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ABSTRACT

This research furthers the development of a closed-form solution to the angles-only initial

relative orbit determination problem for non-cooperative target close-in proximity operations

when the camera offset from the vehicle center-of-mass allows for range observability. In

previous work, the solution to this problem had been shown to be non-global optimal in the

sense of least square and had only been discussed in the context of Clohessy–Wiltshire. In

this paper, the emphasis is placed on developing a more compact and improved solution

to the problem by using state augmentation least square method in the context of the

Clohessy–Wiltshire and Tschauner–Hempel dynamics, derivation of corresponding error

covariance, and performance analysis for typical rendezvous missions. A two-body Monte

Carlo simulation system is used to evaluate the performance of the solution. The sensitivity

of the solution accuracy to camera offset, observation period, and the number of observations

are presented and discussed.
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1 Introduction

Relative navigation is one of the key enable technologies

of on-orbit servicing for space non-cooperative target

[1]. The angles-only relative navigation based on passive

optical camera is suitable for non-cooperative target’s

mission due to its simplicity and reliability. The projects

PRISMA [2] already have done on-orbit experiments

to test the feasibility of angles-only relative navigation

for non-cooperative target. The projects DEOS [3] and

Phoenix [4] are also planned to develop angles-only

relative navigation technique for non-cooperative targets,

such as disabled satellite and space debris. However, the

angles-only problem suffers from a range observability

problem during near-range rendezvous, especially co-

planar rendezvous. Woffinden and Geller [5] elegantly

show that the angles-only relative navigation during

orbital proximity operations is not observable if the chaser

and target are in free motion and the motion is modeled

by the linearized Clohessy–Wiltshire (CW) equations.

� lishuang@nuaa.edu.cn

To overcome the range observability problem, a lot of

work has to be done. Woffinden and Geller [6] proposed

the orbital maneuver method to improve observability.

Li et al. [7] expanded the strategies of orbital

maneuver for observability’s improvement. Grzymisch

and Ficher [8] analyzed the observability from another

perspective and provided several classical unobservable

maneuver set. Luo et al. [9] studied the problem from

the frame of closed-loop guidance based on multi-

pulse sliding guidance strategy. Jagat and Sinclair

[10] proposed an information-weighted LQG maneuver

approach for angles-only relative navigation. Gaias

et al. [1] investigated this topic from the point of

the relative orbit elements. Newman et al. [11, 12]

successfully applied second-order relative motion models

to obtain observability. Sullivan et al. [13] utilized an

improved J2-perturbed dynamic model and nonlinear

measurement model to demonstrate the feasibility of

maneuver-free angles-only navigation. Gasbarri et al. [14]

took advantage of prior information of the target (i.e.,
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Nomenclature

IROD Initial relative orbit determination

LVLH Local vertical local horizon

r̂0,v̂0 Initial relative position and velocity solution

ω Angular rate of the chaser orbit (rad/s)

φrr(i), φrv(i), φvr(i), and φvv(i) 3× 3 partitions of the state transition matrix

ilos(i) Line-of-sight in LVLH frame

dc Camera position in chaser body frame (m)

bd Camera installation bias (m)

εi Camera measurement noise

σcam Standard deviation of camera measurement noise

bξ Attitude bias

ν(i) Attitude measurement noise

σatt Standard deviation of attitude measurement noise

M IROD estimate error mean

P IROD estimate error covariance

N Number of observations

T lvlh
chaser Direction cosine matrix from chaser body frame to LVLH frame

n Monte Carlo runs

Mρ Range estimate error mean from Monte Carlo simulations

σρ Range estimate error standard deviation from Monte Carlo simulations

RC Radius of the chaser orbit

a reference image of the target) to overcome the

problem. Chen and Xu [15] presented a double line-of-

sight measuring scheme to obtain observability while

two spacecraft (cameras) were utilized. Gao et al. [16]

proposed a distributed angles-only navigation method

based on multiple line-of-sights.

