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Abstract
Software engineering has evolved over the last 50 years, initially as a response to the so-called software crisis (the problems that
organizations had producing quality software systems on time and on budget) of the 1960s and 1970s. Software engineering
(SE) has been defined as “the application of a systematic, disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software”. Software engineering has developed a number
of approaches to areas such as software requirements, software design, software testing, and software maintenance. Software
development processes such as the waterfall model, incremental development, and the spiral model have been successfully
applied to produce high-quality software on time and under budget. More recently, agile software development has gained
popularity as an alternative to the more traditional development methods for development of complex systems. Within the
last decade or so, advances in technologies such as mobile computing, social networks, cloud computing, and the Internet
of things have given rise to massive datasets which have been given the name Big Data (BD). Big Data has been defined as
data with 3Vs—high volume, velocity, and variety. Big Data contains so much data that low probability events are captured
in the data. These events can be discovered using analytics methods and turned into actionable intelligence which can be
used by businesses to gain a competitive advantage. Unfortunately, the very scale of BD often renders inadequate SQL-based
relational database systems which have formed the backbone of data intensive systems for the last 30 years, requiring new
NoSQL technologies to be effective. In this paper, we will explore how well-established SE technology can be adapted to
support successful development of BD projects, as well as how BD techniques can be used to increase the utility of SE
processes and techniques. Thus, BD and SE may mutually support and enrich each other.
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1 Introduction

1.1 Software engineering

Software engineering has evolved over the last 50 years (the
term coming into widespread use after it was used in the title
of a conference on the topic sponsored by NATO in 1968),
initially as a response to the so-called software crisis (the
problems that organizations had producing quality software
systems on time and on budget) of the 1960s and 1970s.
The software crisis was famously described in a book by
Fred Brooks published in 1975 in which he described his
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experiences as a project manager at IBM in the preceding
decade [1].

Software engineering (SE) has been defined as “the appli-
cation of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software;
that is, the application of engineering to software” [2].

As the field has matured, SE has developed a number of
approaches to areas such as software requirements, software
design, software testing, and software maintenance. Soft-
ware development processes such as the waterfall model,
incremental development, and the spiral model have been
successfully applied to produce high-quality software on
time and under budget [3]. More recently, agile software
development has gained popularity as an alternative to the
more traditional development methods for development of
complex systems [4]. Generally accepted best practices for
software engineering have been collected by the ISO/IEC
and published as the Software Engineering Body of Knowl-
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edge (SWEBOK) [2,5]. Organizational standards such as
COBIT (Control Objectives for Information and Related
Technologies), a framework for IT management and IT gov-
ernance developed by ISACA and the Capability Maturity
Model Integration (CMMI), a process-level improvement
and training program originally developed by Carnegie Mel-
lon University’s Software Engineering Institute and now
administered by ISACA have become widely known (if
somewhat less widely used).

1.2 Big Data

Within the last decade or so, advances in technologies such
as mobile computing, social networks, cloud computing, and
the Internet of things have given rise to massive datasets
which are beyond the capabilities of traditional databases to
handle which have been given the name Big Data.

BigData has been defined by industry analyst DougLaney
as data with 3Vs [6]—high volume, velocity, and variety.
The data that organizations are collecting in such volume
are coming from social networking sites such as Facebook,
sensor data often associated with the Internet of things (IoT)
[7], business transactions, historical data, and other sources.
Velocity reflects the fact that data are generated in real time
from those social network sites, RFID tags, transactions, etc.
The data thus generated must be handled in an expeditious
manner in order to result in actionable intelligence for an
organization. The third V—variety—is in recognition that
the data can arrive in many different formats—the traditional
structured format that relational databases are built to handle,
as well as semi-structured and unstructured data such as text
documents, XML documents, and video.

