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ABSTRACT

The usage of state transition tensors (STTs) was proved as an effective method for orbital

uncertainty propagation. However, orbital maneuvers and their uncertainties are not

considered in current STT-based methods. Uncertainty propagation of spacecraft trajectory

with maneuvers plays an important role in spaceflight missions, e.g., the rendezvous phasing

mission. Under the effects of impulsive maneuvers, the nominal trajectory of a spacecraft

will be divided into several segments. If the uncertainty is piecewise propagated using the

STTs one after another, large approximation errors will be introduced. To overcome this

challenge, a set of modified STTs is derived, which connects the segmented trajectories

together and allows for directly propagating uncertainty from the initial time to the final time.

These modified STTs are then applied to analytically propagate the statistical moments

of navigation and impulsive maneuver uncertainties. The probability density function is

obtained by combining STTs with the Gaussian mixture model. The proposed uncertainty

propagator is shown to be efficient and affords good agreement with Monte Carlo simulations.

It also has no dimensionality problem for high-dimensional uncertainty propagation.
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1 Introduction

With the number of tracked space objects growing

sharply, the efficient and accurate propagation of their

orbital uncertainties becomes an essential issue in

space situational awareness (SSA). Orbital uncertainty

propagation is a common requirement to many SSA

functions including tracking and data association,

conjunction analysis and probability of collision, sensor

resource management, and anomaly detection [1]. The

propagation of uncertainty in astrodynamics is usually

addressed by linear models [2, 3] or nonlinear Monte

Carlo (MC) simulations [4, 5]. The linear methods are

computationally efficient, but their accuracy declines for

highly nonlinear systems or long-duration propagations.

Conversely, MC simulations provide high-precision

statistics, but are computationally expensive. To avoid

these shortcomings, many analytical or semi-analytical

techniques for nonlinear uncertainty propagation have

been developed in recent years.

� luoyz@nudt.edu.cn

Junkins et al. [6, 7] first investigated the nonlinear,

non-Gaussian characteristics of orbit uncertainty pro-

pagation in different coordinate systems. They found

that the orbital-element expression has better accuracy

than the Cartesian coordinate expression on uncertainty

prediction. Julier and Uhlmann [8] proposed an

unscented transformation method based on the idea

that it may be easier to approximate the probability

distribution than to approximate the nonlinear

transformation for a given dynamical system. Park and

Scheeres [9] proposed a semi-analytical state transition

tensors (STTs) method by solving the higher-order

Taylor series expansions that describe the localized

nonlinear motion. This approach has been further

developed by Fujimoto et al. [10] and Park and Scheeres

[11]. Yang et al. [12] employed the STT-based method

to determine the required navigation precision for a

short rendezvous mission. With the similar concept of

STTs, Hernando-Ayuso and Bombardelli [13] developed

an analytical second-order solution for relative orbit
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uncertainty propagation in nearly circular orbits, and

Yang et al. [14] proposed an analytical second-order

solution for relative orbit uncertainty propagation in

J2-perturbed elliptic orbits. The STT-based methods

are efficient and accurate for uncertainty propagation.

However, they require the derivation of higher-order

partials of the governing differential equations, which

could be very complex for high-fidelity orbital dynamics.

In comparison to the STT method, the differential

algebraic (DA) technique can automatically expand the

flow of the dynamics up to an arbitrary order within

a computerized environment, thus can avoid manually

deriving the higher-order partials. The DA was first

proposed by Berz [15], then was applied to propagate

orbital uncertainty by Valli et al. [16]. The DA-based

uncertainty propagator has been used to solve different

problems in Refs. [17–19]. Both the STTs and the

DA are intrusive methods that require a modification

of either the system model or the algebra used to

evaluate the quantities of interest. Similarly, Riccardi et

al. [20] developed another intrusive method to propagate

orbital uncertainty based on Tchebycheff polynomial

algebra. On the contrary, Jones et al. [21–23] proposed a

non-intrusive polynomial chaos (PC) method for orbital

uncertainty propagation. The non-intrusive PC method

treats the governing dynamics as a black-box and thus does

not need any simplifications on the dynamics. However,

it suffers from the dimensionality problem. A com-

parison between the intrusive and non-intrusive uncertainty

propagators is given by Vetrisano and Vasile [24].

As proved by the previous studies [9–24], the initial

Gaussian distribution becomes non-Gaussian after a

nonlinear mapping. In order to fully describe the non-

Gaussian distribution, it requires the propagation of the

probability density function (PDF) governed by Fokker–

Planck equation (FPE) [25], which is extremely difficult

for high-dimensional systems, e.g., the 6-dimensional

orbital dynamics. Alternatively, the Gaussian mixture

model (GMM) method can approximate the PDF of

an arbitrarily non-Gaussian distribution without solving

the FPE. Therefore, several GMM methods have been

developed by Horwood et al. [26], DeMars et al. [27],

Vishwajeet et al. [28], and Vittaldev and Russell [29].

The GMM method decouples a large uncertainty

propagation problem into many small problems, which

is an effective methodology to represent a non-Gaussian

distribution and to reduce the effects of nonlinearity in

dynamics. This concept can be commonly combined with

other uncertainty propagators to develop some hybrid

methods, e.g., the GMM and STT method [30] and the

GMM and PC method [31]. For more discussions of

different uncertainty propagation methods, readers can

refer to the review paper given by Luo and Yang [32].

The advantages of STT-based methods are twofold:

(1) only the statistics (e.g., mean and covariance matrix)

of the input uncertainty are required, thus the curse

of dimensionality can be avoided as no randomized

samples are needed, and (2) the propagation of statistics

is just an algebraic manipulation once the STTs are

integrated along the reference trajectory, which makes

these methods very efficient. However, most previous

STT methods did not consider the effects of orbital

maneuvers. Although the orbital maneuvers were

included in Yang et al. [12], their method was only

suitable for short duration propagations, because the

statistics in their method were propagated by repeatedly

using STTs in each segmented trajectory, which would

make the approximation errors repeatedly enlarged by

the segmented STTs.

In order to include the effects of orbital maneuvers,

this study develops an STT-based, semi-analytical orbital

uncertainty propagation method. First, a set of modified

STTs which connects two segmented trajectories is

formulated using the original STTs proposed by Ref. [9],

and then these modified STTs are used to propagate

navigation and impulsive maneuver uncertainties from

initial time to the final time. Finally, the modified STTs

are combined with a GMM to propagate the PDF of a

multivariate non-Gaussian distribution. This combined

GMM and STT method allows for efficiently nonlinear,

non-Gaussian uncertainty propagation as all the Gaussian

mixtures can be mapped using the same STTs.

This manuscript is organized as follows. Section 2

provides the basic models for the related uncertainties

and describes the uncertainty propagation problem.

Section 3 derives the computational equation of the

modified STTs, followed by the STT-based uncertainty

propagator in Section 4. Numerical results and com-

parisons are presented in Section 5, and conclusions are

finally drawn in Section 6.

2 Problem statement

2.1 Orbital dynamics

Considering the perturbations of J2 term and

atmospheric drag, the spacecraft’s orbital dynamics in
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the Earth’s J2000 inertial coordinate system are given

as follows [33]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where μ, ωe, Re, and J2 are the Earth’s gravitational

constant, rotation angular velocity, average equatorial

radius, and J2-perturbation coefficient, respectively;

x = [r,v]T denotes the spacecraft’s state, r = [x, y, z]T

and v = [vx, vy, vz]
T are the position and velocity

vector, respectively; r = ‖r‖, and ‖ · ‖ denotes

the Euclid norm of a vector. Additionally, vrel =√
(vx + ωey)2 + (vy − ωex)2 + v2z is the spacecraft’s

velocity relative to the atmosphere, CD is the coefficient

of drag, S is the cross-sectional area of the spacecraft,

M is the mass of the spacecraft, and Γ = [Γx, Γy, Γz]
T

is the thrust acceleration vector. If the impulsive thrust

is assumed, the post-maneuver position and velocity

vectors can be expressed as

r+(ti) = r(ti), i = 1, 2, · · · ,m
v+(ti) = v(ti) + Δvi

(2)

where the superscript “+” denotes the post-maneuver

state, ti is the ith maneuver time, and m is the number

of impulses.