Recently, a new solution to the angles-only problem

was demonstrated which does not require orbital

maneuvers, high-order dynamics, a priori knowledge

of target geometry or a second camera. This solution

requires only an optical camera offset from the chaser

center-of-mass with or without rotational maneuvers

[17, 18]. The solution to the angles-only initial relative

orbit determination (IROD) problem for close-in orbital

proximity operations was developed by Geller and Perez

[19]. The performance of the solution was analyzed by

Gong and Geller [20]. However, the result has shown

that the solution is not optimal in the sense of least

square,(i.e., more observations do not always mean a

smaller covariance). Additionally, the performance of

the solution has only been demonstrated in the context

of the CW equations.

The objective of this paper is to develop a global

optimal least square algorithm for the angles-only

IROD problem with different accurate dynamics for

space non-cooperative target during close-in proximity

operations, while camera offset provides observability,

obtaining the explicit estimation error covariance

expression with respect to camera offsetand evaluating

the performance for typical rendezvous missions. The

relative motion dynamics and observation model for

the IROD algorithms are set up in Section 2, the

general solution based on state augmentation least

square method and its analytic estimate error covariance

with the consideration of sensors uncertainties are

presented in Section 3. Monte Carlo simulations

including two-bodydynamics, reference mission and

trajectories, key parameters setting and performance

analysis are presented in Section 4. Conclusions are

presented in Section 5.

2 Relative motion dynamics and observa-

tion model

2.1 Relative motion dynamics

Under the assumption of the two body problems and

the distance between the chaser and target is small

compared to the distance of the target to the center of

the Earth, the relative motion dynamics during coasting

flight that is applicable to eccentric orbit can be given in

the chaser-orbital Local vertical local horizontal (LVLH)

frame as the following [21]:

ẍ− 2ωż − ω2x− ω̇z + μ
R3

C
x = 0

ÿ + μ
R3

C
y = 0

z̈ + 2ωẋ− ω2z + ω̇x− 2μ
R3

C
z = 0

(1)

where z axis points in the nadir direction, y axis

is normal to the orbital plane, opposite the angular
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momentum vector, and x axis completes the right-

hand system, ω is the angular rate of the chaser orbit.

Moreover, μ is the gravitational parameter and RC is

the radius of the chaser orbit.

Equation (1) can be analytically solved by being

transformed into Tschauner–Hempel (TH) Ref. [21] as

follows:
x̃′′ = 2z̃′

ỹ′′ = −ỹ

z̃′′ = 3z̃/λ− 2z̃′
(2)

where x̃, ỹ and z̃ are dependent-variable of true anomaly

θ and relative orbit, ()′ = d()/dθ, ()′′ = d2()/dθ2. More

details could be found in Ref. [21]:

Then the state transition matrix could be obtained

in the sense of true anomaly for elliptic orbit [22]. If

the orbit is near-circular, Eq. (1) can be reduced to the

renowned Clohessy–Wiltshire equations, which also has

analytic solution [23]. Thus, the relative state can be

propagated by the following equations:[
r(i)

v(i)

]
=

[
φrr(i) φrv(i)

φvr(i) φvv(i)

][
r(0)

v(0)

]
(3)

where r(0), v(0) are the position and velocity at t = 0,

r(i), v(i) are the position and velocity at time ti, and the

state transition matrix partitions φrr(i), φrv(i), φvr(i)

and φvv(i) are functions of time for near-circular orbit

case or true anomaly for elliptic orbit case.

2.2 Observation model

Figure 1 illustrates the observation geometry associated

with the camera offset angles-only navigation problem. It

is assumed that the origin of the chaser body-fixed

reference frame is co-located with the chaser center-of-

mass. Without loss of generality it is also assumed that

a camera is mounted on the body at a distance d from the

chaser center-of-mass. The camera measurement frame is

assumed to be aligned with the focal-plane of the camera,

and its orientation with respect to the chaser body frame

is supposed to be known and constant.

