the difference between

the specified final position and free-fall position at tf ,

which is referred to as the ZEM distance; the term v f−
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v(tf) denotes the difference between the specified final

velocity and free-fall velocity at tf , which is referred to

as the ZEV error. If no additional control is commanded

after the current time t, the final position and velocity

vectors can be predicted as r(tf ) and v(tf ), which are

referred to as the free-fall position and velocity vectors

at tf .

Finally, the ZEM/ZEV guidance algorithm for

rendezvous can be expressed as

a =
6

t2go
ZEM− 2

tgo
ZEV (23)

where ZEM = r f − r(tf) and ZEV = v f − v(tf). To

obtain the ZEM and ZEV terms, we need to calculate

the free-fall position vector r(tf) and the velocity vector

v(tf). As the simplest approach, these vectors can be

predicted under the uniform gravity assumption. While

this approach is only valid for short-range missions,

its effectiveness is degraded for long-range missions in

which the gravity direction change can not be ignored.

In this case, the free-fall position and velocity vectors

can be calculated by using Kepler’s propagator or

Vinti’s propagator [30]. Then, we have the generalized

ZEM/ZEV guidance of the form, Eq. (23), with the

numerically propagated values of free-fall position and

velocity vectors.

For an orbital rendezvous problem, a longer terminal

time is known to be always better in minimizing

the total control energy regardless of the initial

conditions. This somewhat nontrivial problem is

examined in Ref. [30] by generating the open-loop

optimal solutions via general pseudo-spectral optimal

control software (GPOPS) package. However, the

ZEM/ZEV guidance algorithm wrongfully indicates a

local optimal rendezvous time because the ZEM/ZEV

performance rapidly deteriorates as the rendezvous time

approaches the orbital period.

In this paper, we improve the long-range rendezvous

ΔV performance of the ZEM/ZEV guidance by simply

adding an initial drift phase as follows:

a =

⎧⎪⎨
⎪⎩

03×1, t � t1

6

t2go
ZEM− 2

tgo
ZEV, t > t1

(24)

where t1 is a switching time to be properly selected such

that t1 < tf . This is a simple version of the two-phase

ZEM/ZEV guidance algorithm proposed in Ref. [31] for

Mars and Lunar powered descent and landing problems

in an attempt to avoid a premature surface collision.

The effectiveness of adding such a simple drift phase

to the ZEM/ZEV guidance will be demonstrated in

the next section. It is important to note that the

switching time is determined by the initial positions

of the chaser and target, as well as the orbital period.

Unfortunately, no effort was made to explain how to

select such a switching time for rendezvous problem. By

investigating various initial conditions, we found that

the local optimal rendezvous time of the ZEM/ZEV

guidance is always a little larger than half orbital period.

For instance, a standard circular orbit with 6000 s

period approximately corresponds to a 3800 s local

optimal rendezvous time, which is a natural outcome

of the ZEM/ZEV algorithm. It should mention that,

this conclusion only suits for a near-distance rendezvous

mission, and the chaser and target initial orbits should

be circular or near-circular.

4 Numerical simulation study results

4.1 An illustrative rendezvous example

problem [23]

Numerical simulation study results of comparing the

performance of the two distinct classes of feedback

guidance algorithms are presented in this section. In

this study, the position and velocity navigations are

assumed to be isotropic in both the ECI and LVLH

frame, and navigation errors, external disturbances, as

well as orbital perturbations are ignored, which means

that the final rendezvous position and velocity can be

accurately predicted when the ZEV/ZEV algorithm is

employed. Additionally, the Clohessy–Wiltshire–Hill

coordinate system (x, y, z ) is used to describe the

relative motion of the chaser with respect to the target.

The origin of the CWH coordinates is located at the

target, and x, y, z are along the radial, in-track, and

cross-track directions, respectively.

