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Abstract
Domain adaptation in machine learning and image processing aims to benefit from gained knowledge of the multiple labeled
training sets (i.e. source domain) to classify the unseen test set (i.e. target domain). Therefore, the major issue emerges from
dataset bias where the source and target domains have different distributions. In this paper, we introduce a novel unsupervised
domain adaptation method for cross-domain visual classification. We suggest a unified framework that reduces both statistical
and geometrical shifts across domains, referred to as unsupervised domain adaptation via transferred local Fisher discriminant
analysis (TLFDA). Specifically, TLFDA projects data into a shared subspace to minimize the distribution shift between
domains and simultaneously preserves the discrimination across different classes. TLFDA maximizes the between-class
separability and preserves the within-class local structure in form of an objective function metric. The objective function is
solved effectively in closed form. Broad experiments demonstrate that TLFDA significantly outperformsmany state-of-the-art
domain adaptation methods on different cross-domain visual classification tasks.

Keywords Transfer learning · Unsupervised domain adaptation · Dimensionality reduction · Fisher discriminant analysis ·
Locality preserving projection · Bregman divergence

1 Introduction

Recently, in the machine learning and pattern recognition
fields, enormous amounts of data, e.g., images, videos, and
texts are emerging where the traditional supervised machine
learning methods need to label data for each gallery or cor-
pus [1, 2]. In fact, in most existing applications, there are
not sufficient labeled data to classify the new domains while
the manual labeling of the unlabeled instances is immensely
intricate and expensive. Thus, the vital significance of using
other existing related labeled domains to classify the new
visual domains has drawn more consideration during the last
few years. However, the classification results are often poor
when the trained classifiers on the available labeled samples
directly are used to classify the new unlabeled instances with
various distributions. For example, imagine that we are to
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develop an iPhone app to identify the car-captured images
via a phone’s camera while there are no labeled images. In
this case, the trained model would not work appropriately
since the training and test images have various expressions,
postures, and lighting conditions which means different dis-
tributions [3].

The challenge of exploiting other related domains with
different distributions or feature spaces to classify new tasks
presents the domain shift problem. To address the problem,
a variety of solutions have been developed named transfer
learning (TL) and domain adaptation (DA) which are the
improvement of the learning paradigms in a new task through
the transferring of knowledge from related tasks that have
been already learned.

Generally, DA and TL techniques are categorized into two
different settings. The first setting is called semi-supervised
domain adaptation in which a few parts of the target domain
are labeled and the rest is unlabeled. In the second setting,
called unsupervised domain adaptation, there is no labeled
sample in the target domain [4]. However, in both settings,
the source and target data often have different marginal and
conditional distributions. Some basic DAmethods, only con-
sider the marginal distribution disparity between domains
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and often ignore the conditional distribution discrepancy.
Unlike previousmethods, our proposed approach exploits the
geometry of the data manifold to minimize both the marginal
and the conditional distribution differences.

Learning invariant features while the distribution of the
source and target domains are different is decisive. However,
most of the traditional dimensionality reduction approaches
like Fisher linear discriminant analysis (FDA) [5] and
locality preserving projections (LPP) [6], perform poorly
to encounter domain shift problems either in original or
low-dimensional spaces. Thus, we are to develop a new
dimensionality reduction algorithm to address the domain
shift issue.

on the other hand, Bregman divergence (BD) [7] is a
nonlinear measure to minimize the distance between distri-
butions using the kernel density estimation (KDE) technique
[8]. Specifically, we extend the nonlinear Bregman diver-
gence tomeasure the discrepancyofmarginal and conditional
distributions and integrate it with local Fisher discriminant
analysis (LFDA) [9] to create a new feature representation
that is efficacious and robust against considerable distribu-
tion divergence. LFDA effectively combines the ideas of
FDA and LPP to maximize the between-class separability
and preserve the within-class local structure, simultaneously.
Furthermore, theBregman divergence can transfer the gained
knowledge from training to test sets by minimizing the mis-
match across the marginal and conditional distributions of
them.

In this work, to tackle with unsupervised DA problem, we
propose a novel domain adaptation approach called unsuper-
vised domain adaptation via transferred local Fisher discrimi-
nant analysis (TLFDA), which projects the source and target
data into a common subspace such that both the marginal
and conditional distribution discrepancies of domains are
minimized. Moreover, TLFDA exploits the Bregman diver-
gence to measure the distribution difference, which enables
transferring the knowledge from training samples to test
ones. Furthermore, TLFDA maximizes the between-class
separability of source and target domains and preserves the
within-class local structure in a low-dimensional subspace.
TLFDA considers both the discriminative information of
marginal instances in various classes and the local geometry
of instances in each class.

Contributions: The contributions of our TLFDA are listed
as follows.

1. TLFDA mitigates the joint marginal and conditional
distribution discrepancies across the source and target
domains via Bregman divergence.

2. TLFDA introduces a novel dimensionality reduction
method for the domain shift problem where its idea orig-
inates from joint FDA and LPP.

3. TLFDA predicts the pseudo-labels of the target data
based on a conscious estimate via a trained model on
source data.

4. TLFDA benefits from an iterative approach to refining
the pseudo-labels of target samples.

Organization of the paper: The next section provides a
review of related work. We then represent our proposed
method in Sect. 3. In Sects. 4 and 5, we provide the experi-
mental results and discussion. Finally, the paper is concluded
in Sect. 6, and future works are included.

2 Related work

The existing DA methods to tackle the problem of domain
shift are organized into three adaptation categories [10, 11]:
(1) instance-based methods, (2) model-based methods, and
(3) feature-based methods.

The instance-based approaches [12, 13] are to assign
less importance to the irrelevant source instances to reduce
the distribution discrepancy across the source and target
domains. Landmark selection [14] is one of the instance-
based methods, which benefits from max mean discrepancy
(MMD) [15] to select a subset of source samples that obey the
same distribution as target samples. In the other words, the
major focus of the landmark selection method is to conjoin
the source data with the target one using the discovered land-
marks.LSSA[16] is another instance-basedmethod selecting
a subset of instances as landmarks and projects the source and
target data into a latent subspace in a non-linear procedure
considering the selected landmarks. LSSA uses the subspace
alignment to adapt the unaligned domains by learning a non-
linear mapping function.

The model-based methods [17, 18] center around the
notion of adaptive classifier design to have a robust model
to cope with the distribution mismatch across domains by
transferring themodel parameters from a source-mademodel
to another target model. Domain adaptation machine (DAM)
[19] benefits from a set of auxiliary/source classifiers that are
trained with the labeled samples from many source domains
to learn a robust target classifier. Adaptation regularization-
based transfer learning (ARTL) [20] is a novel method that
reduces structural risk and jointlyminimizes themarginal and
conditional distribution difference between domains. Also,
ARTL maximizes the manifold consistency to tackle unsu-
pervised domain adaptation.