The pixel center location of the target image is used to

form a line-of-sight (LOS) vector from camera to target

center-of-mass. LOS observation can be expressed in the

camera frame at time ti by

icamlos (i) =
T cam
lvlh (i)r(i)− T cam

chaser(i)d
c

‖T cam
lvlh (i)r(i)− T cam

chaser(i)d
c‖ (4)

where dc is the constant position of camera in chaser

Fig. 1 Measurement frame and geometry.

body frame. Since the transformation matrix from

LVLH to the camera measurement frame T cam
lvlh (i) at

time ti is assumed to be known (using knowledge of

inertial attitude, position, and velocity), an alternative

description of the LOS measurement expressed in the

LVLH frame, ilos(i), can be utilized:

ilos(i) =
r(i)− T lvlh

chaser(i)d
c∥∥r(i)− T lvlh

chaser(i)d
c
∥∥ (5)

where the expression of r(i) can be propagated by the

state transition matrix and the initial relative position

and velocity r(0) and v(0). Thus, the LOS time-history

in the LVLH frame also can be determined by Eq. (5)

but with a different state transition matrix based on CW

dynamics and TH dynamics, respectively.

3 IROD solution and covariance based

on state augmentation least square

3.1 IROD solution based on state augmenta-

tion least square

When the camera offset is not equal to zero, it has been

shown that the angles-only relative orbit determination

problem might be observable [18] and an alternative

solution to the IROD problem has been presented

[19]. However, the solution of this prototype algorithm is

not global optimal in the sense of least square that more

observations do not always mean smaller covariance

[20]. The reason for this problem is that initial relative

state and scale factors were solved separately, where

the least square approach was designed to minimize the

estimate error of the scale factors but not the initial

relative state. Further, it can be found that actually

only the first two LOS measurements were used to
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calculate initial relative state after the scale factors

were obtained. As a result, the prototype algorithm

does not make full use of the available observations.

Thus, in order to overcome the existing problem as

being analyzed, an improved least square solution for

the IROD problem by means of state augmentation is

proposed, where the scale factors and the initial relative

state will be solved together.

As the initial relative state is a 6-dimension variable

and only two LOS angles are available on each epoch, at

least three sets of LOS angles should be obtained to solve

the state. Assume there have N � 3 set of observations

and consider the first LOS observation, ilos(0). The

solution for the initial position r(0) must satisfy:

k0ilos(0) = r(0) + T lvlh
chaser(0)d

c (6)

where k0 is the unknown scale factor of ilos(0). Similarly,

for the second observation the corresponding the IROD

solution r̂(0), v̂(0) must satisfy:

k1ilos(1) = φrr(1)r(0) + φrv(1)v(0) + T lvlh
chaser(1)d

c (7)

where k1 is also unknown scale factor of ilos(1). And the

ith observation must satisfy:

kiilos(i) = φrr(i)r(0) + φrv(i)v(0) + T lvlh
chaser(i)d

c (8)

Thus, here 3N equations with (N + 6) unknowns

can be obtained from N sets of LOS angles. As

being analyzed in the beginning of this section,

the scale factors and the initial relative state are

combined as an augmentation estimate state, i.e., X =

[k0, · · · , kN−1, r(0)
T,v(0)T]T. Then, rearranging the

equations into matrix form yields:

ANXN = BN (9)

where

AN =

⎡
⎢⎢⎣

ilos(0) 0 0 0 −I 0

0 ilos(1) 0 0 −φrr(1) −φrv(1)

0 0
. . . 0

...
...

0 0 0 ilos(N−1) −φrr(N−1) −φrv(N−1)

⎤
⎥⎥⎦

(10)

BN =

⎡
⎢⎢⎢⎢⎣

T lvlh
chaser(0)

T lvlh
chaser(1)

...