2.2 Uncertainty models

According to Ref. [34], the differences between the

actual and nominal trajectories are mainly caused by

three error sources: dynamic model errors, navigation

errors, and actuation errors. Dynamic model errors

are the differences between the normally used model

parameters and the real values of the model parameters,

e.g., the atmospheric density, and the gravity field

parameters. Navigation errors are the differences

between the state as perceived by the measurement

system and the real state (position, velocity, attitude,

and angular rate) of the spacecraft. Initial navigation

errors can be amplified over time by effects of orbital

dynamics and thrust maneuvers. Actuation errors

are the differences between the proper corrections of

the values to be controlled and the ones actually

produced by the actuator; these errors are caused by

the spacecraft’s thruster and control system.

For the near-Earth orbits, the main dynamic model

errors are the atmospheric parameters since the Earth’s

gravity field is relatively accurate. This paper mainly

concerns about the formulation of a set of modified

STTs and their application in uncertainty propagation

under impulsive maneuvers, thus the dynamic model

errors are not considered. However, the approach

presented in Yang et al. [12] can be used to take model

errors into account.

Assuming that the measured or predicted state of a

spacecraft is [r0,v0]
T, then its real state [r̃0, ṽ0]

T with

navigation uncertainty can be expressed as

r̃0 = r0 + δr0

ṽ0 = v0 + δv0

(3)

where [δr0, δv0]
T is a random realization of the

navigation uncertainty.

Assuming that the nominal impulsive maneuvers are

Δvi = [Δvix,Δviy,Δviz]
T(i = 1, 2, · · · ,m), then the

real impulse Δṽi with maneuver uncertainty can be

expressed as

Δṽi = Δvi + δΔvi, i = 1, 2, · · · ,m
σ(δΔvij) = α |Δvij |+ β, j = x, y, z

(4)

where |·| denotes the absolute value, δΔvi is a random

realization of the impulsive maneuver uncertainty, its

standard deviations, σ(δΔvij), is proportional to the

magnitude of Δvij , and α and β are the coefficients.

It is noted that the three coordinates of a maneuver

uncertainty can be chosen as corrected by setting

the non-diagonal elements of its covariance matrix as

nonzero, as shown in Eq. (31).

2.3 Uncertainty propagation with maneuvers

Figure 1 illustrates the uncertainty propagation process

under impulsive maneuvers. The nominal impulsive

maneuvers Δvi(i = 1, 2, · · · ,m) are first preplanned

using the chaser’s initial navigation state [r0,v0]
T

and final aimed state [raim,vaim]
T. The uncertainty
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Fig. 1 Orbital uncertainty propagation process.

propagation process with multiple impulses can be

described using four steps: (1) add a random realization

of the navigation uncertainty [δr0, δv0]
T into the initial

nominal state [r0,v0]
T; (2) propagate the random

realization of the real state [r̃0, ṽ0]
T to the maneuver

time using the governing dynamics; (3) add a random

realization of the uncertain impulse Δṽi into the

chaser’s velocity vector; (4) repeat steps (2) and (3)

until the final time and obtain the random realization

of the final states [r̃f , ṽf ]
T.

As shown in Fig. 1, the nominal trajectory is divided

into (m + 1) segments by the m impulses. The

propagation of navigation and impulsive maneuver

uncertainties can be processed piecewise using the STT-

based method presented in Yang et al. [12]. However,

this STT-based propagator can only be useful for short-

term uncertainty propagations or problems with small

initial uncertainty, because the Taylor approximation

errors will be quickly enlarged by the STTs in different

segments of the trajectory, which makes the given STTs

become insufficient to approximate the solutions at the

latter segments of the trajectory. To overcome this

shortage, this study builds a set of modified STTs which

can handle the abrupt state jumps at each maneuver

time and thus directly propagate the initial uncertainty

to the final time.

In this study, the following assumptions are made:

(1) The navigation uncertainty and impulsive maneuver

uncertainties are Gaussian and pairwise uncorrelated.

Because the impulsive maneuvers are computed based

on the nominal trajectory but not intended to satisfy

the terminal conditions in a closed-loop control manner,

the navigation and orbital maneuvers are independent

random events. Thus, the navigation and maneuver

uncertainties can be assumed as independent random

variables.

(2) The impulsive maneuver uncertainties are zero

means. Under this assumption, most of the higher-

order cross-correlated moments between navigation and

maneuver uncertainties are zeros, and a simplified

covariance propagation can be obtained (see the

formulation in Section 4.1).

It is noted that the navigation uncertainty δx0 can be

nonzero means, and that the components of navigation

uncertainty δx0 or the components of a specific impulse

uncertainty δΔvi(i = 1, 2, · · · ,m) can be correlated. An

intuitive understanding on this “correlated” is that the

covariance matrix of δx0 or δΔvi has no need to be

diagonal.

The statistics of a Gaussian random vector can be

completely described by the first two moments (mean

and covariance matrix). Thus, only the first two

moments are needed to propagate under the assumption

of Gaussian distribution. However, there is no guarantee

that the Gaussian distribution will remain Gaussian

after propagating through a nonlinear dynamics. To

solve this issue, a method of combining GMM and STT

is used to approximate the PDF of the propagated

uncertainty.

3 Formulation of state transition tensors

3.1 State transition tensors without maneuvers

The spacecraft’s dynamics of Eq. (1) is rewritten in

tensor notation:
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ẋi(t) = f i[t,x(t)] (5)

where x = {xi|i = 1, · · · , n}, and n = 6 is the dimen-

sional size of the dynamics. For a given initial condition

x0 = x(t0), the solution to Eq. (7) is denoted as

x(t) = φ(t;x0, t0) (6)

By applying the Kth order Taylor series expansion

about the initial condition, the deviation of the current

state from a nominal trajectory can be represented

as [9]:

δxi(t) = φi(t;x0 + δx0, t0)− φi(t;x0, t0)

=

K∑
p=1

1

p!
Φ

i,k1···kp

(t,t0)
δxk1

0 · · · δxkp

0 (7)

where the Einstein summation convention is used, and

Φ
i,k1···kp

(t,t0)
= ∂pxi(t)/∂xk1

0 · · · ∂xkp

0 are the STTs from t0
to t. The STTs can be calculated by integrating the

differential equation (A1) in Appendix A. As shown in

Eq. (7), after the STTs are computed along the nominal

trajectory, a random realization of the current state

deviation δx(t) can be computed as an analytic function

of the random initial state deviation δx0.

Equation (7) gives the nonlinear mapping of orbital

deviation from the initial time to a future time

when the nominal trajectory is consecutive. However,

this consecutive mapping cannot be directly used to

propagate orbital deviation when there is an abrupt

state jump in the nominal trajectory, e.g., an orbital

maneuver is performed. In this case, the STTs before

and after a maneuver need to be connected so as to

propagate the initial deviation to the final time. For the

linear case, the state transition matrix (STM) Φi,k1 is

inherently transitive, thus can be directly connected as

Φi,l1
(tf ,t0)

= Φi,k1

(tf ,tj)
Φk1,l1

(tj ,t0)
, where the superscripts i, l1, k1

are general indexes belonging to set {1, 2, · · · , n}. For

the nonlinear case, however, the STTs are not transitive.