The feature-based methods [21–30] change the feature
representation of the source and target domains to bring
closer the marginal and conditional distributions of domains,
jointly. Joint distribution adaptation (JDA) [21] creates a
novel feature representation using a principled dimension-
ality reduction technique that is robust against distribution
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shift. Low-rank and sparse representation (LRSR) [22] pre-
serves the inherent geometric data structure via low-rank
constraint and/or sparse representation in an embedded sub-
space. LRSR geometrically aligns the source and target data
through both the low-rank and sparse constraints such that
the source and target data are interleaved within a new
shared feature subspace. Visual domain adaptation (VDA)
[23] uses the joint domain adaptation and transfer learning
to deal with the problem of domain shift. VDA discrim-
inates various classes in an embedded representation via
condensed domain-invariant clusters. Close yet discrimina-
tive domain adaptation (CDDA) [31] is a novel framework
that constructs a common feature representation with the
following two properties. First, the difference across the
source and target domains is measured in terms of joint
marginal and conditional probability distributions via maxi-
mum mean discrepancy. Second, CDDA discriminates data
using the inter-class repulsive force. Coupled local–global
adaptation (CLGA) [24] globally adapts the marginal and
conditional distribution disparities. CLGA builds a graph
to minimize the distances across the sample pairs in the
same class manifold through the different domain manifolds
and to maximize the distances across the sample pairs in
the same domain manifold with different class manifolds.
Domain invariant and class discriminative representations
(DICD) [25] jointly matches the marginal and conditional
distributions in a latent subspace.DICDdiscriminates classes
by increasing the intra-class density and also decreasing
the inter-class dispersal. Discriminative and geometry aware
domain adaptation (DGA-DA) [26] defines a repulsive form
term to discriminate the latent feature space. DGA-DA infers
the labels using the geometric structures of explored data
through label smoothness and geometric structure consisten-
cies. Transductive transfer learning for image classification
(TTLC) [27], as a state-of-the-art domain adaptationmethod,
globally adapts the marginal and conditional distributions
in two respective low-dimensional subspaces. TTLC regu-
lates the distances across sample pairs in both domains to
discriminate various classes. At last, TTLC locally aligns
both latent subspaces. Domain adaptation with geometrical
preservation and distribution alignment (GPDA) [28] pre-
serves both the statistical and the geometrical properties of
domains in a unified framework. Firstly, GPDA tries to pre-
serve the statistical properties of data via the nonnegative
matrix factorization model [32]. Then, GPDA preserves the
geometrical structure of data through graph dual regular-
ization in the nonnegative matrix factorization framework.
Also, themarginal and conditional distribution disparities are
aligned in the mentioned framework. Unified cross-domain
classification method via geometric and statistical adapta-
tions (UCGS) [29] minimizes the structural risk on source
data, at first. Also, UCGS uses MMD for statistical adapta-
tion and the Nystrom method for geometrical adaptation in

a unified framework. Feature selection-based visual domain
adaptation (FSVDA) [30] uses the particle swarm optimiza-
tion (PSO) [33] algorithm to select the most relevant feature
subsets across both domains. To evaluate the effectiveness of
each subset, FSVDA uses the manifold embedded distribu-
tion alignment (MEDA)’s function [34] as its fitness function.

Recently, a great effort has been dedicated to deep DA
methods. Deep methods for extracting features via hidden
layers need a high amount of training data. Venkateswara
et al. proposed a domain adaptive hashing network (DAH)
[35] to assign unique hash codes for source and target
domains. Manifold Aligned Label Transfer for Domain
Adaptation (MALT-DA) [36] uses a densely connected archi-
tecture (DenseNet) [37] to learn better deep features on the
source domain. MALT-DA aligns features across domains
through two methods including Adaptive Batch Normaliza-
tion (ABN) [38], and subspace alignment viaLPP. Following,
MALT-DA clusters the features into variant groups. MALT-
DA compares the labels which are made via the cluster-
matching process and the labels which are hypothesized via
the network. Then, the samples withmatching labels are used
as training data for the adaptation method. Deep methods
have more time complexity for the training phase whereas
TLFDA with a convex time complexity can be preferred to
deep methods.

As a result, our current research in TL has focused on the
third category, the feature-based adaptation approach, which
looks for a common feature representation across the source
and target domains. In summary, our main contribution is a
new dimensionality reduction-based method that combines
the ideas of FDA and LPP to minimize the distance between
the marginal and conditional distributions of source and tar-
get data to enable effective transfer learning. TLFDA unlike
most of the previous works decreases the marginal and con-
ditional discrepancies via Bregman divergence. Moreover,
TTLC maps source and target samples into respective sub-
spaces but TLFDA maps samples into a common subspace.
We apply our new method to four real-world applications
in a transfer learning setting to demonstrate its outstanding
performance.

3 Proposedmethod

In this section, we describe a precise description of TLFDA
to deal with the unsupervised domain shift problem. In the
case of domain shift problems, considering the distribution
nonconformity between the source and target domains is vital
for achieving the desired results formethods that are based on
FDA and LPP criteria. To this end, in this work, we represent
a novel dimensionality reduction framework for the domain
shift problem where its idea originates from joint FDA, LPP,
and Bregman divergence. Our contribution in this work is to
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find a common subspace where the marginal and conditional
distribution discrepancies of domains are jointly minimized
and the local structure of data is well preserved.

To this end, we suppose D = < X , P(x) > as a domain
that consists of the instances in feature space X withmarginal
probability distribution P(x). Moreover, we consider T =
< Y , f (x) > as a task for domain D that consists of a label
set Y and a prediction function f (x). Note that f (x) can
be interpreted as a conditional probability distribution, i.e.,
P(Y |x). In this paper, an unsupervised domain shift problem
with DS = {(x1, y1), . . . , (xns , yns)} as the labeled source
domain and DT = {xns+1, . . . , xns+nt } as an unlabeled target
domain is addressed where ns and nt are the number of the
source and target samples, respectively.

3.1 Dimensionality and divergence reduction

The major idea behind our proposed approach is to discover
an optimal couple of projections and classification for the
source and target instances in a way that the distribution
divergence between domains is decreased. A feasible way to
attain this objective is to use dimensionality decrementmeth-
ods (e.g., LPP and FDA). However, contrary to the success
of such methods, they cannot guarantee the model’s effi-
ciency against the problem of domain shift. Thus, as well as
exploiting the dimensionality reduction approaches,we are to
consider domain adaptation settings to build a robust model
against distribution shift. In this section, at first, we formulate
the classical FDA and LPP, and afterward, we introduce the
classical LFDA[9],which is a combination of dimensionality
reduction methods.

