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Abstract
There is a widespread hope that, in the near future, algorithms become so sophis-
ticated that “solutions” to most problems are found by machines. In this note, we 
throw some doubts on this expectation by showing the following impossibil-
ity result: given a set of finite-memory, finite-iteration algorithms, a continuum of 
games exist, whose unique and strict Nash equilibrium cannot be reached from a 
large set of initial states. A Nash equilibrium is a social solution to conflicts of inter-
est, and hence finite algorithms should not be always relied upon for social prob-
lems. Our result also shows how to construct games to deceive a given set of algo-
rithms to be trapped in a cycle without a Nash equilibrium.

Keywords  Algorithm · Learning · Nash equilibrium · Impossibility

Introduction

This note addresses two issues. First, we ask whether algorithms/machines can reliably 
“solve” social problems. We do this by investigating if algorithms as players can learn 
to reach a Nash equilibrium of any (finite) game, as they play the game many times 
and adjust the way to play the game.1 Nash equilibrium is an action profile from which 
no one wants to deviate unilaterally and is interpreted as a social solution to play the 
game. Since nowadays, there is a widespread hope that sophisticated algorithms can 
help humans sort out complex problems of social interactions (for example, organizing 
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1  It is well-known that Lemke–Howson algorithm [11] can find a Nash equilibrium of any finite game, 
although the time it takes can be exponential (Savani and Stengel [16]). Our motivation is completely dif-
ferent from this line of research.
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traffic efficiently), it is important to investigate if algorithms can learn to play a Nash 
equilibrium.

Second, we reconsider the learning problem framework in game theory from a prac-
tical point of view. Many convergence results (e.g., Kandori et al. [8], Young [20], and 
Hurkens [7]) are based on a model such that, the game is given first and then it is asked 
if there is a learning process that converges to a Nash equilibrium or a set of similarly 
stable states (see also Gilli [6] for a more general approach to learning). We think that 
a practical framework has the opposite structure: starting from a fixed learning mecha-
nism (such as installing learning algorithms in cars like the ones proposed by Koh et al. 
[10]), we need to ask whether the action profile sequence generated by the learning 
mechanism reaches a reasonable solution in any actual game (traffic situations that may 
occur). There is only limited literature using this approach (e.g., Milgrom and Roberts 
[13] and Selten [17]), and therefore we contribute to the literature by further advancing 
the approach.

Algorithms are necessarily finite in two senses: their memory capacity and their 
number of iterative reasoning are bounded. Hence, it is easy to imagine that a fixed set 
of algorithms cannot deal with an arbitrary game to find a Nash equilibrium, even if it 
is unique and strict. We prove this impossibility in a clear, simple setup. Our result also 
shows how to construct games to deceive a given set of algorithms to be trapped in a 
cycle without a Nash equilibrium.

Basic model

Nash equilibrium

Let G = (A1,A2, u1, u2) be a two-person, normal-form game, where Ai is a finite set of 
actions (sometimes called “pure actions”) of player i ∈ {1, 2} and ui ∶ A1 × A2 → ℝ 
is the payoff function of player i, i.e., player i wants to maximize the value of ui . For 
any finite set X, let �(X) be the set of all probability distributions over X. The sup-
port of a probability distribution q ∈ �(X) is written as supp(q). For each i ∈ {1, 2} , 
an element in the set �(Ai) can be interpreted in two ways: it is a probabilistic choice 
of actions by player i (called a “mixed action” by player i) or it is a belief over pos-
sible actions of i from player j’s point of view (where j ≠ i ). A pure action is a degen-
erate mixed action, and hence Ai ⊂ 𝛥(Ai) . Denote the expected payoff function by 
Eui ∶ �(A1) × �(A2) → ℝ . Since Ai is finite, �(Ai) is compact with the usual topology 
on ℝ|Ai| and is convex.

For each player i ∈ {1, 2} and each probability distribution �j ∈ �(Aj) by the oppo-
nent ( j ≠ i ), define the set of best responses (in mixed actions) by player i to �j as

Because Eui is continuous and �(Ai) is compact, BRi(�j) ≠ � for any �j ∈ �(Aj).
For each player i ∈ {1, 2} and any set 𝛴j ⊂ 𝛥(Aj) (possible mixed actions by the 

opponent player j, or the set of beliefs held by player i), define the set of pure actions 
that can be played as a part of a best response to some (mixed) action in �j:

BRi(�j) = {�i ∈ �(Ai) ∣ Eui(�i, �j) ≧ Eui(�, �j) ∀� ∈ �(Ai)}.
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This is also nonempty for any nonempty �j.

