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ABSTRACT

We are interested in stable periodic orbits for spacecraft in the gravitational field of minor

celestial bodies. The stable periodic orbits around minor celestial bodies are useful not only

for the mission design of the deep space exploration, but also for studying the long-time

stability of small satellites in the large-size-ratio binary asteroids. The irregular shapes

and gravitational fields of the minor celestial bodies are modeled by the polyhedral model.

Using the topological classifications of periodic orbits and the grid search method, the stable

periodic orbits can be calculated and the topological cases can be determined. Furthermore,

we find five different types of stable periodic orbits around minor celestial bodies: (1) stable

periodic orbits generated from the stable equilibrium points outside the minor celestial

body; (2) stable periodic orbits continued from the unstable periodic orbits around the

unstable equilibrium points; (3) retrograde and nearly circular periodic orbits with zero-

inclination around minor celestial bodies; (4) resonance periodic orbits; (5) near-surface

inclined periodic orbits. We take asteroids 243 Ida, 433 Eros, 6489 Golevka, 101955 Bennu,

and the comet 1P/Halley for examples.
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1 Introduction

Missions to minor celestial bodies (here including

asteroids and comets) and the discovery of large-

size-ratio binary asteroids and triple asteroids make

the study of stable periodic orbits around minor

celestial bodies important [1–10]. Several previous

studies investigated the periodic orbits around minor

celestial bodies, such as Scheeres et al. [11], Elipe and

Lara [12], Palaćıan et al. [13], Vasilkova [14], Yu and

Baoyin [15], Jiang et al. [16], Jiang and Baoyin [17],

and Ni et al. [18].

Hamilton and Burns [19] studied the orbital stability

zones around asteroid by assuming the asteroid to be a

point mass and considering the solar radiation. Scheeres

et al. [11] used the expansion of spherical harmonics

method to model the gravitational field of 433 Eros and

computed direct, nearly circular, equatorial periodic

orbits in the body-fixed frame of Eros. Elipe and

Lara [12] used a rotating straight segment to model

the irregular shape of asteroid 433 Eros, and calculated

periodic orbits around the segment. Vasilkova [14] used

a triaxial ellipsoid to model the elongated asteroid and

calculated several periodic orbits around equilibrium

points of the triaxial ellipsoid. Palaćıan et al. [13]

investigated the invariant manifold, periodic orbits, and

quasi-periodic orbits around a rotating straight segment.

Wang et al. [20] used the perturbation expansion with 2-

order Legendre spherical harmonic coefficients to model

the gravitational field of the asteroid and analyzed

the stability of relative equilibrium of a spacecraft.

Antoniadou and Voyatzis [21] studied the periodic orbits

in the planetary system, and found that the stable

periodic orbits will lead to long-term stability while

the unstable orbits will lead to chaotic motion and

destabilize the system.
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Scheeres et al. [22, 23] presented the dynamical

equation, effective potential, and the Jacobian constant

around the minor celestial bodies. Yu and Baoyin

[15] gave a grid search method with the hierarchical

parameterization to calculate the periodic orbits and

periodic orbit families around minor celestial bodies.

Jiang et al. [6] derived the linearised motion equations

around equilibrium points and the characteristic

equation of the equilibrium points of minor celestial

bodies, which is useful to calculate the stability,

topological classifications, and local motions around

equilibrium points. The local periodic orbits and quasi-

periodic orbits can be calculated by the analytic method

presented from Jiang et al. [6]. The accuracy of analytic

method is lower than that of the grid search method

when computing the periodic orbits around equilibrium

points [22, 24]. However, the compute speed of the

analytic method is faster than that of the grid search

method. If one wants to calculate the global periodic

orbits, one can only use the numerical method, such as

the grid search method [15, 16, 18]. The periodic orbit

around a minor celestial body has six characteristic

multipliers, at least two of which are equal to 1 [7,15,22].

Jiang et al. [7] found four kinds of bifurcations of

periodic orbits when continuing the periodic orbits,

including the real saddle bifurcations, the period-

doubling bifurcations, the tangent bifurcations, and

the Neimark–Sacker bifurcations. When continuing the

periodic orbits around asteroids or comets, if the

bifurcations occur, the stability of the periodic orbits

may vary. Jiang and Baoyin [17] presented a conserved

quantity which can restrict the number of periodic orbits

on a fixed energy curved surface in the potential of

a minor celestial body. They also discussed multiple

bifurcations in the periodic orbit families around

asteroids. Ni et al. [18] furthermore calculated several

different kinds of multiple bifurcations in the periodic

orbit families around asteroid 433 Eros.

Because bifurcations of stable periodic orbits may

lead to unstable ones, when computing stable periodic

orbits around minor celestial bodies, bifurcations are

not expected to occur, especially for the design of

stable periodic orbits for spacecrafts orbiting asteroids

or comets, or for the study of stable periodic orbits

for moonlets orbiting the primary in the binary or

triple systems [3, 11, 19]. Jiang et al. [16] found a

family of stable periodic orbits, which is retrograde,

nearly circular, and with zero-inclinations relative to

the primary’s body-fixed frame. When continuing the

periodic orbits, the characteristic multipliers collide at

−1 and pass through each other. The period-doubling

bifurcation does not occur during the continuation. The

four characteristic multipliers except two equal to 1

are in the unit circle. During the continuation, the

characteristic multipliers will collide on the unit circle,

but the Neimark–Sacker bifurcation does not occur.