Several other Vs have been added [8]: veracity, value,
volatility, and validity. Due to the huge amount of data gener-
ated from uncontrolled sources, it is necessary to clean up the
data in order tomake it useful since itmay come fromuntrust-
worthy or fundamentally dishonest sources (veracity). Once
we have eliminated the untrustworthy data, we still need to
be sure that the data are relevant to the problem we want to
apply the data to. We may need to remove large amounts of
irrelevant data to get to that core of valuable, relevant data
(validity). A related concept is volatility. Data in the BigData
context can quickly become outdated or obsolete, especially
in such time-critical domains as short-term weather predic-
tion and stock market trading. Finally, it is necessary to use
the Big Data not just for its own sake, but in order to gener-
ate value for the organization. Turning data into actionable
intelligence is the end point that must be reached in order for
Big Data to be of value to an organization.

AsBigDatawas increasingly produced and seen as a valu-
able resource, the Apache Hadoop [9] distributed processing
framework was developed as a way to run analytics-oriented
Big Data applications on clustered commodity hardware.

Unfortunately, the very scale of BD often renders inadequate
SQL-based relational database systems which have formed
the backbone of data intensive systems for the last 30 years,
requiring newNoSQL (non-SQL or not only SQL) technolo-
gies [10] to be effective. NoSQL systems include HBase,
BigTable, Cassandra, and MongoDB.

BigData contains somuch data that lowprobability events
are captured in the data. These events can be discovered
using analytics methods and turned into actionable intelli-
gence which can be used by businesses to gain a competitive
advantage. Analytics is the application of analysis, data, and
systematic reasoning to make decisions [11]. It helps users
to move from answering simple questions such as “What
happened?” to more complex ones such as “How did it hap-
pen and why?” Analytics allows for summarizing, filtering,
modeling, and experimenting. Techniques used include A/B
testing, machine learning, natural language processing, and
multilinear subspace learning.

1.3 Overview of the paper

In this paper, we will explore how well-established SE tech-
nology can be adapted to support successful development of
BD projects, as well as how BD techniques can be used to
increase the utility of SE processes and techniques. In partic-
ular, we will highlight howBD and SEmaymutually support
and enrich each other.

The rest of this paper is structured as follows. In Sect. 2,we
survey research in applying software engineeringmethodolo-
gies in BD projects. Section 3 turns the question around and
surveys research in applying Big Data technology to the soft-
ware engineering process. Section 4 reviews related surveys
of work at the confluence of software engineering and BD.
Section 5 reflects on how the two disciplines can mutually
enrich each other and points out areas of future research.

2 Software engineering for Big Data

Much research has been done in recent years on how software
engineering processes can be used to improve the production
of Big Data systems. Such systems present many challenges.
Big Data systems need to support rapid and elastic scaling,
whenever and whatever needed, across multiple datacenters
[12]. Design for scalability needs to be built into such sys-
tems. A large part of the challenge is the construction of
larger BD solutions (such as services) from composable ele-
ments in order to reduce the cost of construction. As the
volume, velocity, and variety of data in such systems grow, it
becomes more difficult to reduce the required human inter-
vention needed to extract the required information since such
approaches aren’t sustainable.
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2.1 Software architecture for Big Data

One of the main focuses of research in applying software
engineering methods to the production of Big Data systems
has been in the area of developing appropriate software archi-
tectures for such systems. A sampling of research in this area
will give an idea of the flavor of the research.

Sena et al. [13] have explored a basic issue in the area of
software architectures for BD—namely how software archi-
tectures of these systems can be characterized in terms of
their modules and organizations, basic requirements, and
main characteristics. In order to present the state of the art
for BD software architectures, they conducted a systematic
mapping study. They were able to identify an essential set
of eight requirements for Big Data architectures (including
scalability andmodularity) as well as a collection of five fun-
damental modules for data flow (including data sources, data
integration, and data storage) in order to guide architects in
the development of new Big Data systems.