Definition 1  A mixed action profile (�∗
1
, �∗

2
) ∈ �(A1) × �(A2) is a Nash equilibrium 

if, for each player i ∈ {1, 2} , �∗
i
∈ BRi(�

∗
j
).

Definition 2  A mixed action profile (�∗
1
, �∗

2
) ∈ �(A1) × �(A2) is a strict Nash equi-

librium if, for each player i ∈ {1, 2} , {�∗
i
} = BRi(�

∗
j
).

Remark 1  A strict Nash equilibrium is a pure-action profile.

Remark 1 is a well-known result.

Definition 3  (Basu and Weibull [1]) A nonempty product set C1 × C2 ⊂ A1 × A2 is 
closed under rational behavior (a curb set) if b1(𝛥(C2)) × b2(𝛥(C1)) ⊂ C1 × C2.

That is, for any belief over the opponent’s actions within Cj , the pure best response is 
contained in Ci . A curb set is a weaker stability concept than a Nash equilibrium.

Remark 2  (Basu and Weibull [1]) A strict Nash equilibrium is a curb set.

Motivating example

Consider a dynamic game of two players, player 1 and 2, over a discrete-time hori-
zon t = 1, 2,… . In each period t, they play the “component game” of Table 1, which 
is a two-person, normal-form game. The component game has the unique, strict Nash 
equilibrium of (E, e). However, we show that a dynamic action choice process may get 
stuck in a non-curb set {A,B,C,D} × {a, b, c, d}.

Note that

bi(�j) ∶= {ai ∈ Ai ∣ ∃�j ∈ �j, ∃�i ∈ BRi(�j) such that ai ∈ supp(�i)}.

(1)BR1(a) = {A}, BR1(b) = {B}, BR1(c) = {C}, BR1(d) = {D};

(2)BR2(A) = {b}, BR2(B) = {c}, BR2(C) = {d}, BR2(D) = {a}.

Table 1   A game with a unique, 
strict Nash equilibrium

Player 1\2 a b c d e

A 7, 0 0, 1 0, 0 0, 0 −1 , −1
B 0, 0 7, 0 0, 1 0, 0 −1 , −1
C 0, 0 0, 0 7, 0 0, 1 −1 , −1
D 0, 1 0, 0 0, 0 7, 0 −1 , −1
E 2, 0 2, 0 2, 0 2, 0 3, 3
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Assume that players have up to two-period memory and the following algorithms 
(or behavior rules), which map observations to actions, are feasible for the players.

–	 Inertia algorithm: play the same action as the previous period.
–	 Cournot algorithm: play a best response to the opponent’s previous period action.
–	 S2-algorithm: play a best response to an opponent using the Cournot algorithm. 

(That is to play a best response to a best response by the opponent to your previ-
ous period action.)

–	 M2-algorithms: play a best response to a probability distribution over the pos-
sible actions by the opponent using either the Inertia algorithm or the Cournot 
algorithm.

–	 M3-algorithms: play a best response to a probability distribution over the pos-
sible actions by the opponent using one of the Inertia algorithm, the Cournot 
algorithm, and the S2-algorithm.

Note that the M2- and the M3-algorithms are classes of algorithms since the prob-
ability distribution can vary. Suppose that the initial action combination was within 
{A,B,C,D} × {a, b, c, d} . We first claim that, if players use one of the above algo-
rithms throughout the time, no player can play action E or e. Consider player 1 (she). 
Since Inertia’s case is obvious, suppose that she uses the Cournot algorithm. Her 
action in t = 2 belongs to {A,B,C,D} because player 2’s first period action was 
within {a, b, c, d} and her best responses are as shown in (1). If she uses the S2-algo-
rithm, her action in t = 2 is again within {A,B,C,D} , because player 2, using the 
Cournot algorithm, would play within {a, b, c, d} by the same logic and (2). If she 
uses one of the M2- or M3-algorithms, she puts a positive probability on at most 
three different actions by player 2 in t = 2 . Let x, y, and 1 − x − y be the probabilities 
of three different actions in {a, b, c, d} . Notice that

Hence, action E is not a best response for any (x, y), and player 1’s actions are con-
tained in {A,B,C,D} in t = 2 . The logic for player 2 is similar, and this continues for 
t = 3, 4,….