In order to make the results more convincing and

general, four chaser vehicles are chosen in this section,

whose initial positions are located in the four quadrants

of the CWH coordinate system, respectively. The

orbital elements of the target and four chaser vehicles

are listed together in Table 1, in which the eccentricity of

each orbit is assumed as zero. When the range between

the chaser and target vehicles becomes less than 3.0 m,

computer simulation is stopped.
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Table 1 Orbital elements of target and 4 chaser spacecraft [23]

a (km) e i (deg) Ω (deg) ω (deg) M0 (deg)

Target 6840.2 0 98 35 0 0

Chaser 1 6871.0 0 98 35 0 0.6

Chaser 2 6871.0 0 98 35 0 −0.6

Chaser 3 6809.4 0 98 35 0 −0.6

Chaser 4 6809.4 0 98 35 0 0.6

4.2 Performance evaluation of DG rendezvous

guidance

The DG rendezvous guidance was evaluated for various

initial conditions and a wide range of terminal time,

from which we found that the three guidance parameters

N, Mr, and Mv are not independent. In other words, if

two parameters are given, the third parameter should be

properly tuned to satisfy a certain relationship between

the three parameters. The study in Ref. [23] tried to

optimize the whole rendezvous procedure and obtained

convincing results; however, it made on attempt to

establish the relationship between the three guidance

parameters. In what follows, the relationship and effects

of the three guidance parameters will be qualitatively

given.

For Chaser 1, three cases (Mr = 0.00000120, 0.00000096,

and 0.00000070) are considered. As mentioned above,

the control gain Mv needs to be adjusted with various

Mr and N to make the closing speed converge to zero.

Figures 2(a) and 2(b) show the variations of tf and

Mv versus N ranging from 2.1 to 3.7. The effect of

N can be easily observed from these results, that is,

both tf and Mv will decrease as N gradually increases.

Furthermore, we notice that the rendezvous time tf
cannot be arbitrarily selected for the DG guidance. It is

indirectly selected by a combination of Mr and N, which

is different from the ZEM/ZEV algorithm.

For Chaser 2, three cases (N = 2.1, 2.5, and 2.9)

are further investigated, whose results are plotted in

Figs. 2(c) and 2(d), respectively. As shown in Fig. 2(c),

if we keep the same control gain Mr as a constant and

apply a series of N ranging from 2.1 to 2.9, the range

of the rendezvous window is less than 1200 s. However,

if N is kept as 2.5, the rendezvous window is extended

to 1800–6800 s by various Mr, which indicates that Mr

has a greater impact on the rendezvous time than N for

Chaser 2. Moreover, the effect of Mr also can be easily

concluded from these results, that is, a smaller tf and

a lager Mv will be obtained under a larger Mr. With

understanding the above discussion, the effects of Mr

Fig. 2 Effects of the three design parameters of the DG rendezvous algorithm.
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and N are clearly illustrated, and the third parameter

Mv is natural outcome for various combination of Mr

and N.

As shown in Fig. 2, if Mr is kept as 0.00000096,

Chaser 2 will rendezvous with the target at 1776.2 s,

1587.8 s, and 1466.6 s when N is chosen as 2.5, 2.9,

and 3.3, respectively. Figure 3 displays the detailed

guidance performance of these three cases, including

the relative motion trajectories, the closing speed

magnitude, the acceleration command magnitude, and

the ΔV requirement. Numerical simulation results

demonstrate that the acceleration command am has

some restriction and cannot increase arbitrarily. In the

meanwhile, it can be observed from Fig. 3(c) that the

peak of acceleration increases rapidly as the navigation

ration increases, which should be avoided. In order

to obtain an acceptable maximum acceleration, the

navigation ratio N is capped at 3.7 for Chaser 1 in

the previous discussion. Thus, there exists a proper

rendezvous window, whose range is influenced by the

three guidance parameters in the DG algorithm, subject

to the relations shown in Fig. 2. This is a general

conclusion appropriate for both the Chasers 1 and 2.

Figure 4 illustrates the overall rendezvous per-

formance of the DG guidance for Chaser 2 with the

rendezvous time is indirectly selected as 5981.3 s,

5446.6 s, and 4899.8 s, from which the similar

conclusions can be inferred.