A method to connect the nonlinear STTs will be given

in the next section.

3.2 Modified state transition tensors with

maneuvers

Assuming that impulsive maneuvers Δvi(i = 1, 2, · · · ,
m) are executed in the propagation duration [t0, tf ].

The nominal trajectory is divided into (m+1) segments

by these m impulses, as shown in Fig. 1. The STTs

need to be computed independently for every segment

after adding the impulse into the state’s velocity

part. If the initial navigation uncertainty is piecewise

propagated to the final time using the segmented

propagation in Appendix B, the propagation error will

be enlarged. For example, at the time of t0, the Taylor

approximation error of Eq. (B1) is acceptable for the

input parameters m(t0),P (t0), as the input uncertainty

is relatively small. However, at the time of t1, the

input parameters m(t1),P (t1) for Eq. (B1) become

larger after a nonlinear mapping from t0 to t1, which may

result in a very large approximation error if the second-

order solution of Eq. (B1) is still used. Consequently,

the Taylor approximation error of Eq. (B1) will be

increasingly enlarged if it is recursively used from t0 to

t1. To avoid this problem, a set of modified STTs that

can directly propagate the initial uncertainty to the final

time is derived.

We first consider only one abrupt state jump existing

in the nominal trajectory, i.e., to propagate the initial

state error δx(t0) from t0 to t2, during which the first

impulse is performed at t1, as shown in Fig. 1. Assuming

that there is a set of modified STTs which can directly

propagate the state error δx(t0) from t0 to t2 with the

similar Taylor expansions like Eq. (7):

δxi(t2) =

K∑
p=1

1

p!
Φ

i,l1···lp
(t2,t0)

δxl1
0 · · · δxlp

0 (8)

According to Eq. (7), the propagation of the state

error in the first segment can be expressed as

δxk1(t1) =

K∑
q=1

1

q!
Φ

k1,l1···lq
(t1,t0)

δxl1
0 · · · δxlq

0 (9)

and the propagation of the state error in the second

segment is

δxi(t2) =

K∑
p=1

1

p!
Φ

i,k1···kp

(t2,t1)
δxk1

1 · · · δxkp

1 (10)

where the superscripts, i, k1 · · · kp, and l1 · · · lp are

general indexes belonging to set {1, 2, · · · , n}, and

δxj = δx(tj) for j = 0, 1, 2. It is noted that the

initial conditions for computing the STTsΦ
i,k1···kp

(t2,t1)
using

Eq. (A1) in Appendix A are: x+
1 = x1 + [0, 0, 0,Δv1]

T,

Φi,k1

(t2,t1)
= 1 if i = k1, and all the other elements of

Φ
i,k1···kp

(t2,t1)
are zero. Here the superscript “+” indicates the

post-maneuver state, and x+
1 is the initial condition for

computing the higher-order partials fi,k1···kp(t1) in Eq. (A1).
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Substituting Eq. (9) into Eq. (10), the nonlinear

mapping from t0 to t2 can be obtained as

δxi(t2) =

K∑
p=1

[
1

p!
Φ

i,k1···kp

(t2,t1)

(
K∑
q=1

1

q!
Φ

k1,l1···lq
(t1,t0)

δxl1
0 · · · δxlq

0

)

· · ·
(

K∑
q=1

1

q!
Φ

kp,l1···lq
(t1,t0)

δxl1
0 · · · δxlq

0

)]
(11)

Equation (11) can be expanded to any order. For

example, truncating the Taylor expansions in Eq. (11)

to the second order, i.e., K = 2, we can obtain:

δxi(t2) = Φi,k1

(t2,t1)
δxk1

1 +
1

2
Φi,k1k2

(t2,t1)
δxk1

1 δxk2
1

= Φi,k1

(t2,t1)

(
Φk1,l1

(t1,t0)
δxl1

0 +
1

2
Φk1,l1l2

(t1,t0)
δxl1

0 δx
l2
0

)

+
1

2
Φi,k1k2

(t2,t1)

(
Φk1,l1

(t1,t0)
δxl1

0

)(
Φk2,l2

(t1,t0)
δxl2

0

)
= Φi,k1

(t2,t1)
Φk1,l1

(t1,t0)
δxl1

0 +
1

2

(
Φi,k1

(t2,t1)
Φk1,l1l2

(t1,t0)

+ Φi,k1k2

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2

(t1,t0)

)
δxl1

0 δx
l2
0 (12)

Comparing the same order terms in Eq. (12) with

those in Eq. (8) for K = 2, then the STTs Φi,l1l2
(t2,t0)

can

be obtained. We further truncate Eq. (11) to the fourth

order (K = 4); after some algebra, the STTs Φi,l1l2l3l4
(t2,t0)

can be obtained as

Φi,l1
(t2,t0)

= Φi,k1

(t2,t1)
Φk1,l1

(t1,t0)

Φi,l1l2
(t2,t0)

= Φi,k1

(t2,t1)
Φk1,l1l2

(t1,t0)
+Φi,k1k2

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2

(t1,t0)

Φi,l1l2l3
(t2,t0)

= Φi,k1

(t2,t1)
Φk1,l1l2l3

(t1,t0)

+Φi,k1k2k3

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2

(t1,t0)
Φk3,l3

(t1,t0)

+1.5Φi,k1k2

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2l3

(t1,t0)

+1.5Φi,k1k2

(t2,t1)
Φk1,l1l2

(t1,t0)
Φk2,l3

(t1,t0)

Φi,l1l2l3l4
(t2,t0)

= Φi,k1

(t2,t1)
Φk1,l1l2l3l4

(t1,t0)

+Φi,k1k2k3k4

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2

(t1,t0)
Φk3,l3

(t1,t0)
Φk4,l4

(t1,t0)

+2Φi,k1k2

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2l3l4

(t1,t0)

+3Φi,k1k2

(t2,t1)
Φk1,l1l2

(t1,t0)
Φk2,l3l4

(t1,t0)

+2Φi,k1k2

(t2,t1)
Φk1,l1l2l3

(t1,t0)
Φk2,l4

(t1,t0)

+2Φi,k1k2k3

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2l3

(t1,t0)
Φk3,l4

(t1,t0)

+2Φi,k1k2k3

(t2,t1)
Φk1,l1l2

(t1,t0)
Φk2,l3

(t1,t0)
Φk3,l4

(t1,t0)

+2Φi,k1k2k3

(t2,t1)
Φk1,l1

(t1,t0)
Φk2,l2

(t1,t0)
Φk3,l3l4

(t1,t0)

(13)

Once the STTs Φi,l1···l4
(t2,t0)

are calculated using Eq. (13),

the initial state error δx0 can be directly propagated

to time t2 using Eq. (8). For the cases with multiple

impulses Δvj(j = 1, 2, · · · ,m), Eq. (13) can be re-

cursively applied to the following segmented trajectory

(j = 3, 4, · · · ,m). For instance, replacing Φ
i,k1···kp

(t2,t1)
and

Φ
ki,l1···lp
(t1,t0)

with Φ
i,k1···kp

(t3,t2)
and Φ

ki,l1···lp
(t2,t0)

, respectively, then

the STTs Φ
i,l1···lp
(t3,t0)

can be computed using Eq. (13). It is

noted that the modified STTs in Eq. (13) is a connection

of the regular STTs in different segments of the nominal

trajectory. At the beginning of each trajectory, the

nominal state is replaced by the new state after the

impulsive maneuver.