Next, consider that players try to learn the best algorithm within the above five 
classes by changing the algorithms over time, possibly based on observations and 
the expected payoff for the next period. For example, suppose that player 1 was 
using an M2-algorithm with probability 0.5 on Inertia and 0.5 on the Cournot algo-
rithm by player 2. If she observed (A, a) in t = 1 and (A, b) in t = 2 , she may put 
probability 1 on the event that player 2 is using the Cournot algorithm and switch to 
the S2-algorithm to choose her action in t = 3 . Alternatively, she may increase the 
probability on the Cournot algorithm only slightly and use a different M2-algorithm. 
We note that such a switching rule for algorithms (which we call a “meta-rule”) can 

minmax

x + y ≦ 1

{7x, 7y, 7(1 − x − y)} =
7

3
> 2.
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be an algorithm. However, recall that in any period, as long as players use one of the 
above algorithms, they would not play an action outside of {A,B,C,D} or {a, b, c, d} . 
Hence, any meta-rule would not lead to the Nash equilibrium, either.

We can generalize the logic of this example to dynamic games played by two 
populations and to any finite-memory, finite-iteration algorithms.

Dynamic model

We describe a simple dynamic model that is sufficient to arrive at the impossibility 
result in “Impossibility of learning” section. Many extensions are possible without 
affecting the result and are discussed in “Extensions” section.

Consider a two-player (component) game G = (A1,A2, u1, u2) and a population 
which is partitioned into two non-empty classes V1 and V2 , corresponding to the 
potential player(s) for player 1 and 2. The time horizon is discrete and written as 
t = 1, 2,… . In each period, one player from each group is randomly chosen to play 
G. When Vi ’s are singletons, the model is a learning model of two, fixed players as 
in “Motivating example” section. When Vi ’s have many members, this is a social 
learning model of two groups. In each period, each player in that period chooses a 
pure action based on a behavior rule, a function that maps information regarding the 
component game and its past action profiles to an available action.

There are many well-known behavior rules. One is the Cournot algorithm 
described in “Motivating example” section.2 Another well-known behavior rule is 
the fictitious play (e.g., Brown [2], Fudenberg and Kreps [4], and Fudenberg and 
Takahashi [5]) which chooses a pure action best response to the observed frequency 
of actions by the opponent group.3 Each of the level-k-rules in the level-k theory 
(e.g., Nagel [15], Stahl [18] and Mohlin [14]) is also a behavior rule4: the level-0 
rule is to choose all actions with equal probability, the level-1 rule best responds to 
the choice of the level-0 opponent and so on. Notice that these behavior rules are 
well-defined without the knowledge of the component game G. A behavior rule can 
be interpreted as a way of reasoning and can be an algorithm.

We allow players in any group to hold different behavior rules and to change 
behavior rules over time. The latter case includes rule-learning (e.g., Stahl [18] and 
[19]) and hypothesis testing (e.g., Foster and Young [3]), that is, in each period, a 
behavior rule (which can be an algorithm) for each player is determined by a meta-
rule (which can be an algorithm as well) on how to adjust behavior rules over time.

2  In order to always choose a pure-action best response, some tie-breaking rule must be added. This 
caveat applies to all behavior rules in the following, but our impossibility result is independent of the tie-
breaking rules.
3  The standard fictitious play rule uses the entire history to compute the “observed frequency” and thus 
requires unlimited memory. However, we can modify the definition of the “observed frequency” to allow 
bounded memory.
4  The standard model of the level-k theory is for a single population model with a symmetric component 
game.
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Let B be the set of feasible behavior rules (the contents are specified in the next 
subsection). A learning mechanism5 is a sequence of behavior rules of the two 
groups {(fit)i∈{1,2}}∞t=2 in B2 . For our result, we do not need to specify the meta-rule 
structure underlying a learning mechanism. For example, a deterministic dynamic 
(e.g., the Cournot dynamic) can be interpreted as a degenerate learning mechanism 
such that fit = f  for any i ∈ {1, 2} and any t.

When the component game G is given and the maximal memory capacity K ∈ ℤ++ 
for all players is given, the functional form of fitG is induced from fit . For each period 
t = 2, 3,… , Ht ∶= [A1 × A2]

min{K,t−1} is the set of possible histories that a player 
remembers/collects. A behavior rule for a player in group Vi in period t = 2, 3,… is a 
function fitG ∶ Ht → Ai . Since fitG can choose the same action for a subset of histories, 
this formulation includes the case that the memory capacity is less than K. The standard 
Cournot dynamic, given G, is fitG(h) = bi(aj(t − 1)) for each t = 2, 3,… where aj(t − 1) 
is the previous period action by player j in the observed history h, for any K ≧ 1.