Big Data systems present many challenges to the soft-
ware architect [14]. Among them, the fact that software
architectures become tightly coupled to data and deployment
architectures is of particular concern. Designs must be har-
monized across software, data, and deployment architectures
in order to meet quality requirements. In order to meet these
requirements, onewell-knownapproach is to select and apply
a sequence of architectural tactics—elemental decision deci-
sions which embody architectural knowledge about how to
satisfy a particular concern of a quality attribute. Extended
performance and availability tactics which meet the spe-
cific needs of BD and which span the data, distribution, and
deployment architectures include replicated stateless Web
servers, database partitioning to distribute read load, and
replicated database across clusters.

Various approaches to software architecture for Big Data
systems have been proposed. Chen et al. [15] propose an
architecture-centric methodology to address the technical,
organizational, and rapid technology change challenges of
Big Data system development for Big Data Web analyt-
ics using an agile approach. This architecture-centric agile
approach was able to cost-effectively achieve business goals
and architecture agility in 11 Web-based systems presented
by the authors. A different approach to Big Data architec-
tures is represented by the application of the model-driven
approach. Model-driven engineering (MDE), i.e., software
engineering by means of models and their automated manip-
ulation can be used to support the construction of Big Data
applications. The architecture of a tool to support MDE in
this context is given in [16]. A related effort is [17] which
presents a practical approach based on MDE to support the
semi-automated development of Big Data software systems
which use theMapReducemodel. The approach is composed
of a framework, metamodels, transformation definitions, and

visual Alf which is used to enhance UML to describe the
behavior of the models.

Architectures for specific types of Big Data software sys-
tems have also been proposed. DBSA [18] is a device-based
software architecture for data mining. Each processing task
is modeled as a component, and the components are linked
together to form a data mining application. Each processing
task can be thought of as a device, giving rise to the name of
the architecture. Bolster [19] is a software reference architec-
ture for semantic-awareBigData systems. Such systemshave
components to simplify data definition and data exploitation;
in particular, they can leverage metadata in order to aid the
user in their decision-making process. A framework incor-
porating an architecture to support stream processing, batch
processing, and deep learning to reveal knowledge hidden in
video data via online video processing has been described in
[20]. A pipeline-based architecture for heterogeneous execu-
tion environments in Big Data systems has been presented
by Wu and co-authors [21].

Finally, a model for cost-effective, systematic risk man-
agement in agile Big Data system development called Risk-
Based Architecture-Centric Strategic Prototyping (RASP)
model [22] has been developed to help software architects
of BD systems deal with strategic prototyping to manage
risks involved in developing such systems.

2.2 Testing and debugging Big Data systems

The testing, debugging, and benchmarking of BD systems
have also been an active field of research.

Big Data systems are complex, with numerous dynamic
components. Any of these components can fail, leading
to a system crash or degraded performance, reliability, or
security. Given the interdependent nature of the systems
components, finding the root cause of the failure can be a
challenge. One of the methods that analysts employ to pin-
point a problem’s root cause is examination of operational
data—logs and traces—which is generated by the compo-
nents of the BD system [23]. Such a log is a record of
temporal events which has been captured during an operation
of the system. Such a log might contain program execu-
tion paths, events, or user activities. The logs of Big Data
systems themselves exhibit the 5V characteristics of such
systems—velocity, volume, variety, veracity, and value. This
makes analyzing logs of the systems problematic.Miranskyy
et al. [23] describe issues which arise in analyzing these logs
and suggest solutions for each. The issues they identify are:
scarce storage; unscalable log analysis; inaccurate capture
and replay of logs; inadequate log-processing tools; incorrect
log classification; a variety of log formats; and inadequate
privacy of sensitive data.

Another approachwhichhas been suggestedover the years
for proving the correctness of systems is formal verification.
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Given the huge amounts of data generated by BD these sys-
tems, new formal verification techniques are required for
them [24]. The powerful computing resources associated
with cloud computing can fundamentally transform formal
verification techniques by parallelizing and distributing the
verification techniques themselves. Camilli [24] introduces
a distributed approach to formal verification which exploits
Big Data techniques to enable the verification of very large,
complex systems using Big Data approaches and cloud com-
puting facilities.