Finally, the propagation of state error from the time

tj(j = 0, 1, · · · ,m) to the final time tf using the

modified STTs Φi,l1···l4
(tf ,tj)

can be obtained as

δxi(tf ) =

4∑
p=1

1

p!
Φ

i,l1···lp
(tf ,tj)

δxl1
j · · · δxlp

j (14)

4 Uncertainty propagation methods

The STTs can be used to analytically propagate the

statistical moments of initial state uncertainty, e.g., mean

and covariance matrix [9, 10]. They can also be used

to propagate the PDF of the initial state uncertainty

by combining with a GMM method [30]. However, the

propagation of impulsive maneuver uncertainties using

STTs was not given in previous studies. This section

considers the analytical propagation of the initial state

uncertainty and the impulsive maneuver uncertainty

using the modified STTs.

4.1 Nonlinear covariance propagation

4.1.1 Covariance propagation of initial state

uncertainty

According to the fundamental theories of probability,

the mean and covariance matrix of a random vector δx

are defined as

mi = E[δxi]

P ij = E[(δxi −mi)(δxj −mj)]

= E[δxiδxj ]−mimj

(15)

where E[·] represents the expectation operator.

The propagation of mean and covariance matrix can

be obtained by substituting Eq. (14) into Eq. (15). The
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method of unfolding Eq. (15) is the same for any value

of K in Eq. (14). However, the mathematic expressions

are quite complicate for a big K. For simplicity, we

illustratively unfold Eq. (15) by truncating Eq. (14) to

the second order (K = 2). After some algebra, the first

two moments can be expressed as

mi(tf ) = Φi,a
(tf ,t0)

E[δxa
0 ] +

1

2
Φi,ab

(tf ,t0)
E[δxa

0δx
b
0]

P ij(tf ) = Φi,a
(tf ,t0)

Φj,b
(tf ,t0)

E[δxa
0δx

b
0]

+
1

4
Φi,ab

(tf ,t0)
Φj,cd

(tf ,t0)
E[δxa

0δx
b
0δx

c
0δx

d
0]

+
1

2

[
Φi,a

(tf ,t0)
Φj,bc

(tf ,t0)
+Φj,a

(tf ,t0)
Φi,bc

(tf ,t0)

]
·E[δxa

0δx
b
0δx

c
0]−mi

fm
j
f

(16)

For the Gaussian distribution, its third and fourth

raw moments can be computed using the mean and

covariance matrix [9]:

E[δxa
0 ] = ma

0

E[δxa
0δx

b
0] = P ab

0 +ma
0m

b
0

E[δxa
0δx

b
0δx

c
0] = ma

0m
b
0m

c
0+ma

0P
bc
0 +mb

0P
ac
0 +mc

0P
ab
0

E[δxa
0δx

b
0δx

c
0δx

d
0] = ma

0m
b
0m

c
0m

d
0 + P ab

0 P cd
0

+P ac
0 P bd

0 + P ad
0 P bc

0 +ma
0m

b
0P

cd
0

+ma
0m

c
0P

bd
0 +ma

0m
d
0P

bc
0

+mb
0m

c
0P

ad
0 +mb

0m
d
0P

ac
0

+mc
0m

d
0P

ab
0

(17)

It is noted that the 6th or 8th raw moments need to

be computed for the respective value of K = 3 or K = 4

in Eq. (14). A method to compute the higher-order raw

moments can be found in Phillips [35]. For the sake of

convenience, the nonlinear uncertainty propagation in

Eqs. (16) and (17) is denoted as

[mf ,Pf ] = STT
[
tf ; t0,m0,P0,Φ

i,k1k2

(tf ,t0)

]
(18)

4.1.2 Covariance propagation of impulsive maneuver

uncertainties

Equation (18) can be used to propagate the initial state

uncertainty. However, the uncertainties on impulsive

maneuvers are not included in Eq. (18). This section

formulates the analytical propagation of impulsive

maneuver uncertainties.

We denote a random realization of the jth impulsive

maneuver uncertainty as δΔvj , then the post-maneuver

orbital uncertainty at tj can be expressed as

δx+
j = δxj + δxvj , j = 1, 2, · · · ,m

δxj = δx(tj), δxvj = RδΔvj

(19)

where Δvj is the jth nominal impulse, δxvj is a random

realization of the state uncertainty caused by the jth

impulse, δx(tj) is a random realization of the state

uncertainty that is propagated from δx+(tj−1), R =

[03, I3]
T is the (6 × 3)-dimensional mapping matrix

from pure velocity space to the combined position and

velocity space, and I denotes the identical matrix.

For clarity, we first consider only one maneuver, i.e.,

m = 1. Substituting Eq. (19) into Eq. (14) and

truncating the Taylor expansions to the second order

(K = 2), then the final state error can be expressed as

δxi(tf ) = Φi,k1

(tf ,t1)
(δxk1

1 + δxk1
v1)

+
1

2
Φi,k1k2

(tf ,t1)
(δxk1

1 + δxk1
v1)(δx

k2
1 + δxk2

v1) (20)

Substituting Eq. (9) into Eq. (20), then the following

equations can be obtained:

δxi(tf ) = dA+ dB + dC

dA = Φi,k1

(tf ,t0)
δxk1

0 +
1

2
Φi,k1k2

(tf ,t0)
δxk1

0 δxk2
0

dB = Φi,k1

(tf ,t1)
δxk1

v1 +
1

2
Φi,k1k2

(tf ,t1)
δxk1

v1δx
k2
v1

dC = Φi,l1l2
(tf ,t1)

Φl1,k1

(t1,t0)
I l2,k2

6 δxk1
0 δxk2

v1

(21)

Similarly, the concept of deriving Eq. (21) can be

recursively applied to the cases with multiple impulses

Δvj(j = 1, 2, · · · ,m). Therefore, the final state error

δx(tf ) can be expressed as a nonlinear mapping of the

initial state error δx(t0) and the state error δxvj caused

by the impulsive maneuvers, i.e.

δxi
f = Φi,k1

(tf ,t0)
δxk1

0 +
1

2
Φi,k1k2

(tf ,t0)
δxk1

0 δxk2
0

+

m∑
j=1

(
Φi,k1

(tf ,tj)
δxk1

vj+
1

2
Φi,k1k2

(tf ,tj)
δxk1

vjδx
k2
vj

)

+

m∑
j=1

(
Θi,k1k2

(tf ,tj ,t0)
δxk1

0 δxk2
vj

)

+

m−1∑
j=1

m∑
n=j+1

(
Θi,k1k2

(tf ,tn,tj)
δxk1

vnδx
k2
vj

)
(22)

where for k = 0, 1, · · · ,m, the modified STTs Φi,k1k2

(tf ,tj)

are computed using Eq. (13), and the modified STTs

related to the impulsive maneuver uncertainties can be
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expressed as

Θi,k1k2

(tf ,tj ,t0)
= Φi,l1l2

(tf ,tj)
Φl1,k1

(tj ,t0)
I l2,k2

6

Θi,k1k2

(tf ,tn,tj)
= Φi,l1l2

(tf ,tn)
Φl1,k1

(tn,tj)
I l2,k2

6

(23)

