Iran Journal of Computer Science
https://doi.org/10.1007/s42044-024-00192-x

RESEARCH ")

Check for
updates

A logistic software reliability model with Loglog fault detection rate
Md. Asraful Haque' - Nesar Ahmad'

Received: 21 January 2024 / Accepted: 14 May 2024
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract

Research on software reliability modeling is essential for improving software quality, reducing costs, and ensuring customer
satisfaction in the ever-expanding digital landscape. To achieve the desired level of reliability in the testing phase, software
reliability growth models (SRGMs) are used. The goal of this study is to develop a novel SRGM based on a hypothesis
obtained from a logistic model. The logistic model is commonly used to describe the rate of change in the size of a population
over time. According to this model, a population’s per capita growth rate declines as it approaches the carrying capacity,
which is the population’s upper bound. Similarly, in the software testing process, the fault detection rate per fault in the
software grows faster in the beginning and later decreases with testing time until the maximum fault content is discovered.
Considering the fault detection rate based on a log—log distribution, the proposed model is constructed in an NHPP analytical
framework. The model is compared to six existing reliability models using four different evaluation criteria. The findings are
quite encouraging.

Keywords Software reliability - Software testing - SRGM - NHPP model - Fault detection rate

Abbreviations:

SRGM Software reliability growth model
NHPP Non-homogeneous Poisson process

MSE Mean square error
PRR Predictive ratio risk
R? Correlation coefficient or coefficient of determina-

tion
AIC Akaike information criterion
m(t) Cumulative number of faults detected by time ¢

N Total no. of faults that exist in the s/w before testing
b(t) Time dependent fault detection rate function
GoF Goodness of fit

LSE Least square estimation

DI Md. Asraful Haque
md_asraf @zhcet.ac.in

Nesar Ahmad
nesar.ahmad @gmail.com

Department of Computer Engineering, Aligarh Muslim
University, Aligarh 202002, India

Published online: 25 May 2024

1 Introduction

Due to the fast advancement of digital systems and the
widespread usage of software to operate them, it is essen-
tial to accurately and thoroughly assess software reliability
to examine system reliability [1]. The software industry faces
a big challenge in producing highly reliable software while
complying with a strict timeline and budget [2]. As testing
progresses, the faults are found and fixed, and it is assumed
that the software system’s reliability improves [3]. Test-
ing and debugging the system until it reaches the required
degree of reliability is the fundamental goal of software reli-
ability modeling [4]. The mathematical models that depict
this behavior of the testing process to predict software reli-
ability are known as SRGMs. These models have broad
implications for software development, maintenance, and
management, enabling organizations to enhance software
quality, reliability, and performance while minimizing risks
and maximizing resource efficiency [5, 6]. When a model is
used to abstract reality, a few assumptions are necessary [6,
7]. The model’s form and the meaning of the model’s param-
eters are determined by these assumptions. Important phases
in the construction of these mathematical models include the
identification of realistic assumptions and the modeling of
those assumptions within the right framework. The NHPP

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42044-024-00192-x&domain=pdf

Iran Journal of Computer Science

models are capable of providing an analytical framework for
the software fault removal phenomenon [8]. In NHPP, the
mean value function m(¢), which is a cumulative number of
faults identified over time t, is the function that represents the
pattern [9]. A lot of research on software reliability has been
carried out through SRGM [5-12]. Researchers focused on
developing new SRGMs by considering different aspects of
testing processes, i.e., testing coverage, testing effort, testing
skill, fault types, etc. Their aim is to fulfill the growing need
for an accurate model that can guarantee a minimum pre-
diction error. A good software reliability model should be
simple, widely applicable across different software failure
datasets, and based on realistic assumptions. Some notable
models in the domain of software reliability engineering
are the Jelinski-Moranda (JM) model [13], Musa—Okumoto
(MO) model [14], Goel-Okumoto model [15], Delayed S-
shaped model [16], Inflection S-shaped model [17], etc. The
JM model [13] which is considered as the first SRGM, is
based on the assumption of a constant fault detection rate,
making it relatively simple but not always suitable for mod-
ern complex software development practices. The MO model
[14] is an extension of the JM model. It introduces a time-
dependent hazard function, which allows the fault detection
rate to decrease as testing progresses. The Goel-Okumoto
model [15] is based on the assumption that the software
failure rate decreases exponentially over time as defects are
discovered and fixed. The Delayed S-shaped model [16] is
a variation of the S-shaped logistic growth model. It is used
to represent software reliability growth with an initial “de-
lay” or slower improvement in reliability, followed by a more
rapid increase as testing continues. The Inflection S-shaped
model [17] represents software reliability growth with an
initial slow rate of improvement, followed by an inflection
point where the rate of improvement increases significantly.
As software systems continue to evolve, ongoing research
efforts are needed to refine and extend the SRGMs to address
emerging challenges. Recent developments in software reli-
ability growth modeling have demonstrated the importance
of adapting models to contemporary software development
practices. These models are now looking into the various
unexplored facets of the software testing process and adding
them to the model. Some of them employ machine learning
algorithms [18-20], some examine uncertainty factors of the
testing or operational environment [21-24], and some mix
the various techniques to create hybrid models [25, 26].