Using the contents about the continuity of periodic

orbits during the change of parameters from Jiang et

al. [7], we know that there exists a family of stable

periodic orbits around each of the stable periodic orbit.

Thus here we mainly discuss the stable periodic orbits

around minor celestial bodies.

This paper is organized as follows. Section 2

focuses on the gravitational potential of minor celestial

bodies. Section 3 discusses the monodromy matrix and

characteristic multipliers of periodic orbits as well as the

stability and topological classifications of stable periodic

orbits. In Section 4, we find five different kinds of

stable periodic orbits in the potential of minor celestial

bodies. These different kinds of stable periodic orbits

are found in the potential of several minor celestial

bodies, including the comet 1P/Halley, the asteroids 243

Ida, 433 Eros, 6489 Golevka, and 101955 Bennu.

2 Gravitational potential

The shape and gravitational model of minor celestial

bodies can be modeled by the polyhedral model [3,

25–27] or the hard/soft-sphere discrete element method

[10, 28–30]. Asteroid 433 Eros is elongated, and has

both concave and convex areas on surface. So we

choose asteroid 433 Eros to calculate the irregular

shape and effective potential. The physical and shape

model of asteroid 433 Eros used here is generated

by data from Gaskell [31] with the polyhedral model

[25, 26]. The overall dimensions of asteroid 433 Eros

are 36 km×15 km×13 km [32], the estimated bulk

density is 2.67 g·m−3 [32, 33], the rotational period

is 5.27025547 h [32], and the moment of inertia is

17.09×71.79×74.49 km2 [33]. The modeling of 433 Eros

employed 99,846 vertices and 196,608 faces [31]. Figure

1 shows the 3D shape of asteroid 433 Eros viewed from

different directions. From Fig. 1, one can see that there

are several craters with different size on the surface of

asteroid 433 Eros. There is a large crater on the +y

direction of the asteroid.
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Fig. 1 3D shape of asteroid 433 Eros.

Figure 2 shows a 3D contour plot of the effective

potential V for asteroid 433 Eros. The values for V

are plotted in the xy, yz, and zx planes. The structures

of effective potential in the xy, yz, and zx planes are

quite different. More detailed contents to calculate the

effective potential can be found in Jiang and Baoyin [17].

The positions of equilibrium points of asteroid 433 Eros

is near the xy plane, but not in the xy plane, which

implies that they are out-of-plane equilibrium points.

More details about the equilibrium points of asteroids

can be found in Chanut et al. [4], Jiang et al. [6], and

Wang et al. [27].

3 Stable periodic orbits for spacecraft

around asteroids and comets

3.1 Monodromy matrix and characteristic

multipliers

The dynamical equation of the spacecraft relative to

the body-fixed frame of the minor celestial body can be

expressed in the symplectic form [7]:

ż = F (z) = J∇H (z) (1)

where z = [ p q ]T, p = (ṙ +ωωω × r) is the generalised

momentum, q = r is the generalised coordinate, q

represents the position vector of the spacecraft relative

to the body’s body-fixed frame, J =

(
0 −I
I 0

)
, I

is a 3 × 3 unit matrix, 0 is a 3 × 3 zero matrix,

H = −p · p
2

+ U (q) + p · q̇ is the Hamilton functions,

U (q) respresents the body’s gravitational potential, and

∇H (z) =

(
∂H

∂p

∂H

∂q

)T

is the gradient ofH (z). U (q)

can be computed by the polyhedral model [26] with

the shape data and physical parameters of the minor

celestial body. The body-fixed frame is defined by the

inertia axis, i.e., x, y, and z axes are the minimum,

medium, and maximum inertia axis, respectively.

Denote Sp (T ) as the set of periodic orbits with the
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Fig. 2 A 3D contour plot of the effective potential for 433 Eros (unit: km2·s−2).

period T . For each periodic orbit p ∈ Sp (T ), it has a

6 × 6 matrix ∇F :=
∂F (z)

∂z
, then the state transition

matrix [7,15,21,34] for the periodic orbit can be written

as

ΦΦΦ (t) =

∫ t

0

∂F

∂z
(p (τ)) dτ (2)

the periodic orbit’s monodromy matrix is then

M = ΦΦΦ (T ) (3)

Characteristic multipliers of the periodic orbit are

the eigenvalues of the monodromy matrix. Each

periodic orbit has six characteristic multipliers, and

all the characteristic multipliers take the form of

e±σ±iτ (σ, τ ∈ R; σ > 0, τ ∈ (0,π)), sgn(α)e±α(α ∈ R,

|α| ∈ (0, 1)), e±iβ (β ∈ (0,π)), −1, and 1, where

sgn (α) =

{
1, α > 0

−1, α < 0
.

3.2 Stability of periodic orbits

Distribution of six characteristic multipliers of the

periodic orbit determines the topological classifications

of periodic orbits [35]. The topological classifications of

stable periodic orbits [17] have 7 different cases, which

are listed in Table 1.