Based on the assumptions given in Section 2.3,

the initial navigation uncertainty and the impulsive

maneuver uncertainties are pairwise independent random

variables, thus most of the cross-correlated moments

such as E[δx0δxvj], E[δx0δx0δxvj], E[δx0δx0δx0δxvj],

and E[δx0δxvjδxvjδxvj] are zeros. However, the cross-

correlated terms E[δx0δxvjδxvj], E[δx0δx0δxvjδxvj],

and E[δxvnδxvnδxvjδxvj] are nonzero. Substituting

Eq. (22) into Eq. (15) and truncating the Taylor series

to the second order, then the mean mf and covariance

matrix Pf of the final state uncertainty can be obtained as

mf = m
(1)
f , Pf = P

(1)
f +P

(2)
f +P

(3)
f +P

(4)
f[

m
(1)
f ,P

(1)
f

]
= STT

[
tf ; t0,m0,P0,Φ

k1k2

(tf ,t0)

]

+

m∑
j=1

STT
[
tf ; tj,mvj,Pvj,Φ

k1k2

(tf ,tj)

] (24)

where j = 1, · · · ,m, and the similar denotation like

Eq. (18) is applied to describe the propagation of

impulsive maneuver uncertainties. Denoting the mean

and covariance matrix of the jth impulse uncertainty

as E[δΔvj] and P (δΔvj), respectively, then mvj =

R × E[δΔvj] and Pvj = R × P (δΔvj) × RT. Under

the assumption of Gaussian distribution, the third and

fourth moments of δxvj can be computed by substituting

mvj and Pvj into Eq. (17), and the expressions of P
(2)
f ,

P
(3)
f , and P

(4)
f are

[
P

(2)
f

]ij
=

m∑
k=1

(
Φi,l1

(tf ,tk)
Θj,l2l3

(tf ,tk,t0)
+Φj,l1

(tf ,tk)
Θi,l2l3

(tf ,tk,t0)

)

·E
[
δxl2

0 δx
l1
vkδx

l3
vk

]

+

m∑
k=1

1

2

(
Φi,l1

(tf ,t0)
Φj,l1l2

(tf ,tk)
+Φj,l1

(tf ,t0)
Φi,l1l2

(tf ,tk)

)

·E
[
δxl1

0 δx
l2
vkδx

l3
vk

]
[
P

(3)
f

]ij
=

m∑
k=1

Θi,l1l2
(tf ,tk,t0)

Θj,l3l4
(tf ,tk,t0)

·E
[
δxl1

0 δx
l3
0 δx

l2
vkδx

l4
vk

]

+

m∑
k=1

1

4

(
Φi,l1l2

(tf ,t0)
Φj,l3l4

(tf ,tk)
+Φj,l1l2

(tf ,t0)
Φi,l3l4

(tf ,tk)

)

·E
[
δxl1

0 δx
l2
0 δx

l3
vkδx

l4
vk

]

[
P

(4)
f

]ij
=

m−1∑
k=1

m∑
n=k+1

Θi,l1l2
(tf ,tn,tk)

Θj,l3l4
(tf ,tn,tk)

·E
[
δxl1

vnδx
l3
vnδx

l2
vkδx

l4
vk

]
(25)

Here, the STTs Θ(tf ,tk,t0) and Θj,l3l4
(tf ,tn,tk)

are calculated

using Eq. (23), and the three nonzero cross-correlated

moments are

E
[
δxl1

0 δx
l2
vkδx

l3
vk

]
= ml1

0 P
l2l3
vk

E
[
δxl1

0 δx
l2
0 δx

l3
vkδx

l4
vk

]
=

(
ml1

0 m
l2
0 +P l1l2

0

)
P l3l4

vk

E
[
δxl1

vnδx
l3
vnδx

l2
vkδx

l4
vk

]
= P l1l3

vn P l2l4
vk

(26)

Equation (24) can be used to nonlinearly propagate

the mean and covariance matrix of the initial navigation

uncertainty and impulsive maneuver uncertainties.

However, there is no guarantee that the Gaussian

distribution will remain Gaussian after a nonlinear

mapping. For a non-Gaussian distribution, the first two

moments (mean and covariance) are insufficient to fully

describe its PDF. In this section, a method of combining

the GMM and STT (GMM STT) is proposed to predict

the PDF of a non-Gaussian distribution.

4.2 Nonlinear propagation of probability

density function

The main idea of GMM approach is to approximate an

arbitrary PDF by a finite sum of weighted Gaussian

density functions, where the weights of different

components of a GMM are determined by numerical

optimization techniques, i.e.,

p̂ (t,x) =

L∑
i=1

ωipg (x;mi,Pi) (27)

where L is the total number of Gaussian kernels, mi and

Pi represent the mean and covariance matrix of the ith

Gaussian density function pg (x;mi,Pi), respectively;

ωi denotes the weight of the ith Gaussian kernel. The

positivity and normalization requirements on p̂ (t,x)

lead to the following constraints:
L∑

i=1

ωi = 1; ωi � 0, i = 1, · · · , L (28)

Theoretically, the mixture PDF, p̂ (t,x), appro-

ximates to the real PDF p (t,x) by increasing the

number of mixtures, L. In order to obtain the final

GMM, it needs to split the input uncertainty (including

navigation and maneuver uncertainties) into LGaussian
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mixtures, and then to propagate every Gaussian

mixture to the final time using the STT-based method, i.e.,

Eq. (24). The weights updating during the propagation

process is not considered in this study, readers with an

interest on this topic can refer to Terejanu et al. [36].

There are several methods available to split the

initial Gaussian distribution into a GMM [26–29], and

this study employs the splitting method proposed by

Vittaldev and Russell [29]. This method first splits

a univariate Gaussian distribution into homoscedastic

components, and then extends to the multivariate case

using an eigenvalue decomposition. An advantage of

this method is that the splitting of a univariate Gaussian

distribution can be done offline. Vittaldev and Russell

provided a univariate spliting library data which can

be directly applied to split a multivariate Gaussian

distribution. Once the weights and moments of the L

Gaussian mixtures are determined, the non-Gaussian

PDF can be computed using Eq. (27), and the mean

and covariance matrix can be merged as follows [27]:

mm =

L∑
i=1

ωi

ωm
mi, ωm =

L∑
i=1

ωi

Pm =

L∑
i=1

ωi

ωm

(
Pi +mim

T
i

)−mmmT
m

(29)

In order to split the input uncertainty into Gaussian

mixtures, the navigation and maneuver uncertainties

need to be combined together as an extended state vector.

The uncertainty propagation using the combined GMM

and STT method is summarized as follows.

Step 1: Combine the navigation and maneuver

uncertainties together as an extended, (n + 3m)-

dimensional state: X=[δx0, δΔv1, · · ·, δΔvm]. Because

the random variables δx0 and δΔvj(j = 1, · · · ,m) are

pairwise independent with each other, then the mean

and covariance matrix of the input uncertainty vector

X can be expressed as

m̄(t0) = [m(t0), E[δΔv1], · · · , E[δΔvm]]
T

P̄ (t0) =

⎡
⎢⎢⎢⎢⎣

P (t0) 06×3 · · · 06×3

03×6 P (δΔv1) 03×3

...
... 03×3

. . . 03×3

03×6 · · · 03×3 P (δΔvm)

⎤
⎥⎥⎥⎥⎦

(30)

Step 2: Split the multivariate Gaussian distribution

pg
(
x; m̄(t0), P̄ (t0)

)
into L Gaussian mixtures

(
ωi,

m̄i, P̄i

)
(i = 1, 2, · · · , L) using the splitting method

proposed by Vittaldev and Russell [29]. It is noted that

the input Gaussian distribution is split along the radial

position in this study, because the orbital nonlinearity

is more evident in radial position or transverse velocity

according to Junkins and Singla [7].