In this paper, we present a model that utilizes the logis-
tic growth function and incorporates log—log distribution for
predicting software reliability. PF Verhulst introduced the
logistic function in the middle of the nineteenth century [27].
By modifying the exponential growth model, he developed it
as a population growth model, which is known as the logis-
tic growth model. In this context, the word “logistic” has no
special meaning or significance other than the fact that it is

@ Springer

widely accepted. Apart from biology, the logistic model is
now widely used in chemistry, geoscience, political science,
and statistics. According to the model, each member of a
population will have equal access to resources and a similar
probability of surviving. The population’s per capita growth
will decrease with time due to resource limitations. First,
Yamada and Osaki [28], employed this model to estimate
software reliability growth. Later, many researchers have
used this model in evaluating software reliability under the
assumption that each fault has an equal chance of discovery
and that the fault detection rate per fault will decrease as test-
ing progresses [29-31]. It allows for a realistic representation
of software reliability improvement over time, accommodat-
ing various project-specific factors. Some researchers have
shown promising results when they consider the fault detec-
tion rate function based on log—log distribution [32-34]. The
purpose of this paper is to suggest a new SRGM by tak-
ing advantage of both the logistic model and the log—log
fault detection rate function. A log—log distribution is a type
of probability distribution where the probability of an event
or value is proportional to the logarithm of its value. This
means that as the value of the event or variable increases,
the probability decreases exponentially. In contrast to the
typical bathtub-shaped curve produced by the Weibull distri-
bution, the log—log distribution offers a Vtub-shaped curve.
In statistical modeling, the Weibull distribution is widely
used. However, Vtub-shaped curves cover a wider range of
monotone failure rates in addition to the characteristics of
bathtub-shaped curves with increasing or decreasing failure
rates. Other advantages of log—log distribution in software
reliability modeling include:

1. Ability to detect early failure trends: The log—log dis-
tribution is very sensitive to changes in the failure rate,
especially at the beginning of the testing process. This
makes it easier to detect early failure trends and take cor-
rective action before the software is released.

2. Non-linear behavior: The log—log distribution captures
the non-linear behavior of failure rates in software test-
ing, which is a more accurate representation of real-world
failure patterns. This can help software developers bet-
ter understand how their software behaves under different
conditions and make more informed decisions about how
to improve its reliability.

3. Model fitting: The log—log distribution is easy to fit to the
datausing regression techniques. This makes it a practical
choice for software reliability growth modeling, where
large amounts of data need to be analyzed.

The rest of the paper is structured as follows. Section 2,
explains the derivation of a new SRGM. Section 3 describes
the steps involved to analyze the model. Section 4 compares
the model performance with some well-known models. And

Iran Journal of Computer Science

Sect. 5 concludes the paper outlining the findings, strengths
and limitations of the study.

2 Proposed SRGM

A mathematical model based on the Verhulst logistic equa-
tion was designed to predict population growth. The model
is represented as:

dp p
E—rxp(l—z) 1)
where, ‘p’ and ‘r’ represent the current population and the
growth rate respectively. ‘k’ is the carrying capacity, i.e.,
maximum number of population that can survive in a spe-
cific environment with the available resources. In software
testing process, it is observed that the fault detection rate at
the beginning is very high, and this rate gradually drops as
the testing continues. Anticipating this behavior of the testing
process, the above model can be replicated as [29, 30]:

dm(z)
dt

m(t)

_ b(t)m(t)(l _ —> ®)

N

m(t) is the total number of faults detected by time ¢, b(¢) is
the time-dependent fault detection rate function, and ‘a’ is
total no. of faults that exist in the software before testing. By
solving Eq. (2), we can find the value of m(?).