More detailed contents of the topological

classifications of periodic orbits can be seen in

Jiang and Baoyin [17]. The topological case of the

periodic orbits in the periodic orbit family may vary

from the stable cases to the unstable cases. There

are three bifurcations [7, 17, 18] related to the variety

of the stability of the periodic orbits, i.e., Neimark–

Sacker bifurcations, tangent bifurcations, as well as

period-doubling bifurcations.

4 Different kinds of stable periodic

orbits

In this section, we present five different kinds of stable

periodic orbits around minor celestial bodies. These

periodic orbits are calculated using the grid search

method developed by Yu and Baoyin [15]. Before the

periodic orbits are presented, we first give the length

unit and time unit used here in Table 2. For instance,

the first line in Table 2 means that the length unit
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Table 1 Topological classifications of stable periodic orbits

Topological case Characteristic multiplier

Case N2 (non-degenerate cases) e±iβj (βj ∈ (0,π) ; j = 1, 2 |β1 6= β2 ) , γj (γj = 1; j = 1, 2)

Case DP1 (degenerate periodic cases) e±iβj (βj ∈ (0,π) ; j = 1 ) , γj (γj = 1; j = 1, 2, 3, 4)

Case DP2 (degenerate periodic cases) γj (γj = 1; j = 1, 2, 3, 4, 5, 6)

Case K1 (Krein collision cases) e±iβj (βj ∈ (0,π) ; j = 1, 2 |β1 = β2 ) , γj (γj = 1; j = 1, 2)

Case PD1 (period-doubling cases) γj (γj = 1; j = 1, 2, 3, 4) , γj (γj = −1; j = 1, 2)

Case PD2 (period-doubling cases) γj (γj = 1; j = 1, 2) , γj (γj = −1; j = 1, 2, 3, 4)

Case PD3 (period-doubling cases) γj (γj = 1; j = 1, 2) , γj (γj = −1; j = 1, 2) , e±iβj (βj ∈ (0,π) ; j = 1)

Table 2 Length unit and time unit used in this paper for minor

bodies

Minor body Length unit Time unit

Comet 1P/Halley 15.140166 km 52.8 h

243 Ida 57.7917 km 4.63 h

433 Eros 34.4 km 5.2656 h

101955 Bennu 566.4413 m 4.288 h

6489 Golevka 685.15093 m 6.026 h

for motion around comet 1P/Halley is defined to be

15.140166 km, and the time unit is defined to be 52.8 h.

4.1 Generated from the stable equilibrium

points

If the minor celestial bodies have stable equilibrium

points outside the bodies, there exist three families

of stable periodic orbits around each of the stable

equilibrium points. There are several asteroids and

comets having stable equilibrium points outside,

including asteroids 4 Vesta [27], 2867 Steins [27], 6489

Golevka [6], 52760 [27], and comets 1P/Halley [9] as

well as 9P/Tempel1 [27]. Jiang et al. [6] presented the

analytic method to calculate the local periodic orbits

around stable equilibrium points; however, the local

periodic orbits calculated from the analytic method are

not accurate enough. Using the grid search method

developed by Yu and Baoyin [15], the stable periodic

orbits around the stable equilibrium points can be

calculated numerically. The grid search method has

a high accuracy. The analytic method from Jiang et

al. [6] can be used to give an initial estimate for

the grid search method developed by Yu and Baoyin

[15]. Jiang [24] applied the grid search method to

the computation of the local periodic orbits around

equilibrium points of asteroid 216 Kleopatra. Here we

discuss the stable periodic orbits generated from the

stable equilibrium points of minor celestial bodies. We

choose comet 1P/Halley to calculate the stable periodic

orbits around the stable equilibrium points. We use the

grid search method to search the periodic orbits and

Eq. (3) to calculate the distribution of six characteristic

multipliers of the periodic orbits. There are totally

four equilibrium points outside the body of the comet

1P/Halley, two of them are stable, i.e., E2 and E4 [7,27].

Figure 3 shows a periodic orbit continued from the

stable equilibrium point E2 (the positions and serial

numbers of equilibrium points in this paper can be seen

in Wang et al. [27]) of the comet 1P/Halley. The period

of this periodic orbit is 53.3971 h. The rotation period

of the comet 1P/Halley is 52.8 h. Thus the ratio of the

period of the periodic orbit relative to the period of the

comet is 1.01130878575. From Fig. 3(b), one can see

that the periodic orbit is stable.

Figure 4 shows a periodic orbit continued from the

stable equilibrium point E4 of the comet 1P/Halley. The

period of this periodic orbit is 53.3851 h. The ratio of

the period of the periodic orbit and the period of the

comet is 1.011080562545. From Fig. 4(b), one can see

that the periodic orbit is stable. Table 3 presents the

initial positions and the initial velocities of these two

periodic orbits presented in Figs. 3 and 4, and the values

are expressed in the body-fixed frame of 1P/Halley.

In Table 3, periodic orbit 1 corresponds to the orbit

presented in Fig. 3 while periodic orbit 2 corresponds

to the orbit presented in Fig. 4.