T lvlh
chaser(N − 1)

⎤
⎥⎥⎥⎥⎦ (11)

Then, a least-square solution to this set of over-

determined equations can be obtained from where the

IROD solution would be abstracted as follows:

x̂0 =

[
r̂0

v̂0

]
= CNX̂N = CN (AT

NAN )−1AT
NBN (12)

where

CN = [06×N I6×6] (13)

and when only three observations are available, the pseudo-

inverse term (ArmT
N AN)−1ArmT

N will reduce to A−1
N .

Thus, Eq. (12) represents a simple algorithm that can

be used to determine the IROD solution for any relative

motion coasting trajectory, and for any known constant

or time-varying chaser orientation.

Additionally, the solution shown in Eq. (12) could

achieve better performance than the prototype

algorithm when more observations are available. But

two solutions would be equivalent if there are only

three observations, which will be depicted by digital

simulations in Section 4.

3.2 Estimate error covariance

The IROD algorithm requires knowledge of dc, irmlos(i)

and T lvlh
chaser(i). The measured values of these variables

d̃c, ĩlos(i) and T̃ lvlh
chaser(i) contain errors which will lead to

estimation errors in the initial relative orbit. Thus, error

models for these variables are required.

The camera offset dc is assumed to contain a fixed

error bd which is modeled as a constant. And the chaser’s

attitude error ξ(i) is assumed to be small and modeled

as an constant bias bξ with a zero mean Gaussian white

noise υ(i) whose standard deviation is σatt. Moreover,

the LOS observation ĩlos(i) is supposed to be perturbed

by a zero mean Gaussian noise εi with a standard

deviation σcam.

Then, covariance analysis can be conducted based on

statistical theory [20]. By substituting the contaminated

observations with bias and random noise from sensors

into the solution shown in Eq. (12), the expression for

estimate error could be obtained. Then, by calculating

first and second order moment, the explicit expressions

of analytic estimate error mean and covariance with

respect to camera offset could be derived as follows:

M = H1bd −CNA+−1
N

⎡
⎢⎢⎣

T lvlh
chaser(0)

...

T lvlh
chaser(N − 1)

⎤
⎥⎥⎦ [bξ×]dc

(14)
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P = σ2
camH2ΛHT

2

+σ2
attCNA+−1

N

⎡
⎢⎢⎣

λ0(d
c)
. . .

λN−1(d
c)

⎤
⎥⎥⎦A+−T

N CT
N

(15)

where H1 = CNA+−1
N HBd

, H2 = CNA+−1
N HA,

A+−1
N =

(
AT

NAN

)−1
AT

N , λi(d
c) is a function of camera

offset and time:

λi(d
c) = T lvlh

chaser(i) [d
c×] [dc×]

T
T lvlh
chaser(i)

T (16)

The expressions for Λ, HA and HBd
are as follows:

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k20I3×3 03×3 03×3 03×3 03×3

03×3
. . . 03×3 03×3 03×3

03×3 03×3 k2N−1I3×3

...
...

03×3 · · · 03×3 03×3 03×3

03×3 · · · 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

HA =

⎡
⎢⎢⎢⎣

[ilos(0)×] 03×3 03×3 03×3 03×3 03×3

03×3 [ilos(1)×]
. . .

. . . 03×3 03×3

...
. . .

. . . 03×3

...
...

03×3 · · · 03×3 [ilos(N − 1)×] 03×3 03×3

⎤
⎥⎥⎥⎦

(18)

HBd
=

⎡
⎢⎢⎣

T lvlh
chaser(0)

...

T lvlh
chaser(N − 1)

⎤
⎥⎥⎦ (19)

It can be seen that the estimate error mean is linear

related to the camera offset while the covariance is

related to the second order of the camera offset.

4 Monte Carlo simulations

In this section the performance of the IROD algorithm

will be presented as a function of key parameters. The

material in this section will be divided into five

parts. Firstly, the simulation models and reference

missions will be described. Secondly, the key parameters

are set up. Next, the influence of the camera offset

and observation period on IROD performance will be

examined. Lastly, IROD performance based on different

dynamics will be examined and compared with that

from prototype algorithm shown in Ref. [19].