The main objective of FDA is to express one dependent
variable as a linear combination of other variables. To this
end, FDA extracts the new features of the domain accord-
ing to the linear combination of available features. In fact,
FDA attempts to maximize the class-separate degree. There-
fore, FDA incorporates the following two criteria. (1) FDA
maximizes the between-class scatter matrix, and (2) mini-
mizes thewithin-class scattermatrix, such that the samples in
the embedded subspace have maximum discrimination. Let
xi ∈ RD(i = 1, 2, . . . , n) be a D-dimensional sample and
yi ∈ 1, 2, . . . , c be the related class label of i th sample,where
n is the number of instances and c is the number of classes. Let
nl be the number of instances in class l, where

∑c
l=1 nl = n.

Mathematically, the between-class scatter matrix is given by
S(b) = ∑c

l=1 nl(μl−μ)(μl−μ)T and thewithin-class scatter
matrix is S(w) = ∑c

l=1
∑

i :yi=l(xi − μl)(xi − μl)
T, where

the inner sigma stands for the summation over i such that
yi = l, μl is the mean of instances in class l, and μ is the
mean of all instances.

Thus, FDA subspace is given by argmaxJ tr(J
TS(b) J )/tr

(JTS(w) J ) subject to JT J = I . Therefore, FDA transforma-

tion matrix J is defined as follows:

JFDA = argmaxJ
[
tr−1

(
JTS(b) J

)
tr

(
JTS(w) J

)]
, (1)

where tr−1(.) is the inverse of matrix trace. The intuition
behind maximizing JFDA is to learn a projection matrix
J ∈ RD×d to transform data from the original feature space
composed of D features into a low dimensional subspace
with d features (i.e., d < D).

LPP as another dimensionality reduction technique
exploits an undirected graph indicating the neighbor rela-
tions of pairwise samples to preserve the local geometry of
data. Also, LPP optimally approximates the eigenfunctions
of the Laplace Beltrami operator over the data manifold, lin-
early. The weight between instances �xi and �y j is calculated
via Ei j = exp(−‖�xi − �y j‖2/t) for the same class samples,
and is considered Ei j = 0 in other cases. The LPP transfor-
mation matrix JLPP is defined as follows:

JLPP = 1

2

n∑

i, j=1

((
JTxi − JTx j

)T (
JTxi − JTx j

))

Ei j

= 2tr
(
JTX (W − E) XT J

)
, (2)

where W is a diagonal matrix with Wii = ∑n
j=1 E ji and

JLPP is a transformation matrix that transforms samples into
a latent subspace.

The performance of FDA degrades dramatically where
the instances in a class are from several distinct clusters.
In fact, it causes via the globality during the within-class
and between-class scatters evaluation. Therefore, whenever
the samples in various classes are close in the original high-
dimensional space RD , LPP with its unsupervised nature can
also overlap them. To dominate these problems, we introduce
a novel idea from a combination of FDA and LPP. Since
the various classes might come from different distributions,
they are treated differently, and thus, there is the dissimilar-
ity among them. Therefore, we maximize the borders across
various classes as much as possible. In fact, we introduce
local Fisher discriminant analysis (LFDA) as a novel linear
dimensionality reduction approach which effectively com-
bines the ideas of FDA and LPP. In fact, having an analytical
form of the embedding transformation, the projection matrix
can be easily computed just by solving a generalized eigen-
value problem. The LFDA transformation matrix JLFDA is
defined as follows:

JLFDA = argmaxJ

[

tr
(
JT S̃(b) J

)−1
JT S̃(w) J

]

, (3)
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where S̃(w) can be defined as

S̃(w) = 1

2

n∑

i=1

1

nyi
P̃(w)
i (4)

and nyi is the number of instances in which the sample xi
belongs and P̃(w)

i is the pointwise local within-class scatter
matrix around xi and is defined as follows:

P̃(w)
i = 1

2

n∑

j :y j=yi

Ei j (x j − xi )(x j − xi )
T. (5)

Accordingly, minimizing S̃(w) corresponds to minimizing
the weighted sum of the pointwise local within-class scat-
ter matrices over all instances. Moreover, S̃(b) can be defined
in a similar way as follows:

S̃(b) = 1

2

n∑

i=1

(
1

n
− 1

nyi

)

P̃(w)
i + 1

2n

n∑

i=1

1

nyi
P̃(b)
i , (6)

where P̃(b)
i is the pointwise between-class scatter matrix

around xi and is expressed as follows:

P̃(b)
i =

∑

j :y j �=yi

(x j − xi )(x j − xi )
T. (7)

Note that P̃(b)
i does not include the localization factor

Ei, j . Moreover, Eq. 6 mentions that maximizing S̃(b) cor-
responds to decreasing the weighted sum of pointwise local
within-class scatter matrices and maximizing the sum of
pointwise between-class scatter matrices. Therefore, eigen-
value decomposition of tr(−1)(S̃(w) S̃(b)) is used for achieving
the solution of JLFDA as an optimization problem. However,
the eigenvectors corresponding to d largest eigenvalues con-
struct the mapping matrix J . Despite LFDA efficiency, it
cannot minimize the distribution diversity across the source
and target domains. Hence, we are to find a solution to adapt
the distribution diversity across domains.

Therefore, themajor issue is to reduce the distributionmis-
matches across the source and target domains by precisely
reducing the empirical distance measure. Measuring the dis-
tance across distributions by the parametric criteria requires
expensive distribution calculation. Thus, we utilize a non-
linear distance measure, referred to as Bregman divergence.
Bregman divergence measures the distribution diversity of
drawn samples from different domains in a projected sub-
space. In fact, the Bregman divergence is able to transfer the
gained knowledge from training sets to test ones by reduc-
ing the distance across the distributions of training and test
samples.

The Bregman distance is a generalization of a wide range
of distance functions (e.g.,Mahalanobis distance [39], square
root, and Kullback–Leibler divergence [40]), and is capable
to explore the nonlinear correlations of data features. Many
Bregman divergence applications cause recent advances in
machine learning.

Definition 3.1 (Bregman divergence). Given a strictly con-
vex function f on�, the Bregman divergence corresponding
to f is defined as:

BD(x, y) = f (x) − f (y) − (x − y)� f (y), (8)

where � f represents the gradient vector of f .