In order for Big Data systems to be considered to be cor-
rect, they must meet performance standards, due to the huge
datasets to be processed. Unfortunately, reliable performance
benchmarking of Big Data systems is problematic [25].
Shapira and Chen [25] document experiences at Cloudera,
a leading Big Data vendor, in the area of benchmarking Big
Data systems. They identify a number of important princi-
ples of conducting performance benchmarking and assessing
others’ results for Big Data systems. Among these princi-
ples, workload and hardware choices should be relevant to
expected use; modifications of benchmark standards should
be documented and justified; Big Data systems should be
tested along multiple dimensions of big scale; care should
be taken to ensure that only one parameter is changed when
testing is meant to compare systems on that parameter alone;
having a model of expected system behavior is mandatory;
benchmark results should contain sufficient information to
be reproducible; results, tables, and charts should be clear,
meaningful, and not misleading.

2.3 Software engineering process for Big Data
systems

Several researchers have investigated how software engineer-
ing processes can be tailored to fit the specific needs of Big
Data projects.

Saltz [26] looked at how a capability and maturity model
(such as the CMMI mentioned in Sect. 1) can be adopted for
Big Data projects which he characterizes as operating at a
low level of processmaturity. Thirteen factorswere identified
which would affect adoption of a Big Data CMM. These can
be grouped as relative advantage, complexity, compatibility,
and observability. There is a perceived relative advantage of
using a Big Data CMM in terms of project cost and duration
as well as having the results be more useful to the project
champions. It was often perceived to be compatible with
the current organization on several axes. Increased observ-
ability was another plus, while complexity was a negative
factor.

Researchers have also examined how the software engi-
neering life cycle processes can be specialized for Big Data
analytics projects [27,28]. Such specialization is required
since the project goals, scope, and functional requirements

are less explicit in Big Data projects than in more traditional
software projects. Lin and Huang [27] note that the incom-
pletion rate for Big Data projects, at 55%, is much higher
than more traditional software projects, at 38%. Consider-
ing the 4V characteristics—volume, velocity, variety, and
variability—variety adds the most complexity to the soft-
ware process since it leads to higher uncertainty and adds
unexpected elements to the data relations. Lin [27] proposes
a number of software processes be created and added to the
software life cycle for BD projects to handle these unique
characteristics. The new processes are data inventory pro-
cess, data requirement analysis process, data clean process,
and data innovation process.

Agile methodologies are rapidly gaining popularity in
the software industry, including such methodologies as
Scrum and Extreme Programming. These methodologies
help developers quickly deliver a system that meets func-
tional requirements while being able to adapt to changes in
customer requirements aswell as to customer feedback.Non-
functional requirements, on the other hand, are often ignored.
Sachedva and Chung [29] propose a novel approach to han-
dling security and performance non-functional requirements
for BigData projects. They present a case study showing how
their approach helps deal with these types of requirements in
an agile methodology.

2.4 Managing Big Data projects

Much of the research surveyed in this section deals with
providing tools and techniques for developers of Big Data
projects. There is also the need, however, to consider the
managers of Big Data projects. (The CMM mentioned by
Saltz [26] might fit in this category.)

Companies are increasingly looking at adopting Big Data
analytics in order to better understand customers and to pro-
vide those customers with customized services. Dutta and
Bose [30] present a framework which can provide organi-
zations a holistic roadmap in conceptualizing, planning, and
successfully implementing Big Data projects and validate
this framework through their observation of a descriptive case
study of an organization—Ramco Cements Limited—which
has implemented such a project.