4.2 Continued from the unstable periodic

orbits around the unstable equilibrium

points

The distribution of eigenvalues determines the

topological cases of the equilibrium points around

a uniformly rotating body. Jiang et al. [6] classified

several different topological cases of the equilibrium

points. From Jiang et al. [6] and Wang et al. [27],
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(a) (b)

Fig. 3 A periodic orbit continued from the stable equilibrium point E2 of the comet 1P/Halley. The period is 53.3971 h, and the ratio of

the period of the periodic orbit and the period of the comet is 1.01130878575. (a) 3D plot of the periodic orbit relative to the body-fixed

frame of 1P/Halley; (b) distribution of six characteristic multipliers of the periodic orbit.

(a) (b)

Fig. 4 A periodic orbit continued from the stable equilibrium point E4 of the comet 1P/Halley. The period is 53.385053702375991 h,

and the ratio of the period of the periodic orbit and the period of the comet is 1.011080562545. (a) 3D plot of the periodic orbit relative

to the body-fixed frame of 1P/Halley; (b) distribution of six characteristic multipliers of the periodic orbit.

Table 3 Initial positions and the initial velocities of periodic

orbits in the body-fixed frame of 1P/Halley

Periodic
orbit

Position Velocity Period

1

−1.43509739861

1.10624686366

−0.945745920199

6.58815083642

15.2096319563

4.79820012348

1.01130878575

2

1.44026951894

−0.116377265356

−0.913778421911

1.26316060312

−17.8320567684

3.71316717169

1.011080562545

we know that for most minor celestial bodies, if the

external equilibrium points are unstable, they belong

to Case 2 or Case 5, where Case 2 has the eigenvalues

±αj
(
αj ∈ R+; j = 1

)
and ±iβj

(
βj ∈ R+; j = 1, 2

)
,

while Case 5 has the eigenvalues ±σ ± iτ
(
σ, τ ∈ R+

)
and ±iβj

(
βj ∈ R+; j = 1

)
. In the vicinity of the

equilibrium points which belong to Case 2, there exist

two families of unstable periodic orbits. In the vicinity

of the equilibrium points which belong to Case 5,

there exists one family of unstable periodic orbits.

When continuing these unstable periodic orbits, the

amplitude of the periodic orbits increases gradually,

and the periodic orbits become stable.

Here we choose the comet 1P/Halley and the primary

of the binary asteroid 243 Ida to calculate the stable

periodic orbits continued from the unstable periodic

orbits around the unstable equilibrium points. Comet

1P/Halley has two unstable equilibrium points E1 and

E3. The primary of the binary asteroid 243 Ida has four

equilibrium points outside the body. All of them are

unstable.

Figures 5 and 6 show two periodic orbits continued
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(a) (b)

Fig. 5 A periodic orbit continued from the stable equilibrium point E1 of the comet 1P/Halley. The period is 53.454 h, and the ratio of

the period of the periodic orbit and the period of the comet is 1.01238521471. (a) 3D plot of the periodic orbit relative to the body-fixed

frame of 1P/Halley; (b) distribution of six characteristic multipliers of the periodic orbit.

(a) (b)

Fig. 6 A periodic orbit continued from the stable equilibrium point E3 of the comet 1P/Halley. The period is 54.011925825 h, and the

ratio of the period of the periodic orbit and the period of the comet is 1.02295314063. (a) 3D plot of the periodic orbit relative to the

body-fixed frame of 1P/Halley; (b) distribution of six characteristic multipliers of the periodic orbit, there are four multipliers equal to 1.

from the unstable equilibrium points E1 and E3 of

the comet 1P/Halley, respectively. The period of the

periodic orbit presented in Fig. 5 is 53.454 h, and the

ratio of the period of the periodic orbit and the period of

the comet is 1.01238521471. The period of the periodic

orbit presented in Fig. 6 is 54.0119 h, and the ratio of the

period of the periodic orbit relative to the period of the

comet is 1.02295314063. From Fig. 5(b) and Fig. 6(b),

one can see that these two periodic orbits are stable.

Figures 7 and 8 show two periodic orbits continued

from the unstable equilibrium points E2 and E4 of the

primary of the binary asteroid 243 Ida, respectively.

The period of the periodic orbit presented in Fig. 7 is

5.2447 h, and the ratio of the period of the periodic orbit

and the period of the comet is 1.13276985098. The

periodic orbit presented in Fig. 7 is continued from the

unstable equilibrium point E2, and it connects periodic

orbit generated from equilibrium point E1. The period

of the periodic orbit presented in Fig. 8 is 5.2678 h,

and the ratio of the period of the periodic orbit and the

period of the comet is 1.13775669387. From Fig. 7(b)

and Fig. 8(b), one can see that these two periodic orbits

are stable.

Table 4 presents the initial positions and the initial

velocities of these four periodic orbits presented in Figs.

5–8, the values are expressed in the body-fixed frame

of the minor bodies. In Table 4, periodic orbits 1 and

2 correspond to the orbits presented in Figs. 5 and 6,

respectively;periodic orbits 3 and 4 correspond to the

orbits presented in Figs. 7 and 8, respectively.
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(a) (b)

Fig. 7 A periodic orbit continued from the stable equilibrium point E2 of the asteroid 243 Ida. The period is 5.244724410037399 h,

and the ratio of the period of the periodic orbit and the period of the asteroid is 1.13276985098. (a) 3D plot of the periodic orbit relative

to the body-fixed frame of 243 Ida; (b) distribution of six characteristic multipliers of the periodic orbit.