The defined Bregman divergence in (3) can be described as
the discrepancy across the value of the convex function at x
and its first-order Taylor expansion at y, or equivalently the
remainder term of the first-order Taylor expansion of f at y.
Indeed, theBregmandivergence reduces to awell-known loss
function according to the choice of the convex function f .
For example, if f = x2, then we have BD(x, y) = (x − y)2,
and clearly its square root is a metric. Thus, the functional
Bregman divergence BD(., .) is expressed as

BD(PS, PT ) =
∫

(PS(�y) − PT (�y))2 d �y

=
∫ (

PS(�y)2−2PS(�y)PT (�y) + PT (�y)2
)
d �y,

(9)

where PS and PT are the probability density functions
(PDFs) of the source and the target data in latent subspaces,
respectively. Therefore, Bregman divergence measures the
distribution differences of the source and target domains in
the latent subspace.

Using the kernel density estimation technique, the den-
sities are estimated in the latent subspace. Therefore, the
density is estimated at each point y ∈ Rd as the sum of
kernels between �y and other points �yi as follows:

p(�y) =
(
1

n

)

G∑ (�y − �yi ) , (10)

where n is the number of samples and G∑(.) is the d-
dimensional Gaussian kernel with the covariance matrix

∑
.

3.2 Distribution adaptation using Bregman
divergence

The most important challenge in domain adaptation is to
decrease the divergence across the source and target domains.
BD preserves the geometric structure of data and just mini-
mizes the distribution divergence across domains. However,
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aligning both themarginal and the conditional distributions is
very effective for robust domain adaptation. To measure the
discrepancy across the marginal distributions of the source
and target domains, we employ BD as follows:

Distmarginal(DS, DT )

=
⎡

⎣
∫ (

1

ns

n∑

i=1

G∑
1
(�y − �yi )

)2

d �y
⎤

⎦

+
⎡

⎢
⎣

∫
⎛

⎝ 1

nt

n∑

j=ns+1

G∑
2
(�y − �yi )

⎞

⎠

2

d �y
⎤

⎥
⎦

−
⎡

⎢
⎣

⎛

⎝ 1

nsnt

n∑

i=1

n∑

j=ns+1

G∑
12

(�y − �yi )
⎞

⎠

2
⎤

⎥
⎦ , (11)

where Distmarginal is the distance of marginal distributions
between the source and target domains. Also, DS and DT

demonstrate the set of instances in the source and target
domains, in turn. The discrepancy across the marginal dis-
tributions P(XS) and P(XT ) is reduced by minimizing
Distmarginal(DS, DT ).

Even though decreasing the marginal distribution dif-
ference across training and target domains minimizes the
domain misalignment, but the conditional distribution differ-
ence of domains should be considered for a robust distribu-
tion adaptation. However, as the target domain lacks labels,
conditional distribution adaptation is a nontrivial problem.
We apply a trained classifier on the source samples to mea-
sure the posterior probabilities. Using this technique, the
pseudo-labels of the target samples are obtained. We rewrite
the Bregman divergence measure to match the class condi-
tional distributions as follows:

Distconditional
∑C

c=1 (DSc , DTc)

=
⎡

⎢
⎣

∫
⎛

⎝ 1

ncs

ncs∑

i=1

G∑
1
(�y − �yi )

⎞

⎠

2

d �y
⎤

⎥
⎦

+
⎡

⎢
⎣

∫
⎛

⎝ 1

nct

ncs+nct∑

j=ncs+1

G∑
2
(�y − �yi )

⎞

⎠

2

d �y
⎤

⎥
⎦

−
⎡

⎢
⎣

⎛

⎝ 1

ncsn
c
t

ncs∑

i=1

ncs+ncs∑

j=ncs+1

G∑
12

(�y − �yi )
⎞

⎠

2
⎤

⎥
⎦ , (12)

where Distconditional is the class-conditional distributions dis-
tance across the source and target domains. Moreover, ncs
and nct denote the number of examples in source and target
domains that belong to class c, respectively. Also, DSc is the

set of examples belonging to class c in source data, and DTc

is the set of examples belonging to class c in target data.With
minimizing Distconditional

∑C
c=1(DSc , DTc ), the conditional

distribution mismatches between DSc and DTc are reduced.

3.3 Unsupervised domain adaptation via
transferred local Fisher discriminant analysis
(TLFDA)

The intuition behind TLFDA is tominimize themarginal and
conditional distribution mismatches between the source and
target domains by finding an optimal couple of projection and
classification models. To this end, LFDA as a dimensionality
reduction method is exploited to find a latent subspace with
the criteria embedded in Eqs. 3, 11, and 12 as follows:

JT LFDA = argminJ∈RD×d [JLFDA
+ λ(Distmarginal(DS, DT )

+ Distconditional
∑C

c=1(DSc , DTc))], (13)

where λ denotes the regularization parameter to balance
between feature matching and domain adaptation. The first
part of the equation is a transformationmatrix thatmaps sam-
ples into a latent subspace. The second and third parts are
minimizing the marginal and conditional distribution mis-
matches across domains, respectively. Equation13 can be
treated using the gradient descent algorithm, i.e.,

J ← J − η(∂J JLFDA + λ(∂JDist
marginal(DS, DT )

+ ∂JDist
conditional∑C

c=1(DSc , DTc )), (14)

where η is the learning rate and ∂J is the gradient with respect
to J . The derivative of JLFDA with respect to J is given by

∂J JLFDA
∂J

= 2tr−1(JT S̃(b) J )−1 S̃(w) J

− 2tr−2(JT S̃(b) J )tr(JT S̃(w) J )S̃(b) J . (15)

To obtain the optimal linear subspace J in Eq. 13, a direct
method is to optimize Eq. 13 with respect to J iteratively by
adopting the gradient descent technique as follows:

Jk+1 = Jk − η(k)

(
∂J JLFDA

∂J

+ λ

(ns+nt∑

i=1

∂JDistmarginal(DS, DT )

∂ �yi
∂ �yi
∂J

+
ncs+nct∑

j=1

Distconditional(DSc , DTc )

∂ �yi
∂ �yi
∂J

⎞

⎠

⎞

⎠ (16)
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where η(k) is the learning rate factor at kth iteration that
controls the gradient step size. According to the quadratic
form Eq. 11, the derivative of Distmarginal with respect to J
is

ns+nt∑

i=1

∂JDistmarginal(DS, DT )

∂ �yi
∂ �yi
∂ J

=
ns∑

i=1

∂JDistmarginal(DS, DT )

∂ �yi �xTi

+
ns+nt∑

i=1

∂JDistmarginal(DS, DT )

∂ �yi �xTi

= 1

n2s

ns∑

s=1

nt∑

t=1

G∑
11

(�ys − �yt)

+ 1

n2t

ns+nt∑

s=1

ns+nt∑

t=1

G∑
22

(�ys − �yt)

− 1

nsnt

ns∑

s=1

ns+nt∑

t=ns+1

G∑
12

(�ys − �yt). (17)