4.1 Simulation models and reference missions

A standard Monte Carlo simulation was created

using MATLAB to model the dynamics of the

rendezvous scenarios to evaluate the performance of

the proposed IROD algorithms in a two-body dynamics

environment. The truth motion models include the

chaser and target spacecraft orbital dynamics defined in

the earth-centered inertial frame (x axis points toward

the mean of the vernal equinox in the equatorial plane,

z axis is normal to the equatorial plane and pointing

north, y axis completes the orthogonal set). The state

vector of the model is a 12-dimensional vector defined by

the inertial position and velocity of the chaser and target

X = [Rc;Vc;Rt;Vt], then the dynamics equations for

the true state vector are

Ṙc = Vc, Ṙt = Vt

V̇c = gc(Rc), V̇t = gt(Rt)
(20)

where gc and gt are the accelerations due to gravity

acting on the chaser and target spacecraft respectively

which are based on a point-mass gravity models [24].

Since the goal of the current analysis is to develop general

first-order understanding of IROD performance and the

accuracy of the analytic statistics, the effects of J2 (and

different orbit inclinations) and aerodynamic drag (and

other vehicle dependencies) are not considered, as well as

third body and other perturbations effects.

Next, it is assumed that both spacecraft are orbiting

in low-Earth near-circular orbit. The target’s initial

orbit elements are as follows: semimajor axis, 6790.1 km;

eccentricity, 0.001; inclination, 51.6455 deg; ascending

node, 281.6522 deg; argument of perigee, 37.3945 deg;

true anomaly, 322.7645 deg. The chaser is orbiting

nearby to the target and keeping a fixed orientation with

respect to LVLH frame, i.e., the chaser has no rotational

motion with respect to LVLH. Moreover, both spacecraft

are assumed to be in coasting flight.

Then, five different natural motion trajectories for

proximity operations are considered to verify and test

the proposed algorithm: V-bar station-keeping, Football,

Oscillating, Co-elliptic and Hopping orbits. More

detailed information about these trajectories can be

found in Ref. [25]. Moreover, chaser’s initial inertial

position and velocity are determined by target’s initial

position and velocity plus the relative position and

velocity associated with the particular natural motion

relative trajectory.
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Lastly, as the key of angles-only problem is to solve

the range observability, the IROD performance will be

measured by the range estimate accuracy based on

Monte Carlo simulations. The range estimate error mean

and its standard deviation are defined as the following:

Mρ = δē = 1
n

n∑
i=1

δe(i) = 1
n

n∑
i=1

[ρ̂ (i)− ρ (i)],

σρ =

√
1

n−1

n∑
i=1

[δe (i)−Mρ]
2

(21)

where n is the number of Monte Carlo runs, ρ̂ is the

estimate of the relative range, ρ is the true relative

range.

4.2 Key parameters setting

The nominal initial chaser position is 1000 m downrange

of the target in +V-bar direction for V-bar stationary,

Football, Oscillating, and Hopping orbits, while Co-

elliptic orbit has an additional 100 m in initial relative

altitude. The Hopping and Oscillating orbits have a

maximum relative displacement of 100 m in the altitude

and cross-track directions, respectively. The integration

time-step is 10 s, the number of LOS observations varies

from 3 to 13, and the total simulation time Tf will be

differently set for the corresponding simulation cases

in the following subsections. And all the simulations

contain 200 Monte Carlo runs which roughly lead to

a 90% confidence [26]. Additionally, the camera offset is

assumed to be nominally in the out-of-plane direction,

as an in-plane offset leads to poor range observability

[18]. The more detailed settings for camera offset will

be described in the following corresponding subsections.

Moreover, Key parameters for sensors are provided in

Table 1.