4.3 Performance evaluation of ZEM/ZEV

guidance

To conduct a comparative evaluation, the rendezvous

time considered for the DG guidance in the preceding

section is also used as the specified terminal time of

the ZEM/ZEV guidance in this section. It is worth

mentioning that the rendezvous mission of Chaser 1

can be regarded as a short-range mission, because the

rendezvous time is much less than the orbital period

of about 6000 s. Consequently, a conventional, single-

phase ZEM/ZEV can be employed and compared with

the DG guidance.

Figure 5 displays the guidance performance of the

conventional, single-phase ZEM/ZEV algorithm for

Chaser 1, including the relative motion trajectories, the

closing speed magnitude, the acceleration command

magnitude, and the ΔV requirement. Comparing

Figs. 3 and 5, we can notice that the maximum control

acceleration of the ZEM/ZEV guidance is smaller than

that of the DG guidance for Chaser 1. However, the

DG guidance requires a smaller terminal acceleration

Fig. 3 DG guidance performance for Chaser 1.
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Fig. 4 DG guidance performance for Chaser 2.

Fig. 5 Single-phase ZEM/ZEV guidance performance for Chaser 1.
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because the LOS rotation rate will decrease to zero at

the end of rendezvous.

As was discussed for the DG guidance, the rendezvous

time of Chaser 2, considered by the DG guidance, is

much longer than that of Chaser 1, even approaching

the orbital period of about 6000 s. Therefore, the

rendezvous mission for Chaser 2 is considered as a

long-range mission, in which the two-phase ZEM/ZEV

guidance concept [30] may need to be employed. Figure 6

illustrates the performance of the two-phase ZEM/ZEV

guidance with a given 5446.6 s rendezvous time and

three different values of switching time t1 (1000 s, 1500 s,

and 2000 s, which keeps the actual rendezvous time

being a little larger than half orbital period).

We notice that the smallest ΔV is about 232.2 m/s

when t1 is chosen as 1000 s. We also notice that the

relative position along the x -axis is naturally kept at the

initial altitude of 31 km during the drift phase, while the

y-axis position drift freely. Furthermore, the maximum

acceleration of the ZEM/ZEV guidance is larger than

that of the DG guidance, which is different from the

case of Chaser 1.

To provide a further detailed comparison, we

consider four chaser vehicles as described in Table 1.

Their relative motion trajectories are provided in

Fig. 7. These trajectories depict some well-known

characteristics of the relative motion in the CWH

coordinate system. We also see that the rendezvous with

the initial conditions in the second and fourth quadrants

require more time than those in the first and third

quadrants. Hence, by using the DG and ZEV/ZEV

guidance, we think the first and third quadrants are the

proper initial relative position for rendezvous missions.

4.4 Performance comparison of DG guidance,

ZEM/ZEV guidance, and open-loop

optimization

The ΔV performance of the two guidance algorithms is

compared with the open-loop optimal solutions to further

evaluate their orbital rendezvous performance. General

pseudospectral optimal control software (GPOPS) is a

versatile open-source multiphase optimizer and is used in

this paper to generate the open-loop optimal solutions.

Figure 8(a) provides the ΔV performance of the DG

guidance for Chaser 1 with various values of Mr. We

notice that the ΔV performance of the DG guidance is

affected by the rendezvous time as well as the control

gain Mr. However, no matter what the value of Mr

Fig. 6 Two-phase ZEM/ZEV guidance performance for Chaser 2.
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Fig. 7 Comparison of relative motion trajectories for DG and ZEM/ZEV guidance.

is, the ΔV decreases as the rendezvous time increases.

Figure 8(b) provides the ΔV performance of the DG (Mr

is 0.00000120) and ZEM/ZEV guidance, in comparison

with the open-loop optimization solutions for Chaser 1.

The ZEM/ZEV algorithm can even compete with the

corresponding open-loop optimal solutions for the short-

range rendezvous mission. Although the ZEM/ZEV is a

near-fuel-optimal approach, its ΔV is not always better

than the DG guidance. Especially, the ΔV of the DG

guidance is 6.4% less than that of the ZEM/ZEV when

the rendezvous time is required as 1641.2 s.