And according to the quadratic form Eq. 12, the derivative
of Distconditional with respect to J is

ncs+nct∑

i=1

∂JDistconditional(DSc , DTc )

∂ �yi
∂ �yi
∂ J

=
ncs∑

i=1

∂JDistconditional(DSc , DTc )

∂ �yi �xTi

+
ncs+nct∑

i=ncs+1

∂JDistconditional(DSc , DTc)

∂ �yi �xTi

= 1

(ncs)
2

ncs∑

s=1

nct∑

t=1

G∑
11

(�ys − �yt)

+ 1

(nct )2

ncs+nct∑

s=ncs+1

ncs+nct∑

t=ncs+1

G∑
22

(�ys − �yt)

− 1

ncsn
c
t

ncs∑

s=1

ncs+nct∑

t=ncs+1

G∑
12

(�ys − �yt). (18)

For two optional Gaussian kernels, we have
∫
G∑

1
(�y −

�ys)G∑
2
(�y − �yt)dy = G∑

1 +∑
2
(�ys − �yt) and,

∑
11 =∑

1 +∑
1,

∑
22 = ∑

2 +∑
2 and

∑
12 = ∑

1 +∑
2. Based

on Eqs. 15, 17, and 18, TLFDA is solved iteratively subject
to JT J = I .

The computational complexity of TLFDA is investigated.
We analyze the computational complexity of TLFDA using
big O notation where ns and nt denote the number of source

samples and the number of target samples, respectively.
Moreover, ncs and nct denote the number of instances in the
source and target domains that belong to class c, respec-
tively. The computational cost for Eqs. 15, 17, and 18 are
O((ns + nt )2), O((ns + nt )2), and O((ncs + nct )

2), respec-
tively. Hence, the total computational complexity of TLFDA
is O((ns + nt )2).

4 Experimental setup

In this section, we introduce the domain adaptation bench-
mark datasets and the implementation details of TLFDA and
other compared methods.

4.1 Data description

We apply our experiments on the following four visual
domain adaptation benchmarks: Office+Caltech-256 (Surf)
[41, 42], Office+Caltech-256 (Decaf6) [43], Digit (USPS
[44] and MNIST [45]), and CMU-PIE [46].

Office benchmark contains three domains with 31 object
classes where domains either are downloaded from commer-
cial sites (e.g. amazon.com) or taken with high-resolution
digital SLR cameras or captured by low-resolution web-
cams. The set contains 4110 images which has 10 common
classes with a minimum of 7 and a maximum of 100 exam-
ples in each class over three domains. Caltech-256 includes
images in which objects appear in several various poses.
Thus, the set contains images that are not normally aligned.
The dataset contains 256 categories with a minimum of 80
and a maximum of 827 images in each category. We make
12 cross-domain tasks according to four Office+Caltech-256
(Surf) benchmarks via considering two different domains
as the source and target domains. Also, we utilize Decaf6
(deep convolutional activation feature) features with 4096
dimensions normalized to unit vectors. Decaf6 features are
the activation values of the 6th layer of a convolutional neu-
ral network (CNN) trained on the ImageNet dataset [43].
Though, we are to compare the effectiveness of TLFDAwith
traditional and other deep DA methods.

USPS (U) andMNIST (M) domains are popular handwrit-
ten digit benchmarks with various statistics and distributions.
The USPS dataset possesses 7291 training and 2007 test
images with overall, 9298 images with 16× 16 size scanned
fromenvelopes of theUSPostal Service.MNISTdataset con-
tains 60,000 training and 10,000 test images with 28 × 28
size scanned from mixed American Census Bureau employ-
ees and American high school students. All images of USPS
and MNIST datasets are resized to 16× 16 with a grayscale
level. Therefore, we design two cross-domain tasks as fol-
lows: U −→ M and M −→ U .
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Table 1 Classification accuracy (%) of the proposed method on Office+Caltech-256 (Surf) and Digits datasets

Dataset FDA LPP JACRL RTML VDA JGSA CLGA DICD DGA-DA JDA-CDMA TTLC DOLL-DA TLFDA
(2017) (2017) (2017) (2017) (2018) (2018) (2020) (2020) (2021) (2021)

C −→ A 40.22 37.58 56.26 43.5 46.14 51.46 48.02 47.29 52.09 53.65 56.68 54.18 51.46

C −→ W 40.11 38.98 47.8 45.5 46.1 45.42 42.37 46.44 47.12 54.58 51.86 51.19 45.62

C −→ D 39.99 42.04 43.95 49.7 51.59 45.86 49.04 49.68 45.86 50.32 45.22 47.13 45.86

A −→ C 41.36 37.58 42.65 42.7 42.21 41.50 42.3 42.39 41.32 41.94 40.34 44.88 47.59

A −→ W 41.65 35.93 41.69 43.4 51.19 45.76 41.36 45.08 38.31 50.17 55.25 45.08 46.76

A −→ D 40.89 39.94 43.31 43.3 48.41 47.13 36.31 38.85 38.22 38.85 57.32 46.50 47.83

W −→ C 41 26.71 34.64 36.9 27.6 33.21 32.95 33.57 33.30 32.95 30.54 38.29 43.39

W −→ A 32.90 37.77 39.25 37.5 26.1 39.87 34.57 34.13 41.75 38.55 39.87 39.46 39.87

W −→ D 41.52 73.25 85.99 91.7 89.18 90.45 92.36 89.81 89.81 82.80 89.81 86.62 90.85

D −→ C 43.21 26.18 35.17 37.0 31.26 29.92 33.66 34.64 33.66 34.28 31.43 32.41 32.92

D −→ A 42.56 36.78 37.89 36.3 37.68 38 89.83 34.45 33.61 42.28 40.81 38.20 44.69

D −→ W 42.91 39.12 89.15 90.5 90.85 91.86 35.99 91.19 93.22 87.46 91.86 90.22 91.86

U −→ M 73.51 44.7 42.15 61.82 62.95 68.15 58.35 65.2 70.75 70.2 69.15 86.90 89.54

M −→ U 64.89 65.94 63.56 69.52 74.72 80.44 71.28 77.83 82.33 84.5 82.94 97.20 81.85

Average 44.76 41.6 49.96 52.09 51.86 53.50 50.60 52.18 52.95 54.47 55.93 57.02 57.14

Bold values represent the best statistically significant results

PIE is an introduced face benchmark containing 41,368
images with the size of 32 × 32 captured from 68 individu-
als. All images are taken by 13 synchronized cameras and 21
flashes with different poses, illuminations, and expressions.
Depending on the position of images, the dataset is divided
into five different subsets: PIE1(C05, left pose), PIE2(C07,
upward pose), PIE3(C09, downward pose), PIE4(C27, front
pose), and PIE5(C29, right pose). Hence, twenty cross-
domain tasks are conducted as follows: P1 −→ P2, P1 −→
P3, . . . , P4 −→ P5.