N

) =———
m(1) |+ ece Ty b

3

Here, ‘c’ is an integral constant. We assume that the func-
tion b(r) follows Vtub-shaped based on log—log distribution
that has been considered in a few models suggested by Pham
[12—14]. It is expressed as:

b(1) = BIn(a)P 1o)

where ‘o’ is the scale parameter and ‘8’ is the shape param-
eter of the Loglog distribution. Replacing the value of b(¢) in
(3) and considering a constant y = ¢ + 1, we can derive the
following:

N

y—atf)

m(t) =
1+e<

&)

This is our new model which uses NHPP framework. The
mean value function also known as m(t), is the characteris-
tic that NHPP models use to describe data. The suggested
model, some well-known models, and their related functions
are listed in Table 1.

Table 1 A list of SRGMs

Model Mean value function m(t)

G-O model [15]
DSS model [16]
1SS model [17]

a(l — e

a(l — (1 + bt)e?")

a(l—e’b‘)
1+Be~bt

P-N-Z model [35] a(l—e ") (1—4)+aat

1+Be P
(B ")
N(l (5+(at)b)

Loglog model [33] N(l—e

New model N

Testing coverage model [23]

3 Model analysis and comparison

The suitability of the SRGMs is assessed in two steps: first,
the model’s parameters are calculated, and second, the model
fittings are verified using various comparison criteria. In this
section, we validate the proposed model and compare the
findings to various known models given in Table 1.

3.1 Evaluation criteria

SRGMs are not precise representations of reality; assump-
tions and many environmental factors affect the validity and
accuracy of their predictions. Therefore, it is essential to eval-
uate a model’s appropriateness, which entails figuring out its
advantages and disadvantages as well as the degree to which
the results offered may be trusted. The potential of an SRGM
to recreate the observed software behavior and predict future
behavior with the help of observed failure data can be used to
evaluate it. There are a variety of comparison standards called
"goodness-of-fit" or GoF criteria that are used to assess how
well a model fits a given collection of data. In this study, we
use four criteria (i.e., the mean square error (MSE), PRR, R?
and AIC) that are defined as follows [36-38]:

e MSE: It measures the difference between observed data
and their expected values.

S i — m())?
k—p

MSE =

Here, ‘k’ denotes the database size, and ‘p’ is the number
of parameters of a model.

e PRR: It measures the deviation per estimate of a model.

@ Springer

Iran Journal of Computer Science

(m(t;) —m;)
35

e R?:Itrepresents how close the data are to the fitted regres-
sion line.

R il —m())?
N2
Zf:l (mi - 21;:1 Tj)

e AIC: It is a single number score that is used to decide
which of many models is most likely to be the best one for
the dataset.

AIC = k x In(MSE) + 2p

The better an SRGM is, the lower its MSE, PRR, and AIC
values, and the higher its R? value [31, 36].

3.2 Dataset used

Reference [39] reports three sets of failure data for three
different releases of sizable medical record software (MRS).
We utilized the first two releases’ data for our analysis (i.e.,
MRS-1 and MRS-2). The software has188 modules in total.
It had 173 modules when it was first released, and 15 more
modules were added later in the updated versions. In MRS-1,
there were a total of 176 errors collected during the 18 weeks
of testing. MRS-2 contains 204 errors that were found during
the testing period of 17 weeks. Table 2 displays both the
MRS-1 and MRS-2 datasets.

3.3 Parameter estimation

A software reliability model is a function of various param-
eters. The first step in employing an SRGM is to determine
its parameters on a sample dataset. The process of parameter
estimation can be done in a variety of ways. In the case of
small datasets, the Least Square Estimation (LSE) approach
is considered a quite efficient method for parameter estima-
tion [37]. We have used the “CurveExpert Professional” tool
to smoothly carry out the experimental work. It generates
LSE results by fitting failure data to a non-linear model equa-
tion on a given dataset. Table 3 shows the parameter values
of all seven models on both datasets.