Step 3: Extract the input statistical moments, i.e.,

mi(t0), Pi(t0), E[δΔvj ]i, and Pi(δΔvj)(i = 1, 2, · · · , L,
j = 1, 2, · · · ,m), from the split Gaussian mixtures(
m̄i, P̄i

)
. Propagate these moments to the final time

using the modified STTs, as given by Eq. (24), then

the moments [mi(tf ),Pi(tf )] of final state uncertainty

for every Gaussian mixture can be obtained. It is noted

that the modified STTs in Eq. (13) only need to be

integrated once for propagating all the Gaussian mixtures.

Step 4: Compute the PDF and moments of the final

state uncertainty using Eqs. (27) and (29), respectively.

As shown in Eq. (30), the input navigation and

maneuver uncertainties have a dimensionality of (n+3m).

For instance, the dimensionality becomes 18 if four

maneuvers (n = 6,m = 4) are executed, which may

lead to the curse of dimensionality for some non-

linear uncertainty propagation methods, e.g., the PC

expansions. However, with the method given in this

study, there is no dimensionality problem and the PDF

of output uncertainty can be efficiently propagated.

5 Simulation results

The rendezvous and docking mission can be divided

into a number of major phases: launching, phasing, far

range rendezvous (homing), close range rendezvous, and

mating [34]. Most of the practical rendezvous-phasing

missions last from one day to three days, and the chaser

performs 4 or 5 maneuvers to acquire the “initial aim

point”, where the chaser can be controlled automatically

by the onboard system and the far range rendezvous

can begin. Generally, the chaser cannot precisely

reach the initial aim point after phasing maneuvers

because of uncertainties. The phasing orbital precision

determines when and where to switch the ground control

to onboard autonomous control, and then affects the far

range rendezvous scheme design. Therefore, accurate

uncertainty quantification of phasing orbits plays an

important role in practical rendezvous mission design.

A near-Earth perturbed rendezvous-phasing mission

is employed to validate the proposed uncertainty pro-

pagation method. The target runs on a 340 km near-

circular orbit with an inclination of 42.9◦, and the

chaser’s insertion perigee and apogee altitudes are 200
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and 330 km, respectively. Their initial orbital elements

(semi-major axis, eccentricity, inclination, right ascension

of the ascending node, argument of periapsis, and true

anomaly) are Etar(t0) = [6716.3 km, 0.0006, 42.8545◦,
55.7517◦, 185.488◦, 0◦] and Echa(t0) = [6636.004 km,

0.0098, 42.8376◦, 55.9165◦, 125.488◦, 0◦], respectively.

The initial and final time is t0 = 0 s and tf = 86400 s,

respectively. The coefficient of drag is CD = 2.2, the

target and chaser’s cross-sectional areas are Star = 30 m2

and Scha = 20 m2, respectively, and their masses are

Mtar = 8000 kg and Mcha = 7500 kg, respectively. The

aimed final relative position and velocity between the

chaser and target are ρaim = [−13.5, −50.0, 0]T (km)

and ρ̇aim = [0, 23.23, 0]T (m/s), respectively.

Four impulsive maneuvers are executed to ensure that

the chaser arrives at the aimed point at the final time

of the rendezvous phasing, and the nominal impulses are

listed in Table 1, which are planned based on the chaser’s

state Echa(t0), the target’s state Etar(tf), and the aimed

relative state [ρaim, ρ̇aim]
T using the method in Yang et

al. [37]. In this study, only the chaser’s navigation and

maneuver uncertainties are propagated. All means and

standard deviations are described in the chaser’s local

vertical/local horizontal (LVLH) frame, where the origin

is located at the chaser’s center of mass, the x-axis is along

the position vector, the z-axis is along the orbit normal,

and the y-axis completes the right-handed system.

The number of MC samples is 100,000. The input

navigation and maneuver uncertainties are assumed as

Gaussian distribution with zero means. The standard

deviations for navigation uncertainty in Eq. (3) are:

σδx = [σδr,σδv]
T = [100 m, 100 m, 100 m, 0.1 m/s,

0.1 m/s, 0.1 m/s]T. The coefficients for the standard

deviation of maneuver uncertainty in Eq. (4) are: α =

0.001 and β = 0.02. The covariance matrices P (t0) and

P (δΔvj) in Eq. (30) are set as

P ij(t0) =

{ (
σi
δx

)2
, i = j

−0.01σi
δxσ

j
δx, i �= j

P ab(δΔvk) =

{
[σa(δΔvk)]

2
, a = b

0.01σa(δΔvk)σb(δΔvk), a �= b

(31)

Table 1 Nominal impulses described in the chaser’s LVLH frame

Impulse k=1 k=2 k=3 k=4

tk (s) 13455.821 23889.631 58617.161 84168.071

Δvkx (m/s) −0.7007 −2.4560 0.6723 1.8463

Δvky (m/s) 12.6825 8.0886 −0.6618 16.2127

Δvkz (m/s) 1.5309 4.2760 −1.0802 −3.3895

where i, j = 1, 2, · · · , 6; k = 1, 2, · · · ,m;σ(δΔvk) =

α |Δvk| + β,Δvk is presented in Table 1, and a, b =

1, 2, 3. Obviously, the initial position and velocity

uncertainties are correlated, and the three components

of an impulse uncertainty are also correlated.

5.1 Accuracy comparison of the modified

STTs

A problem of relative orbit propagation is first used to

verify the accuracy of the derived STTs. An initial

relative state in the chaser’s LVLH frame, δx(t0) =

[−1.35 km, −50 km, 0.1 km, 0.5 m/s, 2.323 m/s, 0.1

m/s]T, is propagated to the final time tf using the

STTs in Eq. (14). To obtain the exact solution, the

relative state δx(t0) is transformed to an absolute state

x̃cha(t0), then numerically integrating both the nominal

state xcha(t0) and the real x̃cha(t0) to the final time

using the dynamics of Eq. (1), and differencing them to

obtain δx(tf ). The propagation errors compared to the

exact solution δx(tf ) for different orders of STTs are

presented in Table 2.

As shown in Table 2, for this problem with a large

initial separation distance (≈ 51 km), the 1st order

STM has a big propagation error (around 121 km). In

contrast, the 4th order STTs have only 2.826 km of

position error after 1-day propagation. The higher order

of the STTs, the better accuracy. These results indicate

that the modified STTs can account for abrupt state

jumps in the nominal trajectory.

5.2 Results of segmented uncertainty pro-

pagation

For the uncertainty propagation with impulsive maneu-

vers, the mean and covariance can be piecewise pro-

pagated to the final time using Eq. (B1) in Appendix B.

The projected final position and velocity uncertainties

are compared in Figs. 2–3 and Figs. 4–5, respectively.

The MC simulations are assumed to provide the true

distribution of the final uncertainty. For the segmented

uncertainty propagation, the absolute computation

errors of different solutions with respect to the MC

Table 2 Absolute errors of relative orbit propagation for

different orders of STTs

Propagation error 1-order 2-order 3-order 4-order

Magnitude of relative
position (m) 121684.99 3520.65 2925.48 2825.91

Magnitude of relative
velocity (m/s) 139.707 4.079 3.392 3.269
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Fig. 2 Final position uncertainty in xy plane for segmented

propagation.

Fig. 3 Final position uncertainty in xz plane for segmented

propagation.

method are compared in Tables 3 and 4. For example,

“(1-order)-MC”means that the result of 1-order solution

minus the result of MC method.

As shown in Figs. 2–5, the position and velocity

uncertainties propagated using the regular STTs have

larger 3σ ellipsoids than those propagated using MC

method. Evidently, most of the state spaces covered by

the 3σ ellipsoids of the STTs include no MC samples,

which means that the final uncertainty is almost

impossible to occur in those areas. Therefore, the

segmented uncertainty propagation using the regular

STTs leads to inaccurate 3σ ellipsoids which are very

different from the results of MC simulations. Moreover,

the results of higher-order (2–4) STTs even become

worse than the 1-order STM. If there are no abrupt

Fig. 4 Final velocity uncertainty in vxvy plane for segmented

propagation.