4.2 Method evaluation

The performance evaluation of our proposed approach is
conducted on four DA datasets with two baseline machine
learning methods (LPP and FDA) and ten state-of-the-
art DA methods (JACRL [47], RTML [48], VDA [23],
JGSA [49], CLGA [24], DICD [25], DGA-DA [26], JDA-
CDMA [50], TTLC [27], and DOLL-DA [51]). Since
TLFDA and other DAmethods are dimensionality reduction
techniques, we exploit a NN classifier to achieve classifi-
cation results. Furthermore, TLFDA is compared with the
best-reported results of the compared methods. Also, we
evaluate the performance of TLFDA on Office+Caltech-
256 (Decaf6) dataset with a baseline deep method, AlexNet
[52], and deep DA methods including DDC [53], AELM
[54], and ELM [54]. Moreover, we evaluate TLFDA with
DA methods including PUnDA [55], TAISL [56], SCA
[57], and TIT [58] on Office+Caltech-256 (Decaf6) bench-
mark.

4.3 Implementation details

To justly test and compare TLFDA with other methods, we
measure the classification accuracy on the target domain (Dt )

as the evaluation metric as follows:

Accuracy = | x :∈ Dt ∧ f (x) = y(x) |
nt

, (19)

where f (x) is the achieved prediction function and y(x) is
the correct label of sample x , respectively. In addition, nt is
the number of target domain samples.

Furthermore, TLFDA consists of the following two free
parameters. (1) λ is the regularization parameter in Eq. 13
that controls the trade-off between the feature matching and
Bregman divergence, and (2) η(k) is the learning rate factor
at iteration k in Eq. 16, which controls the gradient step size
for kth iteration. Additionally, the number of iterations to the
convergence of TLFDA is set to 20.

5 Experimental results and discussion

In this section, the performance of TLFDA and other com-
pared methods on a variety of visual DA benchmarks are
compared.

5.1 Result evaluation

Tables 1 and 2 show the classification accuracies of TLFDA
and other machine learning and DA approaches on object
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Fig. 1 Classification accuracy
(%) on Office+Caltech-256
(Surf) and Digits datasets

Fig. 2 Classification accuracy
(%) on PIE datasets. a the first
ten tasks, b the second ten tasks

recognition (Office+Caltech-256 (Surf)), hand-writtenDigits
recognition (USPS,MNIST), and face (PIE) datasets, respec-
tively. The results are visualized in Figs. 1 and 2 for better
interpretation.

Due to themismatcheddistribution among the training and
test datasets, the performance improvement of TLFDA over
FDA and LPP is (48.34%) and (57.23%) on the PIE dataset,

respectively. In comparison to the best-compared approach
TTLC on the PIE dataset, TLFDA achieves (1.32%) perfor-
mance improvement. Moreover, TLFDA outperforms LPP
and FDA in all tasks and in 11 tasks in comparison with
TTLC on the PIE dataset. In the rest, our proposed method
will be compared with other methods, in detail.
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Table 3 Classification accuracy
(%) of the proposed method on
Office+Caltech-256 (Decaf6)
datasets

Dataset AlexNet DDC AELM ELM PUnDA TAISL SCA TIT TLFDA
(2012) (2014) (2016) (2016) (2017) (2017) (2017) (2018)

C −→ A 91.9 91.9 89.46 89.07 90.3 90 89.46 89.5 90.71

C −→ W 83.7 85.4 79.32 70.51 88.3 85.3 85.42 92.1 86.42

C −→ D 87.1 88.8 81.53 78.98 76.2 90.6 87.9 86.7 91.69

A −→ C 83 85 79.96 79.61 82.3 80.1 78.81 83.8 88.77

A −→ W 79.5 86.1 77.63 74.58 82.7 77.9 75.93 91.4 79.63

A −→ D 87.4 89 85.35 80.25 76.2 85.1 85.35 89.1 83.28

W −→ C 73 78 71.24 70.61 82.6 82.6 74.80 80.2 85.32

W −→ A 83.8 84.9 76.83 75.37 86.9 85.6 86.12 89.3 89.66

W −→ D 100 100 100 100 89.8 97.7 100 94.9 100

D −→ C 79 81.1 75.6 68.21 69.2 84 78.09 80.7 87.36

D −→ A 87.1 89.5 83.19 80.79 83.1 87.6 89.98 92.5 91.8

D −→ W 97.7 98.2 98.98 98.31 93.4 95.9 98.64 88.1 98.46

Average 86.1 88.2 83.25 80.52 83.42 86.9 85.88 88.2 89.43

Bold values represent the best statistically significant results

Fig. 3 Classification accuracy
(%) on Office+Caltech-256
(Decaf6) datasets

Most of the available methods that are based on FDA or
LPP criteria do not achieve the desired results in case of
domain shift problems where they do not consider the dis-
tribution mismatch between the source and target domains.
FDA is a well-known approach that projects the data into a
low-dimensional subspace with a linear combination of fea-
tures. In dealing with shifted data, FDA can not generally
transfer knowledge across domains.

LPP is another classical method of dimensionality reduc-
tion to find an embedding that preserves the local informa-
tion. LPP uses a graph to model the geometrical structure of
data. Despite the LPP efficiency, it cannot reduce the distribu-
tion divergence across the source and target domains due to
the significant dissimilarity of scatters from the mean. Nev-
ertheless, FDA shows better performance rather than LPP,
because it uses discrimination in the feature extraction step.
The results illustrate that TLFDA has (11.7%) and (13.07%)
average classification accuracy improvement against FDA
and LPP on Office+Caltech-256 (Surf) dataset, respectively.

The performance improvement of TLFDA against FDA on
theDigits dataset is (16.5%). Also, TLFDAobtains (30.38%)
improvement compared to LPP on the Digits dataset.

JACRL is another state-of-the-art transfer learningmethod
reducing the functional structural risk and the distribution
mismatch across domains. Thus, JACRL learns an adap-
tive classifier through maximizing the manifold consistency
of the adaptive classifier. However, TLFDA outperforms
JACRL in most cases where it considers both the discrim-
inative information contained in the training samples and
the distribution bias between the training and test sets.
TLFDA gains (7.18%) and (17.78%) performance improve-
ment compared to JACRL on object+digit and PIE datasets,
respectively.