3 Big Data for software engineering

The amount of research which has been done on how Big
Data techniques can be integrated into the software engi-
neering process seems to be somewhat more limited than the
research in applying software engineering to the production
of Big Data products. In this section, we will survey some
representative research in this area to give an idea of the areas
that researchers are exploring.
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3.1 Analytics for software engineering

Thomas Zimmerman at Microsoft Research and several col-
leagues have published several papers exploring how Big
Data analytics can be of use to software developers and soft-
ware managers. In the first paper we will look at, Buse and
Zimmerman carried out a survey of 110 software developers
and softwaremanagers atMicrosoft to determine the data and
analysis needs of professional software engineers [11]. The
survey explored their decision-making process, their need for
artifacts and indicators, and various scenarios in which they
would use analytics. Based on the survey, they propose sev-
eral guidelines for analytics tools in software development.
The tools should be simple to use, fast, and produce concise
output. Due to the diverse analyses of software engineers,
along with the fact that they consider most indicators to be
important (not favoring one or a few), software analytics tools
should support diverse types of artifacts and multiple indica-
tors. Also, developers and managers want to be able to drill
down into data based on time, organizational structure, and
system architecture. A proof-of-concept analytics tool was
implemented to elicit further feedback from developers on
how future analytics tools should be designed.

A second paper, this one by Begel and Zimmerman [31],
reports the result from two surveys of Microsoft software
professionals. The first survey solicited questions that soft-
ware engineers would like to have data scientists investigate
and software, software processes and practices, about soft-
ware engineers. In total, 1500 randomly chosen Microsoft
engineers were surveyed. Of these, 203 software engineers
responded with a total of 679 questions that they wanted
to have investigated. An open card sort was used to group
the questions into 12 categories and identify 145 ques-
tions. A second survey asked a different pool of Microsoft
engineers—2500 in total—to prioritize the 145 questions
from the first survey. In total, 16,765 ratings were received
from 607 Microsoft engineers. These results were used to
identify differences of opinion between various demographic
groups (e.g., software engineering subdiscipline, manage-
ment role, geographic region, years at company). The results
can help researchers, practitioners, and educators to better
focus their efforts on topics of importance to a large com-
pany (Microsoft).

A third paper by Zimmerman and co-workers [32] reports
a large-scale survey of Microsoft employees, but this time
instead of surveying software developers andmanagers about
their analytics needs, they reached out to data scientists
at the company in order to understand their educational
background, problem topics that they work on, tool usages,
and activities. A total of 793 professional data scientists at
Microsoft were surveyed out of 2397 initially contacted. (599
of these were data scientists by discipline, while 1798 were
data science enthusiasts with interests in the area, but not

specialists in it.) Among the results, they found that the
problem topics that most engaged the respondents included
user engagement, software productivity and quality, domain-
specific problems, and business intelligence. The tools they
reported using were SQL, Excel, R, and Python. The most
popular types of data they worked with were customer usage,
business data, and execution behavior. The types of data sci-
entists identified included polymath, data evangelist, data
preparer, data shaper, and data analyzer. Among the chal-
lenges the data scientists face involving data are data quality,
data availability, and data preparation. Challenges related to
analysis included scale and machine learning. Asked how
they ensure the quality of their work, they gave responses
including cross-validation is multidimensional, check data
distribution, type and schema checking, and repeatability.
More structured tool support is needed for these approaches
to validation.

3.2 Datamining software repositories

The mining software repositories field analyzes the huge
amounts of rich data which have accumulated over the years
in the software repositories of large organizations, as well
as open-source software development projects, in order to
glean interesting and hopefully actionable information about
software systems and processes [33] using analytics methods
fromBD.Topicswhich have been examined include software
evolution, models of software development processes, char-
acterization of software developers and their activities, use
of machine learning techniques on software project data, and
bug and failure prediction.