Fig. 5 Final velocity uncertainty in vxvz plane for segmented

propagation.

state jumps, the enlarged 3σ ellipsoids of higher-order

STTs should match well the MC results [9,10]. However,

for the cases with abrupt state jumps, when the

nonlinear terms (� 2nd order) are included, the Taylor

approximation error of Eq. (B1) will be recursively

enlarged by the segmented STTs, as explained in

Section 3.2. Therefore, the characteristics of nonlinear

methods (2–4 orders of STTs) are different from the

linear STM method. If only the nonlinear (2–4 orders)

methods are compared, we can find that the higher order

of the STTs, the better accuracy, because the higher-

order STTs can reduce the approximation errors.

As shown in Tables 3 and 4, the results of higher-

order (� 2) STTs have large propagation errors with

respect to the MC method, especially in transverse
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Table 3 Final means in LVLH frame for segmented uncertainty propagation

Segmented STTs mx (m) my (m) mz (m) mvx (mm/s) mvy (mm/s) mvz (mm/s)

MC −356.63 −4.06 −1.20 −7.04 −1.36 0.64

(1-order)-MC 356.63 4.06 1.20 7.04 1.36 −0.64

(2-order)-MC 149.29 −1442.45 0.35 91.65 −936.12 4.39

(3-order)-MC 1246.12 −3963.18 3.87 382.50 −2485.21 10.60

(4-order)-MC −17.29 39.23 −0.06 56.14 27.12 0.11

Table 4 Final standard deviations in LVLH frame for segmented uncertainty propagation

Segmented STTs σx (m) σy (m) σz (m) σvx (mm/s) σvy (mm/s) σvz (mm/s)

MC 588.74 69382.40 113.45 501.68 538.34 221.37

(1-order)-MC −319.64 −1706.94 −0.30 −199.67 −65.80 −4.11

(2-order)-MC 6250.49 27008.55 12.94 1508.14 14185.11 67.30

(3-order)-MC 5176.97 3258.54 4.95 1578.04 11229.10 7.21

(4-order)-MC 5021.30 750.93 3.43 1437.35 11053.54 1.94

direction. For instance, the absolute errors of 2-order

STTs are 1.44 and 27.0 km for the transverse mean

my and transverse standard deviation σy, respectively.

These absolute errors are larger than the 1st order STM.

Therefore, the segmented uncertainty propagation with

higher-order (� 2) STTs are not suitable for the problem

with impulsive maneuvers.

5.3 Results of transitive uncertainty pro-

pagation

If the first-order assumption is adopted on the governing

dynamics (i.e., K = 1 in Eq. (7)), the obtained STM

is inherently transitive, i.e., Φi,l1
(tf ,t0)

= Φi,k1

(tf ,tj)
Φk1,l1

(tj ,t0)
.

Thus, the first-order segmented propagation is the same

with the first-order transitive propagation. However,

the first-order method has low precision for a nonlinear

dynamical system. In order to validate the accuracy

of uncertainty propagation with the modified STTs in

Eq. (13), we compare the STT-based methods with the

MC method in Figs. 6–9 and Tables 5 and 6.

As shown in Figs. 6 and 7, the 3σ ellipsoids of the first-

order method are smaller than the MC method, and

thus less MC samples are included in its 3σ ellipsoids,

especially in the radial direction. However, the modified

STTs have almost the same 3σ ellipsoids with the MC

method. In particular, the propagation error on radial

position is sharply reduced in comparison to the first-

order method.

As shown in Tables 5 and 6, for the 1-order method,

the absolute errors of radial mean mx and radial

standard deviation σx are 356.63 and −319.64 m,

respectively. However, these absolute errors for the

Fig. 6 Final position uncertainty in xy plane for transitive

propagation.

Fig. 7 Final position uncertainty in xz plane for transitive

propagation.
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Fig. 8 Final velocity uncertainty in vxvy plane for transitive

propagation.

Fig. 9 Final velocity uncertainty in vxvz plane for transitive

propagation.

2-order modified STTs are only 14.37 and −31.16 m,

respectively. Obviously, the radial propagation error is

sharply reduced when taking the nonlinear terms into

account. We can see that the transverse mean error

of the modified STTs (11.53 m) is worse than the 1-

order method (4.06 m). In fact, this deficiency is very

small compared to the big transverse standard deviation

(69.382 km). On the contrary, the improvements in

radial mean (from 356.63 to 14.37 m) are countable after

the nonlinear term is included. As illustrated in Figs. 6

and 7, the modified STT-based method outperforms the

1-order method and provides good agreement with the

MC simulations.

In summary, comparing the results in Tables 3 and 4

with those in Tables 5 and 6, we can conclude that the

transitive uncertainty propagation with the modified

STTs in Eq. (13) is more accurate than the segmented

uncertainty propagation in Eq. (B1) for problems with

abrupt state jumps in the trajectory. Moreover, based

on the results in Tables 2, 5, and 6, we find that higher-

order STTs offer better accuracy with the tradeoff of

requiring more computational efforts. As shown in Figs.

6 and 7, the second-order STTs can well match the MC

results. Therefore, in order to reduce computational

efforts, there is no need to use higher-order STTs in

these test cases.

5.4 Results of GMM STT method

As shown by the MC samples in Figs. 6 and 7, the initial

Gaussian uncertainty becomes non-Gaussian after a

nonlinear mapping of Eq. (1). Although the modified

STT-based method provides good agreement with

MC simulations on mean and covariance matrix pro-

pagation, the first two moments are insufficient to fully

describing the non-Gaussian distribution. Therefore,

the GMM STT method presented in Section 4.2 is used

to approximate the PDF of the final uncertainty.

The accuracy of the GMM method is quantified using

Table 5 Final means in LVLH frame for transitive uncertainty propagation

Transitive STTs mx (m) my (m) mz (m) mvx (mm/s) mvy (mm/s) mvz (mm/s)

MC −356.63 −4.06 −1.20 −7.04 −1.36 0.64

(1-order)-MC 356.63 4.06 1.20 7.04 1.36 −0.64

(2-order)-MC 14.37 11.53 0.05 0.35 4.16 −0.00

(GMM STT)-MC 14.49 11.53 0.05 0.35 4.16 −0.00

Table 6 Final standard deviations in LVLH frame for transitive uncertainty propagation

Transitive STTs σx (m) σy (m) σz (m) σvx (mm/s) σvy (mm/s) σvz(mm/s)

MC 588.74 69382.40 113.45 501.68 538.34 221.37

(1-order)-MC −319.64 −1706.94 −0.30 −199.67 −65.80 −4.11

(2-order)-MC −31.16 −1706.93 −0.29 −199.50 −65.78 −4.10

(GMM STT)-MC −31.86 −1718.90 −0.29 −199.54 −65.80 −4.13
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the log-likelihood (LL) of the MC samples, i.e.,

LL =

M∑
j=1

log

(
L∑

i=1

ωipg(xj ;mi,Pi)

)
(32)

whereM is the total number of MC runs, M=100,000 in

this study, and xj is the jth MC sample point. The log-

likelihood (LL) of the GMM STT method for different

orders of STTs are compared in Fig. 10, in which higher

LL indicates a closer fit.