RTML exploits the knowledge transfer to alleviate the
domain shift in two directions, i.e., sample and feature space.
RTMLaims to build a cross-domainmetric to reduce themis-
matches across domains. However, TLFDA jointly benefits
from representation and classification learning to adapt the
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Fig. 4 Classification accuracy (%) with respect to the number of iterations for Office+Caltech-256 (Surf) dataset. a C −→ A. b C −→ W . c
C −→ D. d A −→ C . e A −→ W . f A −→ D. g W −→ C . h W −→ A. i W −→ D. j D −→ C . k D −→ A. l D −→ W
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Fig. 5 Classification accuracy
(%) with respect to the number
of iterations for Digits dataset. a
USPS versus MNIST. b MNIST
versus USPS

source and target domains. TLFDA uses the source domain
labels to construct the shared low-dimensional subspace
and discriminate across various classes. TLFDA achieves
(5.05%) and (29.05%) performance improvement in average
classification accuracy compared to RTML on object+digit
and PIE datasets, respectively.

VDA is a novel technique that exploits joint DA and
TL to create a shared feature space that is robust against
distribution mismatch. VDA discriminates different classes
in the latent subspace by employing the domain invariant
clustering technique. VDA only seeks to align the marginal
and conditional distributions across the source and tar-
get domains, while it ignores the discriminative properties
between different classes in the adapted domain. However,
TLFDA minimizes the distances between the marginal and
the conditional distributions of domains, while the specific
information of domains (i.e., data manifold structure and
within-class local structure) is preserved. TLFDA achieves
(5.28%) and (16.85%) performance improvement in average
classification accuracy compared toVDAonobject+digit and
PIE datasets, respectively.

JGSA proposes a unified framework to minimize the
shift between domains both geometrically and statistically
using both shared and domain-specific features of domains.
JGSA aligns the source and target domains even with high
divergence. However, the joint marginal and conditional dis-
tributions alignment between domains does not explicitly
render the data discrimination in achieved feature represen-
tation. TLFDA gains (3.64%) and (10.86%) performance
improvement compared to JGSA on object+digit and face
datasets, respectively.

CLGA finds a unified subspace where the marginal
and conditional distributions are globally matched. CLGA
locally adapts both domains using the class and domain
manifold structures. CLGA measures the distance across
distributions via MMD whereas TLFDA employs Bregman
divergence as a measurement metric. Moreover, TLFDA
uses Bregman divergence to preserve the discrimination
ability. TLFDA outperforms CLGA in 10 tasks out of 14

domain adaptation tasks and gains (6.54%) improvement on
object+digit datasets. Also, TLFDAworks better thanCLGA
with (15.7%) improvement on the face dataset.

DICD in a shared subspace adapts both the marginal
and conditional distribution disparities. DICD discriminates
classes by minimizing the distances across sample pairs in
the same classes either in both domains.DICDmaximizes the
distances between samples with various class labels in both
domains.However, TLFDAdiscriminates classes by preserv-
ing the intra-class and inter-class scatters through Bregman
divergence. TLFDA outperforms DICD with (4.96%) and
(14.76%)performance improvement onobject+digit and face
datasets, respectively.

DGA-DA, as a novel domain adaptation method, aligns
the marginal and conditional distributions in a unified
subspace using a non-parametric measurement method.
Despite DGA-DA, TLFDA measures the distribution dis-
parities across domains via Bregman divergence. TLFDA
preserves the discriminated information of data via Breg-
mandivergence.However,DGA-DAdefines a repulsive form
term to discriminate different classes. TLFDA works bet-
ter than DGA-DA with (4.19%) accuracy improvement on
object+digit datasets. Also, TLFDA outperforms DGA-DA
in 18 tasks out of 20 tasks on the face dataset with (22.75%)
accuracy improvement.

JDA-CDMA proposes a novel measurement metric called
cross domain mean approximation (CDMA) to estimate the
distances between the source and target samples. Then, based
on CDMA, JDA-CDMA reduces the marginal and condi-
tional divergences across both domains in a shared subspace.
Although CDMAhas low computational complexity in com-
parisonwithBregmandivergence, but TLFDA in comparison
with JDA-CDMA gains (2.67%) and (5.67%) improvements
on object+digit and face datasets, respectively.

TTLC aligns the marginal and conditional distributions in
the respective subspaces viaMMD.However, TLFDAadapts
the marginal and conditional distribution disparities in a uni-
fied subspace via Bregman divergence. TTLC discriminates
classes by creating condensed clusters in both domains. To
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Fig. 6 Classification accuracy (%) with respect to the number of iter-
ations for PIE dataset. a P1 −→ P2. b P1 −→ P3. c P1 −→ P4.
d P1 −→ P5. e P2 −→ P1. f P2 −→ P3. g P2 −→ P4. h

P2 −→ P5. i P3 −→ P1. j P3 −→ P2.k P3 −→ P4. l P3 −→ P5.
m P4 −→ P1. n P4 −→ P2. o P4 −→ P3. p P4 −→ P5. q
P5 −→ P1. r P5 −→ P2. s P5 −→ P3. t P5 −→ P4
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Fig. 7 Parameter evaluation with respect to classification accuracy
(%) and parameter, λ, for Office+Caltech-256 (Surf) dataset. TLFDA
obtains considerable results with large values of λ. We consider λ = 1

for Office+Caltech-256 (Surf) dataset. a C −→ A. b C −→ W . c
C −→ D. d A −→ C . e A −→ W . f A −→ D. g W −→ C . h
W −→ A. i W −→ D. j D −→ C . k D −→ A. l D −→ W
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Fig. 8 Parameter evaluation
with respect to the classification
accuracy (%) and the
regularization parameter, λ, for
Digits dataset. TLFDA performs
well on Digits dataset with small
values of λ. We adjust λ = 0.01
on Digits dataset. a USPS versus
MNIST. b MNIST versus USPS

this end, TTLC minimizes the distances across sample pairs
in the same classes of both domains. In addition, TTLCmax-
imizes the distances between each instance pairs of various
classes in both domains. TLFDA gains (1.21%) and (1.32%)
accuracy improvements on object+digit and face datasets,
respectively.

DOLL-DA projects both domains into a common sub-
space by decreasing themarginal and conditional distribution
discrepancies through adding the repulsive force to theMMD
constraint. DOLL-DA uses a label embedding trick to pro-
pose an orthogonal label subspace. DOLL-DA proposes a
noise-robust sparse orthogonal label regression term to pre-
vent negative transfer learning and overfitting. However,
TLFDA benefits from Bregman divergence as a measure-
ment method. TLFDA outperforms DOLL-DA in 11 tasks
out of 14 tasks on object+digit datasets. Also, TLFDA
improves against DOLL-DA by achieving (5.35%) perfor-
mance improvement on the face benchmark.