4 Results and comparison
Now with the help of the parameter values we can easily

calculate the GoF criteria (i.e., MSE, PRR, AIC, and R?)
from their formula. In statistical models, there is no right or

@ Springer

Table 2 Failure data of MRS

Test week Cumulative faults

Release-1 Release-2
1 28 90
2 29 107
3 29 126
4 29 145
5 29 171
6 37 188
7 63 189
8 92 190
9 116 190
10 125 190
11 139 192
12 152 192
13 164 192
14 164 192
15 165 203
16 168 203
17 170 204
18 176 -

wrong. It’s all about how good or bad they are. The suggested
model produced the best fitting results on both datasets. The
model’s accuracy has been compared to other SRGMs in
Tables 4 and 5. We can summarize the results of the new
model as follows:

e MSE: The new model offers the smallest MSE in both
datasets, i.e., 52.91 (MRS-1) and 26.855 (MRS-2). The
second smallest MSEs achieved in the study were 116.3
for the ISS model and 53.531 for the Loglog Model in
these datasets. The MSE values of the new model are near
about half of the second best models.

e PRR: The PRR values are 0.477 and 0.009. Both are the
smallest among all models and the second smallest values
are more than four times in the respective datasets.

e R2: R-squared is the “percent of variance explained” by
the model. A higher R-squared value indicates a higher
amount of variability being explained by our model and
vice-versa. The R? values of the new model are 0.987 and
0.982. Both are the largest among all model’ values in the
respective datasets.

e AIC: The AIC values are 71.153 and 54.377. Both are the
lowest among all models’ values. They indicate that the
proposed model is relatively simple with four parameters.

Iran Journal of Computer Science

Table 3 Parameter estimation using LSE

Model MRS-1 MRS-2

G-0 model a=985.855,b=0.012 a=197.386, b = 0.399

DSS model a=226.062,b=0.174 a=192.528, b =0.832

1SS model a=176.493, b = 0.423, B = 26.958 a=197.386, b = 0.399, 8 = 0.00001

P-N-Z model a=171.371,b=0.429, « = 0.002, B = 27.217 a=183.125, b = 0.463, « = 0.007, 8 = 0.0001

Testing coverage N=17438,a=0.027,b =2.471, 0 = 104.137, 8 =3.329 N =204.232,a =0.009, b = 0.775, 0 = 95.734, B =
model 5.298

Loglog model N =170.524,a =1.011, b = 1.866 N =199.153,a = 1.505, b = 0.572

New model N =167912, 0 = 1.142, B = 1.044, y = 3.216 N =194.779, « = 1.206, 8 = 1.143, y = 1.343

Table 4 Performance analysis of

the models on MRS-1 Model MSE PRR R2 AIC
G-0 model 299.895 2.616 0.924 104.542
DSS model 202.853 2.363 0.949 97.505
ISS model 116.3 1.822 0.972 88.329
P-N-Z model 125.504 1.838 0.972 90.458
Testing coverage model 172.573 2.381 0.965 96.857
Loglog model 134.727 2.002 0.969 90.977
New model 5291 0.477 0.987 71.153

Table 5 Performance analysis of

the models on MRS-2 Model MSE PRR R AIC
G-0 model 80.678 0.101 0.939 74.510
DSS model 232.628 0.333 0.823 92.513
ISS model 86.44 0.101 0.939 76.510
P-N-Z model 84.905 0.087 0.944 76.945
Testing coverage model 72.389 0.048 0.956 74.874
Loglog model 53.531 0.039 0.962 68.364
New model 26.855 0.009 0.982 54.377

The graphs in Figs. 1 and 2 show the model’s predictive
capability on each dataset, comparing the estimated faults to
the observed faults.

5 Conclusion

While many software reliability growth models have been
proposed in the literature, there is often a lack of real-world
validation to assess their effectiveness and applicability in
practical settings. Investigating various approaches is nec-
essary to comprehend software behavior and perform an
efficient analysis of failure data. The paper proposes a soft-
ware reliability model based on a logistic growth model,
whereas the fault detection rate follows a log—log distribu-
tion. The main advantage of using log—log distributions in
software reliability growth modeling is their suitability for

capturing long-tailed data. In many software systems, the
fault detection rate at the beginning is very high, and this
rate gradually drops as the testing continues. Based on this
behavior, we applied the logistic growth model to describe
this behavior of the fault detection rate. The mathematical
model for estimating the total number of faults over time is
developed. The performance of the suggested model is then
examined using numerical data from four standard GOF mea-
surements and compared to a number of existing models. The
outcomes clearly demonstrate that the recommended model
performs better than the other models in all four assessments.
The key strengths of the suggested model are its high pre-
dictive capability and flexibility. However, the model could
be negatively impacted by a few limitations such as dataset
dependency, complexity, and its inability to address uncer-
tainty issues. In future, we will carry out more case studies

@ Springer

Iran Journal of Computer Science

Fig. 1 Predictive capability of the 200

model for MRS-1
180

80

Number of Faults
=
o

60

40

20

B Observed Faults

B 7 8 g 10 1 12 13 14 15 16 LT 18
Time

M Expected Faults

Fig. 2 Predictive capability of the 240

model for MRS-2
220

180
160
140

120

Number of Faults

80

60

40

20

B Observed Faults

to establish the supremacy of the model using different sets
of failure data and evaluation criteria.