(a) (b)

Fig. 8 A periodic orbit continued from the stable equilibrium point E4 of the asteroid 243 Ida. The period is 5.2678134926181 h, and

the ratio of the period of the periodic orbit and the period of the asteroid is 1.13775669387. (a) 3D plot of the periodic orbit relative to

the body-fixed frame of 243 Ida; (b) distribution of six characteristic multipliers of the periodic orbit.

Table 4 Initial positions and the initial velocities of periodic

orbits in the body-fixed frame of 1P/Halley and 243 Ida

Periodic
orbit

Position Velocity Period

1

−0.724053725841

1.48667560655

−1.33198379992

14.3328568184

8.78463438036

3.48528278685

1.01238521471

2

0.0508067344449

1.58710718406

−1.43117795230

16.7180042361

1.28433682355

−2.60834460269

1.02295314063

3

0.0626044457277

0.532671731883

−0.0571937606260

5.70149686669

−0.332300886588

1.49480516557

1.13276985098

4

0.365717153565

−0.376264464591

−0.100156740647

−3.96356504016

−3.96490101038

1.66824049654

1.13775669387

4.3 Retrograde and nearly circular

periodic orbits with zero inclination

Jiang et al. [16] found a family of stable periodic orbits

around the large-size-ratio triple asteroid 216 Kleopatra,

which is nearly circular and retrograde with zero

inclination. These periodic orbits are nearly circular

and retrograde with zero inclination. The primary of

216 Kleopatra has seven equilibrium points, four of them

are outside the body, and these four equilibrium points

are all unstable. We choose some other minor celestial

bodies with different structure of gravitational fields to

calculate if similar orbits also exist. Asteroids 433 Eros,

101955 Bennu, and 6489 Golevka are taken for examples

to calculate the periodic orbits. 433 Eros has totally five

equilibrium points. Four of them are outside the body,
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and all the external equilibrium points are unstable.

6489 Golevka also has totally five equilibrium points.

Four of them are outside the body; however, two of the

outside equilibrium points are unstable and other two

outside equilibrium points are stable. 101955 Bennu has

totally nine equilibrium points. These three asteroids

have different structures of gravitational fields.

Figure 9 shows a family of periodic orbits around

asteroid 433 Eros, and the periodic orbits are nearly

circular and retrograde with zero inclination. The initial

positions and velocities of these five periodic orbits in

the periodic orbit family in the gravitational potential

of 433 Eros are presented in Table 5. The vectors are

expressed in the asteroid’s body-fixed frame. There are

totally five periodic orbits plotted in Fig. 9. The period

of the smallest periodic orbit is 7.0827 h with the ratio

1.345096. The period of the biggest periodic orbit is

7.6912 h with the ratio 1.460648. Here the ratio means

the ratio of the period of the periodic orbit relative

to the period of the minor celestial body. From the

inner to the outer, the periods of the periodic orbits

become larger. This result is different from the period

in the Kepler motion expressed in the inertial coordinate

system. From Fig. 9(b), one can see that the orbits are

not in the plane; they are curves in the normal direction.

Figure 10 shows another periodic orbit family around

asteroid 433 Eros. The periodic orbits are also nearly

circular and retrograde with zero inclination. The

initial positions and velocities of these five periodic

orbits in the gravitational potential of 433 Eros are

presented in Table 6. The vectors are expressed in the

asteroid’s body-fixed frame. There are totally seven

periodic orbits plotted in Fig. 9. The periodic orbits are

stable. Figures 10(c) and 10(d) present the distribution

of six characteristic multipliers of the smallest and

biggest periodic orbits among the seven periodic orbits

(a) (b)

(c) (d)

Fig. 9 A family of nearly circular periodic orbits around asteroid 433 Eros which are retrograde with zero inclination. (a) 3D plot of the

periodic orbits relative to the body-fixed frame of 433 Eros. Five periodic orbits are plotted; from the inner to the outer, the periods of

the periodic orbits become bigger. (b) 3D plot of the periodic orbits (without the asteroid) relative to the body-fixed frame of 433 Eros.

(c) Distribution of six characteristic multipliers of the periodic orbit (the smallest periodic orbit among the five periodic orbits plotted).

The period is 7.0827 h, and the ratio of the period of the periodic orbit and the period of the asteroid is 1.345096. (d) Distribution of six

characteristic multipliers of the periodic orbit (the biggest periodic orbit among the five periodic orbits plotted). The period is 7.6912 h,

and the ratio of the period of the periodic orbit and the period of the asteroid is 1.460648.



78 Y. Jiang, J. Schmidt, H. Li, et al.

(a) (b)

(c) (d)

Fig. 10 A family of nearly circular periodic orbits around asteroid 433 Eros which are retrograde with zero inclination. (a) 3D plot of

the periodic orbits relative to the body-fixed frame of 433 Eros. Seven periodic orbits are plotted; from the inner to the outer, the periods

of the periodic orbits become smaller. (b) 3D plot of the periodic orbits (without the asteroid) relative to the body-fixed frame of 433

Eros. (c) Distribution of six characteristic multipliers of the periodic orbit (the smallest periodic orbit among the seven periodic orbits

plotted). The period is 8.656684 h, and the ratio of the period of the periodic orbit and the period of the asteroid is 1.64400724599. (d)

Distribution of six characteristic multipliers of the periodic orbit (the biggest periodic orbit among the seven periodic orbits plotted).