Figures 1 and 2 show the results evaluation of TLFDA
comparing toDAmethods includingVDA, JGSA, andDGA-
DAonOffice+Caltech-256 (Surf) andDigit benchmarkswith
14 tasks and on PIE dataset with 20 tasks, respectively.
TLFDA outperforms VDA in 10 tasks out of 14 tasks and
15 tasks out of 20 tasks on PIE dataset. Figure1 shows
that TLFDA performs better than JGSA in 9 tasks. Figure2
presents that TLFDA outperforms JGSA in all tasks on PIE
dataset. Moreover, TLFDA has better accuracy in 7 tasks on
Office+Caltech-256 (Surf) and Digit datasets and 18 tasks on
PIE dataset.

In recent years, deep DA approaches have gained high
performance. To compare the effectiveness of TLFDA with
deep methods, we train TLFDA on Office+Caltech-256
(Decaf6) datasets. Experimental results are shown in Table 3.
According to the results, TLFDA outperforms deep meth-
ods including AlexNet, DDC, AELM, ELM in most of
cross-domain tasks. TLFDA works better than AlexNet and
DDCwith (3.33%) and (1.23%) improvements, respectively.
TLFDA outperforms ELM, PUnDA, and TAISL methods in
most cases, where the results are visualized in Fig. 3. To

be precise, Fig. 3 specifies that TLFDA is better than ELM
and PUnDA in 10 tasks and TLFDA outperforms TAISL in
11 tasks of Office+Caltech-256 (Decaf6) dataset. Moreover,
TLFDA outperforms SCA and TIT as the domain adapta-
tion methods on Office+Caltech-256 (Decaf6) with (3.55%)
and (1.23%), respectively. Although deep methods gain out-
performing performances, they need to be trained on large
amounts of data for reliable prediction. However, TLFDA
outperforms deep methods while is trained on reasonable
number of samples. Deep methods have large time complex-
ities and need high-power processing equipment including
GPU andCPU.However, TLFDA could be run on amedium-
powerCPU. Simplicity in processing and reliable predictions
on enough number of samples cause that TLFDA to be picked
in comparison to deep DA methods.

As the main findings of this study, TLFDA decreases the
marginal and conditional distribution discrepancies viaBreg-
man divergence in the mapped subspace. Moreover, TLFDA
iteratively predicts pseudo-labels of the target domain via a
model trained on the source domain.

5.2 Effectiveness evaluation

We conduct a variety of experiments in 20 iterations to eval-
uate the efficiency property of TLFDA. We run TLFDA,
JGSA, and VDA in 20 iterations on Office+Caltech-256
(Surf), Digit, and PIE datasets. Figures4, 5, and 6 illustrate
the performance of TLFDA and two baseline methods with
respect to the number of iterations on different benchmarks.
As it is understood from the figures, in all datasets, TLFDA
outperforms the best baseline method JGSA. Our proposed
approach significantly reduces the difference of marginal
and conditional distributions among the source and target
domains. TLFDA predicts the accurate labels for target sam-
ples in an iterative manner. Almost, the predicted labels of
each stage are better than the previous one.

The convergence property of TLFDA is evaluated in 20
iterations and its results are compared against JGSA and
VDA. We run TLFDA on Office+Caltech-256 (Surf), digit,
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Fig. 9 Parameter evaluation with respect to the classification accu-
racy (%) and parameter, λ for PIE dataset. In most cases, TLFDA has
better performance with λ ∈ [0.00001 1]. The optimal value of λ is
0.5 for PIE dataset. a P1 −→ P2. b P1 −→ P3. c P1 −→ P4.

d P1 −→ P5. e P2 −→ P1. f P2 −→ P3. g P2 −→ P4. h
P2 −→ P5. i P3 −→ P1. j P3 −→ P2.k P3 −→ P4. l P3 −→ P5.
m P4 −→ P1. n P4 −→ P2. o P4 −→ P3. p P4 −→ P5. q
P5 −→ P1. r P5 −→ P2. s P5 −→ P3. t P5 −→ P4
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Table 4 Ablation study of 3
variants of TLFDA

Config methods TFLDAM+C TLFDAM TLFDAC TLFDA

Average Office+Caltech-256 (Surf) Dataset 44.64 49.12 50.38 52.39

Average PIE Dataset 46.32 55.59 64.11 87.85

Average Digit Dataset 61.29 68.48 69.83 85.7

Bold values indicate the best results

and face datasets in 20 iterations and show the results in
Figs. 4, 5, and 6, respectively. As is clear from the figures,
TLFDA converges in 20 iterations in most cases. Although
TLFDA fluctuates in some cases, it has a limited interlude
after 20 iterations, and increasing the number of iterations
does not have much effect on the performance improvement
of the algorithm.

5.3 Parameter and ablation study

In Fig. 7, the classification accuracies of TLFDA and
baseline methods are shown with respect to parameter λ

on Office+Caltech-256 (Surf) dataset. λ = 1 is chosen
for Office+Caltech-256 (Surf) dataset. Figure8 shows the
parameter evaluation with respect to the classification accu-
racy and parameter λ ∈ [0.00001 10] for the Digits
dataset. The reported results demonstrate that TLFDA oper-
ates well on the Digits dataset with small values of λ.
Figure9 illustrates the experimental results for parameterλ ∈
[0.00001 10] on the PIE dataset. As is obvious from the sub-
figures, TLFDAhas better results with λ = 0.5 inmost cases.

The performance of TLFDA is evaluated regarding the
different values of parameters in various situations. To under-
stand our model deeply, we evaluate several variants, i.e., (1)
TLFDAM by eliminating the conditional distribution adap-
tation, (2) TLFDAC by eliminating the marginal distribution
adaptation, and (3) TLFDAM+C by removing the marginal
and conditional distributions adaptation, jointly. The evalua-
tion results on various cases are shown in Table 4. The results
indicate that TLFDAM+C performs worse than the other two
variants whereas TLFDAC works better than others, since
minimizing the diversity across the conditional distributions
is crucial for robust distribution adaptation. However, all
three variants cannot achieve better results than TLFDA. In
fact, TLFDA constructs an effective feature representation
for significant distribution misalignment across domains and
it jointly aligns both the marginal and conditional distribu-
tions.

6 Conclusion and future works

In this paper, unsupervised domain adaptation via transferred
local Fisher discriminant analysis (TLFDA) is proposed to
deal with the shift and bias data of cross-domain prob-

lems. In TLFDA, a projection matrix is utilized to map the
source and target domains into a shared subspace. Moreover,
TLFDA reduces the joint marginal and conditional distribu-
tion mismatches based on Bregman divergence minimiza-
tion. Experimental results on different visual benchmarks
illustrate that TLFDA achieves better performance where
there always exist shifts and biased data across domains.
However, TLFDA has not been investigated to deal with big
data. In the future, we will plan to merge transfer and deep
learning for big data problems, which enables the deep learn-
ing network to transfer across cross-distribution sets.
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