Author contributions Contribution of M. A. Haque: 1. Study concep-
tion and design 2. Material preparation 3. Data collection and analysis
Contributions of N.A. : 1. Supervision 2. Writing- Reviewing and Edit-
ing 3. Validation

Funding The authors declare that no funds, grants, or other supports
were received during the preparation of this manuscript.

Data availability No datasets were generated or analysed during the
current study.

@ Springer

Time

H Expected Faults

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Garg, R., Sharma, K., Kumar, R., Garg, R.: Performance analysis
of software reliability models using matrix method. Int. J. Comput.
Inf. Eng. 4(11), 1646-1653 (2010)

2. Haque, M.A., Ahmad, N.: Key issues in software reliability
growth models. Recent Adv. Comput. Sci. Commun. 15(5),
e060422186806 (2022)

Iran Journal of Computer Science

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

Lyu, M.R. (ed.): Handbook of Software Reliability Engineering.
IEEE Computer Society Press, Washington, DC (1996)

Xie, M.: Software Reliability Modeling. World Scientific Publish-
ing, Singapore (1991)

Kapur, PK., Garg, R.B.: A software reliability growth model for
an error-removal phenomenon. Softw. Eng. J. 7, 291-294 (1992)
Haque M.A., Ahmad, N.: Modified Goel-Okumoto software reli-
ability model considering uncertainty parameter. In: MMCITRE-
2021, Advances in Intelligent Systems and Computing, vol 1405
(2022)

Du X., Qiang Z.: Software reliability growth models based on non-
homogeneous poisson process. In: 2009 International Conference
on Information Engineering and Computer Science, pp. 1-3 (2009)
Haque M.A., Ahmad, N.: An NHPP-based SRGM with time depen-
dent growth process. In: 6th International Conference on Signal
Processing, Computing and Control, Solan, India (2021)

Haque, M.A., Ahmad, N.: An imperfect SRGM based on NHPP. In:
3rd IEEE-International conference on inventive research in com-
puting applications (ICIRCA), pp. 1574—1577. Coimbatore (2021)
Asraful Haque, M.: Software reliability models: a brief review and
some concerns. In: CSDEIS 2022. Lecture Notes on Data Engi-
neering and Communications Technologies, vol 158 (2023)
Igbal, J.: Software reliability growth models: a comparison of lin-
ear and exponential fault content functions for study of imperfect
debugging situations. Cogent Eng. 4(1), 1286739 (2017)

Saraf, L., Igbal, J., Shrivastava, A.K., Khurshid, S.: Modelling reli-
ability growth for multi-version opensource software considering
varied testing and debugging factors. Qual. Reliab. Eng. Int. 38(4),
1814-1825 (2022)

Jelinski, Z., Moranda, P.B.: Software reliability research. In:
Freiberger, W. (ed.) Statistical Computer Performance Evaluation,
pp. 465-484. Academic Press, New York (1972)

Musa, J.D., Okumoto, K.: A logarithmic Poisson execution time
model for software reliability measurement. In: Proceedings of the
7th Int. Conference on Software Engineering, pp. 230-238. IEEE
Press, Piscataway, NJ, USA (1984)

Goel, A.L., Okumoto, K.: Time-dependent error-detection rate
model for software reliability and other performance measures.
IEEE Trans. Reliab. R-28(3), 206-211 (1979)

Yamada, S., Ohba, M., Osaki, S.: S-shaped software reliability
growth models and their applications. IEEE Trans. Reliab. R-33(4),
289-292 (1984)

Ohba, M.: Inflection S-shaped software reliability growth model.
In: Osaki, S., Hatoyama, Y. (eds.) Stochastic Models in Reliability
Theory. Lecture Notes in Economics and Mathematical Systems,
vol. 235. Springer, Berlin (1984)

Batool, I., Khan, TA..: Software fault prediction using deep learning
techniques. PREPRINT (Versionl). Research Square https://doi.
org/10.21203/rs.3.1rs-2089478/v1 (2022)