The period is 6.684357 h, and the ratio of the period of the periodic orbit and the period of the asteroid is 1.26943881082.

plotted. From Figs. 10(c) and 10(d), one can see that the

characteristic multipliers on the unit circle move during

the continuation.

The period of the smallest periodic orbit is 8.656684 h

with the ratio 1.64400724599. The period of the

biggest periodic orbit is 6.684357 h with the ratio

1.26943881082. From the inner to the outer, the periods

of the periodic orbits become smaller. This result is

different from the above results presented in Fig. 9 and

Table 5. Thus the periodic orbit family presented in Fig.

10 is different from the periodic orbit family presented

in Fig. 9. We can conclude that there are at least two

periodic orbit families in the potential of one minor

celestial body, which are nearly circular, retrograde, and

stable with zero inclination.

For the asteroid 101955 Bennu, the rotation period

is 4.288 h. For the asteroid 6489 Golevka, the rotation

period is 6.026 h.

Figure 11 shows a periodic orbit around asteroid

101955 Bennu, and Fig. 12 shows a periodic orbit around

asteroid 6489 Golevka. Both of the two periodic orbits

are nearly circular, stable, and retrograde with zero

inclination. The initial positions and velocities of these

two periodic orbits in the periodic orbit family in the

gravitational potential of the asteroids are presented in

Table 7. Furthermore, the periodic orbit presented in

Fig. 12 has the period ratio 0.495486995181, which is

near the 1:2 resonance of the period of the periodic orbit

and the rotation period of the asteroid 6489 Golevka.

Jiang et al. [16] found periodic orbits in the potential

of asteroid 216 Kleopatra; the periodic orbits are nearly

circular retrograde and stable with zero inclination; the

asteroid 216 Kleopatra has seven equilibrium points.

From Figs. 9–12, one can see that the periodic orbits

which are nearly circular, retrograde, and stable with

zero inclination exist not only on the gravitational field

of asteroid 216 Kleopatra, but also in the gravitational

field of 433 Eros, 101955 Bennu, and 6489 Golevka.
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Table 5 Initial positions and the initial velocities of periodic

orbits in the body-fixed frame of 433 Eros (indexes 1 to 5 mean

the orbits from inner to outer)

Periodic
orbit

Position Velocity Period

1

0.743990716373

−0.894842961577

0.000419947168

−4.19745020860

−3.44719333572

0.000221072321

1.34509555159

2

0.683634268907

−0.895480402681

0.000448414280

−4.12698424359

−3.10294685101

0.000263961275

1.36878554932

3

0.614417150401

−0.899312199598

0.000480602904

−4.06181001461

−2.72236601436

0.000314113036

1.39553123024

4

0.595998913791

−0.866964082507

0.000511515830

−3.83587690126

−2.57348128953

0.000387281366

1.42591950706

5

0.547342936704

−0.854052941398

0.000547689132

−3.68645740335

−2.28916792332

0.000473375432

1.46064834302

Table 6 Initial positions and the initial velocities of periodic

orbits in the body-fixed frame of 433 Eros (indexes 1 to 7 mean

the orbits from inner to outer)

Periodic

orbit
Position Velocity Period

1

0.226020373236

0.831549571341

0.000815731943

3.05135726080

−0.755105170473

−0.000787043149240

1.64400724599

2

0.162260294966

0.925373223566

0.000698149394

3.69842543490

−0.620219330154

−0.000317281286244

1.53615360513

3

0.118572781769

1.01015364846

0.000592999780

4.31126220291

−0.494283666047

−0.000142173246285

1.45298231634

4

0.039313088475

1.09256772994

0.000508929461

4.90077984986

−0.174726400201

−0.0462158783466

1.38965306382

5
0.0877117956974

1.16503659385

0.000440777741409

5.43432437124

−0.405607013915

−0.0000433255175181

1.34047716511

6

−0.0194496986212

1.24241338092

0.000386702840792

5.97936660822

0.0923344130837

−0.00000568727917105

1.30132599619

7

−0.01819579281

1.31630038108

0.000342011597241

6.50081649913

0.0889931429895

−0.00000361670859952

1.26943881082

This implies that the periodic orbits which are nearly

circular retrograde and stable with zero inclination may

widely exist in the potential of different gravitational

field structure of minor celestial bodies.