A fewexamples of such studieswill give an idea of the type
of research done in mining software repositories. Choetkier-
tikul et al. [34] have developed a method to predict whether
an issue is at risk of being delayed, and, if it is, the extent of
the delay. Open-source projects are used to identify 19 risk
factors which are used to train prediction models. Evaluation
indicates that the method is effective—likelihood of delay
predicted with 9% precision and 61% recall and the extent
of delay are shown to be predicted with some accuracy as
well. Exception handling bug hazards in Android are exam-
ined by Coelho et al. [35] who describe an empirical study of
bug hazards in more than 6,000 Java exception stack traces
extracted from over 600 open-source Android projects. The
bug hazards were subsequently further assessed by develop-
ers through a survey. The results of the research are a call
for tool support to help developers better understand excep-
tion handling and wrapping logic. Batarseh and Gonzalez
[36] take a somewhat different approach to the problem of
predicting failures in agile software development through
data analytics. Rather than mine a software repository for
the actionable information needed for the stated goal, they
look at the data derived during the previous stages of the agile
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software development process for a single project. The pre-
vious individual sprints in the agile development process are
examined to determine mean time between failure (MTBF)
for those sprints. Regression modeling is then performed as
part of a methodology called analytics-driven testing in order
to predict future errors and their locations in a sprint-based
life cycle (scrum).

Three software engineering datasets [37–39] are also
presented in the special section of Empirical Software Engi-
neering on mining software repositories [33]. These datasets
are given a thorough description in order that they might be
of use to future researchers and practitioners in mining soft-
ware repositories and in putting these valuable resources to
the test.

Finally, Hentschel et al. [40] consider whether Big Data
approaches can benefit the software measurement commu-
nity. They looked at project data available on GitHub and
gave examples of howBig Data applications can benefit soft-
ware measurement practices and communities.

3.3 Visual analytics for software engineering

One of the main techniques which are applied to BD nowa-
days is visual analytics. Visual analytics is the science of
analytical reasoning facilitated by visual interfaces. It com-
bines data mining and visualization techniques in order to
support reasoning about the phenomena in a dataset. Visual
analytics allowsone to combine the strengths of bothmachine
learning and human intuition for the purpose of knowledge
discovery.

Visual analytics has been applied to the software engineer-
ing process in several different ways. Telea and Voinea [41]
present an adaptation of the visual analytics framework to the
context of software understanding for maintenance. In par-
ticular, they present an instance of a visual software analytics
application for the build optimization of large-scale code
bases. Data mining and visualization techniques are com-
bined and adapted to answer questions asked by developers
in reducing the build cost of large-scale codebases. The appli-
cation has been used by software architects on an industrial
C code base of 17.5 million lines of code. User reports were
positive. Another application of visual analytics in software
engineering has been reported in the area of management of
human resources during the development andmaintenance of
a software system [42]. Software development projects often
are beset by problems associatedwith rotation and distributed
software development. In such a context, project managers
and project leads often lack necessary prior knowledge for
decision-making on human resources andmust, anyway, per-
form such a task in an empirical manner. In this area, visual
analytics can be applied to software evolution to support
project leads andmanagers in decision-making via visualiza-
tion and interaction techniques. For example, the approach

allows one to determine which programmer has led a project
or contributed more to the development and maintenance of
system by revisions. Using this and other similar informa-
tion discoverable by visual analytics, software project leads
and managers can make appropriate decisions regarding task
assignment to developers and staff substitutions due to staff
turnover or other reasons. Experimentation on using data
from SCM logs and source code associated with revisions
with visual analytics techniques was carried out in the con-
text of a novel architecture.

3.4 Self-adaptive systems

As a final example of the use of Big Data analytics in a
software engineering context (software design), consider the
paper by Schmid and co-authors [43]. They look at how to
make large-scale software-intensive distributed systems self-
adaptive. An example would be a city traffic management
system, which collects data from sources such as cars and
traffic lights in order to optimize traffic guidance. Such sys-
tems are difficult to make self-adaptive since their adaptation
must consider the current situation of the system as a whole
(possibly including predictions of future situations). In order
to solve the problem, they use a very simple system model
with essential input andoutput parameters. Theirmodel relies
on Big Data analytics to evaluate large-scale datasets at run
time to effectively optimize systems based on adaptation. A
tool for adaptation of a system based on such analysis is
presented.

4 Related research

In this section, we will look at related research regarding the
interplay of Big Data and software engineering.