So far, the ΔV performance of the DG guidance

with various parameters has been clearly illustrated

by Fig. 8(a). Now, the performance of the two-phase

ZEM/ZEV algorithm presented in Eq. (24) for a long-

range mission should be further investigated. Figure

8(c) gives the ΔV plots of the two-phase ZEM/ZEV

guidance for Chaser 2, in which the ΔV performance

needs to be improved, especially compared with the

single-phase ZEM/ZEV guidance of Chaser 1. As can

be noticed in Fig. 8(c), the ZEM/ZEV guidance, with an

initial drift phase with no control, has ability to decrease

Fig. 8 ΔV performance comparison of DG, ZEM/ZEV (with drift phase), and open-loop optimization.
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the actual fuel consumption for a long-range, slower

rendezvous. According to the comparative results, when

t1 is chosen as 1000 s, the local optimal rendezvous

time of the two-phase ZEM/ZEV is about 4400 s,

which is longer than the optimal time indicated by the

single-phase ZEM/ZEV (about 2800 s). Thus, the two-

phase ZEM/ZEV guidance wrongfully indicates a local

optimal rendezvous time as well, which is determined by

the ZEM and ZEV terms. However, the local optimal

rendezvous time can be properly extended to adjust to

a long-range rendezvous mission by using the two-phase

ZEM/ZEV guidance.

Figure 8(d) provides the performance comparison of

the DG (N = 2.5), the ZEM/ZEV (t1=1000 s), and the

open-loop optimization solutions for Chaser 2. The ΔV

of the DG guidance also has a local optimal value of

ΔV , in which the rendezvous time is about 4100 s. It is

worth mentioning that, the optimal rendezvous time of

the DG guidance depends on N.

In summary, the DG guidance is not designed to

optimize the fuel consumption or control energy, and

its ΔV performance is natural outcome of the initial

conditions and guidance parameters. Compared with

the open-loop optimal solutions, the DG guidance always

requires a larger ΔV , but sometimes its requirement is

acceptable, such as the Chaser 1 shown in Fig. 8(b).

The ZEM/ZEV guidance focused on the control energy

optimization, epically for a short-range rendezvous, in

which its ΔV performance can even compete with the

open-loop optimal solutions. The proposed two-phase

ZEM/ZEV algorithm (24) can effectively decrease ΔV

requirement for a long-range rendezvous, which is a

meaningful extension of the two-phase concept presented

in Ref. [31]. After remedying, we have to say that the

ΔV performance for long-range rendezvous missions is

still not near-optimal, but improved a lot.

Based on the numerical study results as described in

this paper, an overall performance assessment of the DG

and ZEM/ZEV guidance is provided in Table 2.

Table 2 Comparison of the DG and ZEM/ZEV guidance

algorithms

DG ZEM/ZEV

Rendezvous time no direct control can be directly specified

Terminal states open to be specified

Target trajectory info required not required

Implementation complex simple

ΔV requirement
always larger depends on the
than optimal rendezvous range

5 Conclusions

The ΔV performance of two distinct classes of feedback

guidance algorithms has been compared for a rendezvous

maneuver utilizing continuous low-thrust engines, with

various initial conditions and a wide range of terminal

time of less than one orbital period. Each of the DG

(Differential Geometric) and ZEM/ZEV (Zero-Effort-

Miss/Zero-Effort-Velocity) feedback guidance algorithms

has been shown to possess its unique pros and cons

over each other. The ZEM/ZEV feedback guidance

algorithm and its appropriate variants have been shown

to be a practical solution to a non-impulsive rendezvous

problem because of its simplicity and overall satisfactory

ΔV performance. However, a further study is needed

to combine the classical impulsive ΔV techniques with

the continuous DG and ZEM/ZEV feedback guidance

algorithms for a multiple-revolution rendezvous problem.
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