4.4 Resonance

In this section, resonant periodic orbit means that

the ratio of the period of the periodic orbit relative

to the period of the asteroid is an integer. Russell

Table 7 Initial positions and the initial velocities of periodic

orbits in the body-fixed frame of 101955 Bennu and 6489 Golevka

(periodic orbit 1 is the orbit around 101955 Bennu and periodic

orbit 2 is the orbit around 6489 Golevka)

Periodic
orbit

Position Velocity Period

1

0.671591383153

−0.586009389218

−0.0631586635050

−2.01971118787

−2.60968398375

−0.0536311486152

1.96251392508

2

−0.802329098318

0.0683264606186

−0.00221645697675

0.927694676293

10.1907427252

0.0258563463006

0.495486995181

[36] presented a 17:21 periodic orbit around asteroid 4

Vesta and several trajectories around highly irregular

asteroid 4179 Toutatis. Jiang et al. [16] presented 4

resonant periodic orbits around asteroid 101955 Bennu,

and one of them is stable. 101955 Bennu is the only one

minor celestial body which has the maximum number

of equilibrium points in the current study. There are

totally 9 equilibrium points in the potential of asteroid

101955 Bennu, and 8 of them are outside the body.

Here we find resonant periodic orbits around other

minor celestial bodies, including asteroid 243 Ida and

6489 Golevka. The length unit and time unit for motion

around 243 Ida are the same as that in Section 4.2.

The length unit and time unit for motion around 6489

Golevka are the same as that in Section 4.3.

Figure 13 presents a resonant periodic orbit around

the primary of the binary asteroid 243 Ida. From Fig.

13(b), one can see that the periodic orbit is stable,

and has four characteristic multipliers equal to 1. The

initial positions and velocities of the periodic orbit in the

gravitational potential of 243 Ida are presented in Table

8. The vectors are expressed in the asteroid’s body-

fixed frame. The periodic orbit is calculated using the

Poincaré section; it has 8 intersections with the Poincaré

section.

Figures 14 and 15 present two 2:1 resonant periodic

orbits around the asteroid 6489 Golevka. From

Figs. 14(b) and 15(b), one can see that these two

periodic orbits are stable. The periodic orbit presented

in Fig. 14 has two characteristic multipliers equal to

1, while the periodic orbit presented in Fig. 15 has four

characteristic multipliers equal to 1. The initial positions

and velocities of the periodic orbits in the periodic orbit

family in the gravitational potential of 6489 Golevka are

presented in Table 8. The vectors are expressed in the

asteroid’s body-fixed frame. These two periodic orbits

are calculated using the Poincaré section; both of them

have 3 intersections with the Poincaré section.
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(a) (b)

(c)

Fig. 11 A nearly circular periodic orbit around asteroid 101955 Bennu which is retrograde with zero inclination. The period is

8.41525971074304 h, and the ratio of the period of the periodic orbit and the period of the comet is 1.96251392508. (a) 3D plot of the

periodic orbit relative to the body-fixed frame of 101955 Bennu; (b) 3D plot of the periodic orbit relative to the body-fixed frame of

101955 Bennu (without the asteroid); (c) distribution of six characteristic multipliers of the periodic orbit.

4.5 Near-surface inclined periodic orbits

The length unit and time unit for motion around

the comet 1P/Halley are the same as that in Section

4.1. Figure 16 shows two different near-surface inclined

periodic orbits, and these periodic orbits are non-

resonant. From Fig. 16(b), one can see that these two

periodic orbits are really inclined relative to the xy plane

(i.e., the equatorial plane of the comet). From Fig.

16, one can also see that these two periodic orbits are

near the surface of the body and stable. The initial

positions and velocities of these two periodic orbits in

the gravitational potential of 1P/Halley are presented in

Table 9. The vectors are expressed in the comet’s body-

fixed frame. It is a remarkable fact that the ratio of

the period of these two periodic orbits and the rotation

period is smaller than 0.2.

4.6 Discussion of different kinds of stable

periodic orbits

From the above sections, we know that there exist

several different kinds of stable periodic orbits around

an irregular-shaped celestial body.

(1) Generated from the stable equilibrium

points. If the asteroid has stable equilibrium points

outside the body, then there exist three families of stable

periodic orbits around each of the stable equilibrium

points [6, 24]. During the continuation, the periodic

orbit families will change from stable to unstable (see

Fig. 17 for instance).

(2) Continued from the unstable periodic

orbits around the unstable equilibrium points. If

the asteroid has no stable equilibrium points outside

the body, then there exists one family of unstable

periodic orbits around the unstable equilibrium point if

the topological classifications of the equilibrium point

belong to Case 5 [6]; for Case 2 of the unstable

equilibrium point, there exist two family of unstable

periodic orbits around the equilibrium point. These

unstable periodic orbits can be continued until the

periodic orbits become stable.
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(a) (b)

(c)

Fig. 12 A nearly circular periodic orbit around asteroid 6489 Golevka which is retrograde with zero inclination. The period is

2.985804632960706 h, and the ratio of the period of the periodic orbit and the period of the asteroid is 0.495486995181. (a) 3D plot of

the periodic orbit relative to the body-fixed frame of 6489 Golevka; (b) 3D plot of the periodic orbit relative to the body-fixed frame of

6489 Golevka (without the asteroid); (c) distribution of six characteristic multipliers of the periodic orbit.

(a) (b)

Fig. 13 A resonant periodic orbit around asteroid 243 Ida. The ratio of the period of the periodic orbit and the period of the comet

is 9.00525500454. (a) 3D plot of the periodic orbit relative to the body-fixed frame of 243 Ida; (b) distribution of six characteristic

multipliers of the periodic orbit.