Table 1 Key parameters for sensors

���������Sensor

Parameters
Bias Random noise std

Camera bd = 1%dc σcam = 10−4rad

Attitude sensor ξd = 10−3rad/axis σatt = 10−3rad/axis

4.3 Influence of camera offset

In order to verify the analytic expressions of the effect

on camera offset shown in Eqs. (14) and (15), Monte

Carlo simulations with the camera offset varying from 1

m to 10 m have been done.

Figure 2 shows how larger camera offset clearly

improves IROD performance for a V-bar station-keeping

trajectory when the initial chaser/target separation is

1000 m, Tf = 6000 s. As shown in the left figure, the

error mean curves start to perform linearly as expressed

in Eq. (14) after the camera offset larger than 2 m. The

reason for the nonlinearity is that when the camera offset

is not big enough with respect to the separation of two

spacecrafts, it will not get sufficient observability for

the estimation. As to elaborate this problem, another

simulation with a smaller separation has been done as

the following.

Figure 3 shows the results for 100 m initial separa-

tion. As we can see, the estimate error mean shows

linearity with the increasing of camera offset which does

coincide with the description of Eq. (14). Moreover,

both of the right figures obviously indicate the second

Fig. 2 Estimation error mean and standard deviation, R0 ≈ 1000 m.



Angles-only initial relative orbit determination algorithm for non-cooperative spacecraft proximity operations 223

Fig. 3 Estimation error mean and standard deviation, R0 ≈ 100 m.

order relationship between camera offset and error

covariance. And this relationship is independent of the

separation distance.

Actually, the same conclusions can be made for

other trajectories and the case when TH dynamics was

considered.

4.4 Influence of observation period

It can be seen from subsection 3.2, the estimate error

mean and covariance expressions are related to the

observation period Δt by means of transition matrix,

where Δt means the time interval between adjacent

measurements. But it is pretty hard to derive the

explicit expressions for error covariance about the

observation period, because of the complexity of the

transition matrix. As a result, two different kinds of

simulation have been done to analyze the influence of

the observation period on IROD performance. Case 1

fixed the observation number while the period increased

which would lead a larger final time Tf = NΔt, and

Case 2 fixed the final time whilst the observation periods

decreased. In these simulations, the initial relative

distance is about 1000 m when the camera offset is 1 m

along cross-track with 1% uncertainties in three axes

and the camera accuracy is in 10−4 rad level.

Figure 4 shows the results for Case 1 with an

increasing final time. It can be seen that the estimate

error mean and standard deviation generally converge as

Δt increases, no matter what kind of dynamics is used or

how many observations are utilized. However, when Δt

is too small, for example smaller than 700, the estimate

error and covariance are pretty large which means fake

solution. Especially, the performance becomes much

worse when three observations are utilized and Δt is

not big enough. The reason for this phenomenon is

that a too small Δt with less observations leads to a

large condition number matrix AN . A larger condition

number means a small perturbation may introduce a

large error to the solution of linear equations. Thus,

more than three observations should be used and the

observation period should not be too small for the IROD

problem.

Figure 5 shows the results of the Case 2 with a

fixed final time, i.e., Tf = 6000 s. It can be seen

that more observations do mean a smaller estimate

error covariance but not a smaller estimate error. More

observations smaller covariance is easily to understand,

because this is the essential characteristic of least square

method. And the reason for the trend of estimate

error mean is on the relative motion dynamics. By

comparing subfigure (a) with (b), it can be figured

out that the case using of TH equations leads to

a much better performance than the case using CW

equations. Moreover, the error mean shows a decreasing

trend with the increasing of the number of observations.

4.5 IROD performance analysis

In this section, Monte Carlo simulations will be

conducted to further evaluate the performance of

the IROD algorithm proposed in this paper and to

compare it with the prototype algorithm presented

in Ref. [19]. Three specific simulation cases will be

examined with one parameter changed each time: Case

1, observation period Tf = 6000 s, initial separation
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Fig. 4 Estimation error mean and standard deviation, V-bar stationary, final time increases, R0 ≈ 1000 m.