A learning mechanism {(fit)i∈{1,2}}∞t=2 , a component game G, a memory capacity 
K, and an initial action profile �(1) of G generate an infinite sequence {�(t)}∞

t=1
 of 

action profiles (a learning process) on G as illustrated in Fig. 1. The dashed arrow 
indicates that the underlying meta-rule may or may not use the information regard-
ing the history.6 Figure 1 resembles a stimulus-response model: a learning mecha-
nism responds to the stimulus of G and the initial action profile to generate an action 
profile �(2) in t = 2 , which becomes a part of the stimulus for t = 3 and so on.

Behavior rules

We focus on “rational or justifiable” behavior rules in the sense that the rule pre-
scribes (i) a best response to some belief or (ii) a previously chosen action. Such 
behaviors are predominant among humans (e.g., Stahl [18], and Kneeland [9]). 
When designing an algorithm, we also want it to have these properties. To encom-
pass both human learning mechanisms and algorithmic learning mechanisms, we 
use the word “players” (instead of algorithms) as the actors below. We explain the 
principle of each class of behavior rules in words first and then give formula.

Fig. 1   Learning mechanism and its generated learning process

6  For an illustration of a rule-learning model, see Fig. 1 of Stahl [18].

5  Since we allow learning of how to choose a behavior rule, it is not a simple “learning process”.
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For any G, any i ∈ {1, 2} , any t = 2, 3,… , and any observed history 
h = (�(t − k),… , �(t − 1)) ∈ Ht in the past k = min{K, t − 1} periods, let

be the set of actions played by player i in the history h.

Simple behavior rules

In this subsection, we define simple behavior rules in the sense that the players 
choose actions based on a simple belief that the current opponent is one-step less 
sophisticated than yourself (i.e., the opponent uses a behavior rule in the one-step 
lower S-class) or based on no belief (S0-class).

S0-rules (conservative behavior rules):
An S0-rule chooses an action within the observed actions of one’s own group. If 

K ≧ 2 , then each S0-rule corresponds to a way to choose one out of K observations. 
If K = 1 , then there is a unique S0-rule, which chooses the same action as the previ-
ous period. This is the Inertia rule in “Motivating example” section.

When G and t are given, an S0-rule of group Vi is a function si0 ∶ Ht → Ai such 
that

S1-rules (adaptive behavior rules):
An S1-rule chooses a best response to an opponent using an S0-rule. Players of 

this type are often called “adaptive players” (e.g., Milgrom and Roberts [13]). The 
Cournot behavior rule is an S1-rule with K = 1.

When G and t are given, an S1-rule of population Vi is a function si1 ∶ Ht → Ai 
such that

since the actions by S0-players in the other group are contained in Aj ∣h.7

S2-rules (one-step forward-looking rules):
An S2-rule plays a best response to an opponent using an S1-rule. Since actions 

of such an opponent are contained in bj(Ai ∣h) , an S2-rule of population Vi at period 
t = 2, 3,… is a function si2 ∶ Ht → Ai such that

This rule uses a forward-looking reasoning in the sense that the opponent is believed 
to react to the past actions in your group using some adaptive behavior rule. To 

Ai ∣h= {ai ∈ Ai ∣ ∃� ∈ {t − k,… , t − 1}; ai = ai(�)}

si0(h) ∈ Ai ∣h, ∀h ∈ Ht.

si1(h) ∈ bi(Aj ∣h), ∀h ∈ Ht,

si2(h) ∈ bi(bj(Ai ∣h)), ∀h ∈ Ht.

7  We can allow an S1-player to choose a mixed-action best response �i ∈ BRi(aj) for some aj ∈ Aj ∣h . 
This, however, complicates the analysis without affecting our impossibility result.
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implement an S2-rule, one needs to know the opponents’ payoff function. Stahl 
[18] provides evidence that human subjects can compute a-few-times iterated best 
responses. Selten [17] considers a rule similar to an S2-rule called anticipatory 
strategies.

S3-rules (two-step forward-looking rules):
An S3-rule plays a best response to an opponent using an S2-rule; for any 

t = 2, 3,…,

We can iteratively define Sn-rules for n = 4, 5,… . The index number of the rules 
indicates the iteration of best responses. The iterative definition is very similar to 
that of the level-k theory, except that the above iteration starts with a pure-action 
belief, while the standard level-k theory starts with a uniform distribution belief. 
The next class of mixed-belief behavior rules allows probabilistic beliefs.

Mixed‑belief behavior rules

The Sn-rules (for n > 0 ) are based on a belief that the opponent uses an Sn-1-rule. 
More generally, players may have a probabilistic belief that the opponent uses up to 
Sn-1-rules of iterative reasoning.