(3) Retrograde and nearly circular periodic

orbits with zero inclination. There exist periodic

orbit families which are nearly circular, and retrograde

relative to the body-fixed frame of the asteroid [16, 18].

In addition, the inclinations of the periodic orbits

relative to the asteroid’s body-fixed frame are nearly

equal to zero.

(4) Resonance. There exist several resonant periodic



82 Y. Jiang, J. Schmidt, H. Li, et al.

(a) (b)

Fig. 14 A resonant periodic orbit around asteroid 6489 Golevka. The ratio of the period of the periodic orbit and the period of

the comet is 2.00558121907. (a) 3D plot of the periodic orbit relative to the body-fixed frame of 6489 Golevka; (b) distribution of six

characteristic multipliers of the periodic orbit.

(a) (b)

Fig. 15 A resonant periodic orbit around asteroid 6489 Golevka. The ratio of the period of the periodic orbit and the period of

the comet is 2.01369508451. (a) 3D plot of the periodic orbit relative to the body-fixed frame of 6489 Golevka; (b) distribution of six

characteristic multipliers of the periodic orbit.

orbit families which are stable [16].

(5) Near-surface inclined periodic orbits. There

exist several near-surface inclined periodic orbits around

the asteroid, for which the distance between the periodic

orbit and the mass center of the asteroid is smaller than

the distance between the outside equilibrium point and

the mass center of the asteroid.

Among these five different kinds of stable periodic

orbits, (1) has been found in Jiang et al. [6], and (3)

and (4) can be found in Jiang et al. [16]. (2) and (5)

are found for the first time in this paper. However,

the previous studies did not study and classify different

kinds of stable periodic orbits around minor celestial

bodies. During the continuation of retrograde nearly

circular, and stable periodic orbits with zero inclination

around minor bodies, our results imply that the periodic

orbits with the above characteristics can be found in

the potential of different gravitational field structure of

minor celestial bodies. In addition, there may be at least

two periodic orbit families around one minor celestial

body. Both of them are retrograde and nearly circular,

and stable with zero inclination.

For the two near-surface inclined periodic orbits, it is

notable that the ratio of the period of these two periodic

orbits relative the rotation period is smaller than 0.2,

which may be useful for us to search more kinds of

near-surface inclined periodic orbits around other minor

celestial bodies.

5 Conclusions

We analyze the stable periodic motions of spacecraft in
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Table 8 Initial positions and the initial velocities of periodic orbits in the body-fixed frame of 243 Ida and 6489 Golevka (periodic

orbits 1, 2, and 3 are the initial values plotted in Figs. 13, 14, and 15, respectively. Periodic orbit 1 is around 243 Ida, periodic orbits 2

and 3 are around 6489 Golevka)

Periodic orbit Position Velocity Period Resonant ratio

1
0.897672329355

−1.29090224639

−0.0477816158615

−8.73659445212

−6.14694020168

1.55083729969

9.00525500454 9:1

2
0.616839318105

−0.719651400484

0.535816234907

−3.66314369527

−6.19748150670

−3.96827654611

2.00558121907 2:1

3
0.470335130163

0.555139854298

0.164844445024

6.89848549170

−6.28441207004

4.07158633235

2.01369508451 2:1

(a) (b)

(c) (d)

Fig. 16 Two near-surface inclined periodic orbits around comet 1P/Halley. (a) 3D plot of the periodic orbits relative to the body-

fixed frame of 1P/Halley; (b) periodic orbit relative to the body-fixed frame of 1P/Halley, viewed from +y axis; (c) distribution of six

characteristic multipliers of the periodic orbit 1; (d) distribution of six characteristic multipliers of the periodic orbit 2.

the gravitational field of minor celestial bodies. The grid

search method is used to calculate the periodic orbits.

We use the shapes, positions, inclinations, retrograde or

not, topological classifications, continuation properties,

section planes, as well as the resonance ratios to analyze

the different kinds of stable periodic motions around

asteroids and comets. Five kinds of stable periodic orbits

are classified: (1) stable periodic orbits generated from

the stable equilibrium points outside the minor celestial

body; (2) stable periodic orbits continued from the

unstable periodic orbits around the unstable equilibrium

points; (3) periodic orbits which are retrograde and
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Table 9 Initial positions and the initial velocities of periodic

orbits in the body-fixed frame of 1P/Halley

Periodic

orbit
Position Velocity Period

1

0.0629890965760

−0.587664950749

0.00132142402742

−19.6763270413

−1.40740002652

−4.43845099506

0.180282795026

2

−0.229339377692

0.517590660887

0.128585669518

16.6681557777

7.95258808390

−7.27379326767

0.174110986925

Fig. 17 Examples of the stability variety of periodic orbit

families generated from the stable equilibrium points.

nearly circular with zero inclination; (4) resonant

periodic orbits; (5) near-surface inclined stable periodic

orbits.

Minor celestial bodies with different structure of

gravitational fields are taken to calculate these stable

periodic orbits, including asteroid 243 Ida, 433 Eros,

6489 Golevka, 101955 Bennu, and the comet 1P/Halley.

The results of the stable periodic orbits around minor

celestial bodies are useful for the mission design of

the deep space exploration and the study of the

configurations and stabilities of small satellites in the

large-size-ratio binary asteroids.
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