As shown in Fig. 10, the nonlinear propagations

with higher-order (2–4) STTs have better accuracy

by consistently having higher LLs than the linear

propagation with 1-order STM. Moreover, the transitive

uncertainty propagation with 2-order modified STTs

has better LL than the segmented uncertainty

propagation with 4-order STTs. According to Eq.

(A1), the number of elements of STTs increases

exponentially with its order, e.g., for the 6-dimensional

dynamical system, 258 (=63+62+6) elements are

needed to integrate for the 2-order STTs, but 9330

(=65+64+63+62+6) elements are needed to integrate

for the 4-order STTs. Therefore, more computation

burden is required for higher-order STTs. As shown

in Fig. 10, the transitive uncertainty propagation with

2-order STTs has the best accuracy. In addition, the

LLs of the nonlinear propagations (2- and 4-order STTs)

reach their stable values after the number of Gaussian

mixtures is more than 25. It means that 25 Gaussian

mixtures can well fit the final uncertainty if they are

propagated using the higher-order STTs. In contrast,

for the linear method, the MC samples are badly fitted

even using 39 Gaussian mixtures.

Fig. 10 Comparison of the log-likelihood for different orders of

STTs.

As an example, the detailed results of the GMM STT

method with the 2-order modified STTs and 25

Gaussian mixtures are presented in Figs. 11–12 and

Tables 5–6. Figure 11 gives the final 25 Gaussian

mixtures propagated using the 2-order modified STTs

of Eq. (24). As is shown, the MC samples are well

surrounded by the 3σ ellipsoids of the 25 Gaussian

mixtures, and it illustrates that the GMM STT method

is effective to capture the non-Gaussian uncertainty.

The PDF computed using Eq. (27) is further presented

in Fig. 12, and it can be seen that the approximated

PDF has contours which well match of the curvature of

the MC samples.

The means and standard deviations of the GMM STT

method are given in Tables 5 and 6, and it can be

seen that the GMM STT method has the similar results

with the pure STT method on mean and covariance

propagation. Specifically, the GMM STT method is

slightly worse than the modified STT method, e.g., the

propagation errors on mx, σx, and σy. This is the

difference between covariance realism and uncertainty

realism. Because the initial Gaussian mixtures are

not a perfect representation of the original Gaussian

distribution, which results in a small loss in covariance

realism. However, it is clear to see that the Gaussian

mixtures accurately capture the overall PDF, as shown

in Figs. 11 and 12.

In addition, the efficiency of the GMM STT method

lies in three aspects: (1) the modified STTs in Eq. (13)

only need to integrate once along the nominal trajectory

for propagating all the Gaussian mixtures; (2) the

splitting of a univariate Gaussian distribution can be

obtained offline and applied to multivariate case, which

Fig. 11 Gaussian mixtures of GMM STT method for final

position uncertainty in xy plane.
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Fig. 12 PDF contours of GMM STT method for final position

uncertainty in xy plane.

can further reduce the computation burden; and (3)

the GMM STT method requires no random samples,

which can avoid the curse of dimensionality for high-

dimensional uncertainty propagation.

6 Conclusions

In order to propagate orbital uncertainty with impulsive

maneuvers, a set of modified state transition tensors

(STTs) is derived based on the regular STTs without

maneuvers. The spacecraft’s trajectory is divided into

several segments by the impulsive maneuvers, and the

modified STTs can connect these segmented trajectories

together and allow for directly propagating uncertainty

from the initial time to the final time. Analytical

equations for propagating the mean and covariance

matrix of navigation and maneuver uncertainties are

obtained. The probability density function is also

propagated using a method of combining the STTs and

the Gaussian mixture model, in which the modified

STTs are used to propagate the mean and covariance

matrix of each Gaussian mixture. Because the modified

STTs only need to integrate once along the nominal

trajectory, and the splitting of input uncertainty can

be performed using an offline univariate splitting

library, the proposed uncertainty propagation method

is quite efficient. Numerical results show that the

proposed method provides good agreement with Monte

Carlo simulations, and that the proposed method

outperforms the previous STT-based method and the

linear covariance propagation method.

Appendix A: Differential equation of STTs

The differential equations of STTs presented here are

directly obtained from Ref. [9]. However, some symbols

are changed in accordance with the expression in this study.

The STTs up to the fourth order are expressed as follows:

Φ̇i,α = f i,aΦa,α

Φ̇i,αβ = f i,aΦa,αβ + f i,abΦa,αΦb,β

Φ̇i,αβγ = f i,aΦa,αβγ + f i,ab
(
Φa,αΦb,βγ +Φa,αβΦb,γ

+Φa,αγΦb,β
)
+ f i,abcΦa,αΦb,βΦc,γ

Φ̇i,αβγθ = f i,aΦa,αβγθ + f i,ab
(
Φa,αβγΦb,θ

+Φa,αβθΦb,γ +Φa,αγθΦb,β +Φa,αβΦb,γθ

+Φa,αγΦb,βθ +Φa,αθΦb,βγ +Φa,αΦb,βγθ
)

+f i,abc
(
Φa,αβΦb,γΦc,θ +Φa,αγΦb,βΦd,θ

+Φa,αθΦb,βΦc,γ +Φa,αΦb,βγΦc,θ

+Φa,αΦb,βθΦc,γ +Φa,αΦb,βΦc,γθ
)

+f i,abcdΦa,αΦb,βΦc,γΦd,θ

(A1)

where f i,k1···kp(t) = ∂pf i[t, x(t)]/∂xk1 · · · ∂xkp is the

higher-order partials of the dynamics along the reference

trajectory, and f i,k1···kp can be automatically derived

using the symbolic toolbox of MATLAB software.

Based on Eq. (A1), Φi,l1···lp can be calculated using

numerical integration, e.g., the Runge–Kutta method,

and the initial conditions for these STTs are: Φi,α
0 = 1

if i = α, and all the other initial STTs are zero.

Appendix B: Segmented uncertainty pro-

pagation using STTs

According to Ref. [12], the segmented propagation of

mean and covariance matrix using the second-order

(K = 2) STTs can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mi(tk+1)=Φi,a
(tk+1,tk)

(ma
k)

+

+
1

2
Φi,ab

(tk+1,tk)
[(P ab

k )+ + (ma
k)

+(mb
k)

+]

P ij(tk+1)=Φi,a
(tk+1,tk)

Φj,b
(tk+1,tk)

[(P ab
k )+

+(ma
k)

+(mb
k)

+] +
1

2
(Φi,a

(tk+1,tk)
Φj,bc

(tk+1,tk)

+Φj,a
(tk+1,tk)

Φi,bc
(tk+1,tk)

)(E[δxa
kδx

b
kδx

c
k])

+

+
1

4
Φi,ab

(tk+1,tk)
Φj,cd

(tk+1,tk)
(E[δxa

kδx
b
kδx

c
kδx

d
k])

+

−mi
k+1m

j
k+1

(B1)
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where Φ(tk+1,tk) is the STTs from the kth maneuver

time tk to the (k + 1)th maneuver time tk+1, and the

superscript “+” indicates the state after an impulse; k =

0, 1, · · · ,m, tm+1 = tf , m
+
0 = m0, m

+
k = mk + mkv,

P+
0 = P0, and P+

k = Pk + Pkv,mkv and Pkv are

the same with those in Eq. (22). Let m0 = m+
k

and P0 = P+
k , then the third and fourth moments

at post maneuver times, i.e., (E[δxa
kδx

b
kδx

c
k])

+ and

(E[δxa
kδx

b
kδx

c
kδx

d
k])

+, can be computed using Eq. (17).

It is noted that the segmented propagation of mean

and covariance matrix using higher-order STTs (e.g.,

K = 3, 4) is similar with Eq. (B1).
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