R0 ≈ 1000 m; Case 2, 3000 s, 1000 m; Case 3, 6000 s, 100

m. Other parameters were provided in Table 1. Figs. 6–

8 present the range estimate error mean and standard

deviation for Cases 1–3, respectively, where subfigures

(a) show the results for CW dynamics and the prototype

algorithm in Ref. [19], subfigures (b) depict the results

for CW dynamics and the proposed algorithm in this

paper, and subfigures (c) describe the results for TH

dynamics and proposed algorithm.

Firstly, performance improvement can be seen from

the subfigures (a) and (b) of Figs. 6–8. The estimate

error standard deviation based on the prototype

algorithm does not always decrease as the number

of observations increases, but the results of the

proposed algorithm in this paper generally decrease.

The reason is that these two algorithms solve the

initial relative state in a different way. The prototype

IROD algorithm is based on a least squares approach

designed to minimize the estimate error of the scale

factors K̃, but not the initial state x0. In contrast,

state augmentation IROD algorithm proposed in this

paper is designed to minimize the estimate error of

both K̃ and x0 at the same time. Anyway, state

augmentation means a larger state dimension which

leads to a much more computational burden and the

computational burden will be geometrically increased

as the number of dimension linearly increases. However,

IROD is not real-time navigation problem and the
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Fig. 5 Estimation error mean and standard deviation, Tf = 6000 s, R0 ≈ 1000 m.

purpose of IROD is to obtain initial relative orbit

and the corresponding covariance to initialize the real-

time navigation filter. Additionally, certain recursive

algorithm could be used to achieve better computation

efficiency [27]. Thus, the computational amount

increasing to some extent should be OK for most cases.

Interestingly, as shown in the subfigures (a) and

subfigures (b), they share similar performance for

the case of three observations. Actually, these two

algorithms are equivalent to each other when there

are only three observations. Because the prototype

algorithm uses all the observations to calculate K̃ but

only the first three elements of K̃ are utilized to compute

x0, which lost information from other observations. As

a result, these two algorithms are equivalent when there

are only three observations, but the algorithm presented

in this paper will achieve a better solution when there

have been more measurements.

Secondly, as shown in subfigures (c), the estimated

error mean are much smaller than those shown in

subfigures (a) and subfigures (b). The reason is obvious

since TH equations are second order dynamics, more

accurate than CW equations. Anyway, there are still

more accurate dynamics [28,29] than TH equations, but

relevant state transition matrices need to be obtained

before these improved dynamics can be used. IROD

performance would be absolutely improved when high-

order dynamics is used.
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Fig. 6 Estimation error mean and standard deviation of Case 1.
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Fig. 7 Estimation error mean and standard deviation of Case 2.
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Fig. 8 Estimation error mean and standard deviation of Case 3.
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5 Conclusions

This paper presented a global optimal least square

angles-only IROD algorithm for non-cooperative

spacecraft proximity operations based on the idea

firstly proposed by Geller that camera offset from the

chaser center-of-mass provides range observability. The

state transition matrices of linearized relative

motion Clohessy–Wiltshire dynamics and Tschauner–

Hempel dynamics were used to establish a state

augmentation least square scheme to solve the IROD

problem. Additionally, the approximate analytic

expressions for the estimate error mean and covariance

were developed. A detailed performance analysis based

on nonlinear Monte Carlo simulations for the proposed

algorithms was conducted and presented. Performance

was shown to be improved with the proposed algorithm

in this paper, higher-order dynamics and smaller initial

separation. This was also shown to be valid for a couple

of relative trajectories.

Above all, an optimal angles-only initial relative

orbit determination algorithm in the sense of lease

square is presented and verified. The proposed algorithm

generally achieves a better solution and can be used to

initialize real-time navigation filter for non-cooperative

spacecraft proximity operations.
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