The possibilities of applying SE techniques to BDprojects
(or BD techniques to SE processes) have certainly not been
overlooked by researchers in the two fields. As an exam-
ple of the growing interest in the area, the 1st International
Workshop on Big Data Software Engineering (BDSE) was
held as part of the IEEE/ACM sponsored 37th IEEE Interna-
tional Conference on Software Engineering in May 2015 in
Florence, Italy, and a second workshop (BIGDSE 2016) was
held in May 2016 in Austin, Texas. A special issue of IEEE
Software on software engineering for Big Data systems was
published in 2015 [44].

Given the growing interest in the intersection of BD and
SE, as well as the large number of recent research papers in
the area, it is no surprise that several authors have surveyed
this area.

Bagriyanik and Karahoca [45] have performed a sys-
tematic literature review of the intersection of BD and SE
published between January 2010 and October 2015. They
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aimed to answer two research questions: one concerning
the main areas where BD and SE are interacting and to
what extent (which subareas of SE are using BD) and the
second asking which are the SE artifacts which are most fre-
quently used for BD processing in the research surveyed.
The methodology they used relied on keyword search and
analysis to answer the questions. They found an increas-
ing number of papers as they moved closer to the current
year and that the most popular SE areas for applying BD
according to the keywords matched in their search for papers
are software quality, development, project management, and
human–computer interaction. The software artifacts most
frequently used as the subjects of BD analysis in the papers
they retrieved were source code, source code changes, bug-
related data, and operational data.

Rouhani and co-authors [46] investigated the effects ofBig
Data on the design and development of information systems
by a systematic literature review. Their findings indicated
that the volume attribute of Big Data affects software engi-
neering tools, while the variety and velocity attributes affect
software engineering methods, indicating that both of these
components of software engineering will need to be adapted
in order to support Big Data projects.

Kumar and Alencar [47] (see also Kumar’s Master’s
Thesis on the same topic [48]) used a methodology simi-
lar to [45]—a systematic literature review—to study how
researchers are using the different phases of the software
development life cycle to support BD system development
(a somewhat more limited search than [45]). The results
looked at the application domain reported. The most highly
cited was a somewhat catch-all “information technology”
domain. Others popular domains included health care, geo-
graphic information systems, and transport. As far as the SE
subfields, the three most widely reported were architecture,
framework, and design. The subareas don’t exactly match
those of [45], so no exact comparison of the two results is
possible.

Otero and Peter [49] attempt to set a research agenda
for engineering Big Data analytics software. They look at
several problems in the engineering of BD software: the
requirements problem, the design problem, the construction
problem, and the testing problem. The authors give a sim-
ple formalization of each of these problems in the general
SE context and then show how the specific BD requirements
complicate the problem. Their efforts are oriented toward
making the traditional SE goals of creating software on time
and within budget apply to BD systems.

Another attempt to set a research agenda is given byMad-
havji et al. [50] in a paper presented at BIGDSE 2015.
The authors begin by noting that a preponderance of the
effort being expended in BD systems development is in
the areas of infrastructure development and analytics rather
than in applications software development. In an attempt

to remedy this imbalance, the authors present a context
model of Big Data software engineering. Based on this
context model, the authors then sketch research challenges
in requirements engineering, architectures, and testing and
maintenance. The results are similar to those in [49], although
the models are quite different (conceptual versus more math-
ematical/formal).

5 Discussion and future research

Our survey of the intersection of Big Data and software
engineering shows that this is very much a lively topic for
researchers around the globe. While relatively more research
has been done on how software engineering techniques,
methodologies, etc. can be applied to Big Data projects than
has been done on how Big Data analytics and techniques can
help improve the software engineering process, both sides of
the coin are well represented.

Our hope is that, in the future, both sides of this relation can
benefit. In other words, Big Data helps to improve software
engineering processes, and the improved software engineer-
ing process can in turn develop better Big Data projects. This
approach was not widely seen in the works we surveyed—
perhaps it is best represented in the paper by Camilli [24].
We will be turning our attention to several approaches to try
to spur development of this mutual enrichment idea in the
near future.
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