Jaiswal, A., Malhotra, R.: Software reliability prediction using
machine learning techniques. Int. J. Syst. Assur. Eng. Manag. 9,
230-244 (2018)

Devi, B.V., Devi, R.K.: Software reliability models based on
machine learning techniques: a review. AIP Conf. Proc. 2463(1),
020038 (2022)

Haque, M.A., Ahmad, N.: Software reliability modeling under an
uncertain testing environment. Int. J. Model. Simul. (2023). https://
doi.org/10.1080/02286203.2023.2201905

Lee, D., Chang, I., Pham, H.: Study of a new software reliability
growth model under uncertain operating environments and depen-
dent failures. Mathematics 11(18), 3810 (2023). https://doi.org/10.
3390/math11183810

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Chang, I.H., Pham, H., Lee, S.W., Song, K.Y.: A testing-coverage
software reliability model with the uncertainty of operation envi-
ronments. Int. J. Syst. Sci. Oper. Logist. 1(4), 220-227 (2014)
Pham, H.: A new software reliability model with Vtub-shaped
fault-detection rate and the uncertainty of operating environments.
Optimization 63(10), 1481-1490 (2014)

Lee, D.H., Chang, I.H., Pham, H.: Software reliability model with
dependent failures and SPRT. Mathematics 8, 1366 (2020)
Pradhan, V., Dhar, J., Kumar, A., Bhargava, A.: An S-Shaped Fault
Detection and Correction SRGM Subject to Gamma-Distributed
Random Field Environment and Release Time Optimization,
pp. 285-300. Springer, Berlin (2020)

Bacaér, N.: Verhulst and the logistic equation (1838). In: A
Short History of Mathematical Population Dynamics, pp. 35-43.
Springer, London (2011). https://doi.org/10.1007/978-0-85729-
115-8

Yamada, S., Osaki, S.: Software reliability growth modeling:
models and applications. IEEE Trans. Softw. Eng. SE-11(12),
1431-1437 (1985)

Pham, H.: A logistic fault-dependent detection software reliability
model. J. Univ. Comput. Sci. 24(12), 1717-1730 (2018)

Haque, M.A., Ahmad, N.: An effective software reliability growth
model. Saf. Reliab. 40, 209-220 (2021). https://doi.org/10.1080/
09617353.2021.1921547

Haque, M.A., Ahmad, N.: A logistic growth model for software
reliability estimation considering uncertain factors. Int. J. Reliab.
Qual. Saf. Eng. 28(05), 2150032 (2021)

Pham, H.: A Vtub-shaped hazard rate function with applications to
system safety. Int. J. f Reliab. Appl. 3(1), 1-16 (2002)

Pham, H.: Loglog fault-detection rate and testing coverage soft-
ware reliability models subject to random environments. Vietnam
J. Comput. Sci. 1(1), 39-45 (2014)

Al-turk, L.I.: Characteristics and application of the NHPP log-
logistic reliability model. Int. J. Stat. Prob. 8(1), 44 (2019)

Pham, H., Nordmann, L., Zhang, X.: A general imperfect software
debugging model with S-shaped fault detection rate. IEEE Trans.
Reliab. 48, 169-175 (1999)

Sharma, K., Garg, R., Nagpal, C.K., Garg, R.K.: Selection of opti-
mal software reliability growth models using a distance based
approach. IEEE Trans. Reliab. 59(2), 266-276 (2010)

Haque, M.A., Ahmad, N.: A software reliability growth model
considering mutual fault dependency. Reliab. Theory Appl. 16(2),
222-229 (2021)

Haque, M.A., Ahmad, N.: A software reliability model using fault
removal efficiency. J. Reliab. Stat. Stud. 15(2), 459-472 (2022)
Stringfellow, C., Andrews, A.A.: An empirical method for select-
ing software reliability growth models. Empir. Softw. Eng. 7(4),
319-343 (2002)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

https://doi.org/10.21203/rs.3.rs-2089478/v1
https://doi.org/10.1080/02286203.2023.2201905
https://doi.org/10.3390/math11183810
https://doi.org/10.1007/978-0-85729-115-8_
https://doi.org/10.1080/09617353.2021.1921547

	A logistic software reliability model with Loglog fault detection rate
	Abstract
	Abbreviations:
	1 Introduction
	2 Proposed SRGM
	3 Model analysis and comparison
	3.1 Evaluation criteria
	3.2 Dataset used
	3.3 Parameter estimation

	4 Results and comparison
	5 Conclusion
	References