M2-rules (behavior rules incorporating S0- and S1-rules by the opponent):
An M2-rule plays a best response to some probability distribution over S0-and 

S1-rules by the opponent. The functional form is, for any t = 2, 3,…,

In other words, if a player believes that the next opponent’s possible behavior 
rules are contained within S0- and S1-rules, then his reaction falls in the group of 
M2-behavior rules. The iteration of best responses is up to twice. A degenerate rule 
which puts weight 1 on the belief that the opponent chooses an action in the set Aj ∣h 
is an S1-rule, and another extreme rule which puts weight 1 on the belief that the 
opponent chooses an action in the set bj(Ai ∣h) is an S2-rule.

M3-rules (behavior rules incorporating S0- and M2-rules by the opponent):
Play a best response to some probability distribution over the use of S0- and 

M2-rules (of various weights) by the opponent, i.e., for any t = 2, 3,…,

Higher level Mn-rules are iteratively defined and include all lower level Mk-rules 
and Sk-rules as special-weight cases except S0-rules.

si3(h) ∈ bi(bj(bi(Aj ∣h))), ∀h ∈ Ht.

mi2(h) ∈ bi
(
�(Aj ∣h ∪ bj(Ai ∣h))

)
, ∀h ∈ Ht.

mi3(h) ∈ bi

(
�
(
Aj ∣h ∪ bj

(
�(Ai ∣h ∪ bi(Aj ∣h)

)))
, ∀h ∈ Ht.
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Definition 4  For each n = 2, 3,… , an n-sophisticated learning mechanism is an infi-
nite (possibly stochastic) sequence of behavior rules of the two groups {(fit)i∈{1,2}}∞t=2 
within B, which is a subset of S0-rules and Mn-rules.

For example, a 2-sophisticated learning mechanism is a sequence within the S0-, 
S1-, S2-, and M2-rules, or equivalently, within S0-rules and M2-rules.

Impossibility of learning

Proposition 1  For any finite K ≧ 1 , n ≧ 2 , and any n-sophisticated learning mecha-
nism with memory capacity K, there exist a continuum of component games such 
that each G has a unique and strict Nash equilibrium but the generated sequence of 
action profiles on G cannot reach the Nash equilibrium from a non-singleton set of 
initial action profiles.

Proof  Let m = K + n and consider the class of component games of the form shown 
in Table 2, where x > 0 , z > 0 and x∕m > y > x∕(m + 1).

Note that, for any M = 1, 2,… ,

where �M ∶= {p ∈ [0, 1]M ∣
∑M

k=1
pk = 1} is the M − 1-dimensional simplex.

Consider an arbitrary probability distribution �j over {1,… ,m + 1} with m or less 
actions in the support. If the opponent j is expected to use �j , (3) implies that any 
pure action k ≦ m + 1 of player i has the expected payoff of at least x/m while the 
pure action m + 2 gets only y or −1 . Hence the inequality x∕m > y implies that the 
pure-action best responses of player i belong to {1,… ,m + 1}.

(3)minmax

p ∈ �
M

{p1,… , pM} =
1

M
,

Table 2   Cyclic games with a 
unique, strict Nash equilibrium

Player 1\2 1 2 3 ⋯ m m + 1 m + 2

1 x, 0 0, x 0, 0 ⋯ 0, 0 0, 0 −1,−1

2 0, 0 x, 0 0, x ⋯ 0, 0 0, 0 −1,−1

3 0, 0 0, 0 x, 0 ⋯ 0, 0 0, 0 −1,−1

⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

m 0, 0 0, 0 0, 0 ⋯ x, 0 0, x −1,−1

m + 1 0, x 0, 0 0, 0 ⋯ 0, 0 x, 0 −1,−1

m + 2 y, 0 y, 0 y, 0 ⋯ y, 0 y, 0 z, z
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Also, the game of Table 2 has a unique and strict Nash equilibrium (m + 2,m + 2) . 
This is because the inequality y > x∕(m + 1) and (3) imply that there are beliefs 
with m + 1 actions in the support whose pure-action best responses lie outside of 
{1,… ,m + 1} for player 1. Therefore the product set {1,… ,m + 1} × {1,… ,m + 1} 
is not a curb set.

Since any n-sophisticated learning mechanism with K period memory has a belief 
with the support containing at most m = K + n different actions of the opponents, if 
the initial action profile is in the non-curb set {1,… ,m + 1} × {1,… ,m + 1} , then it 
cannot leave this set and reach the unique and strict Nash equilibrium (m + 2,m + 2) . 
Finally, notice that the set of payoff parameters that has the above property has a 
positive measure. 	�  ◻

The essence of the proof is that it is possible to construct a component game with 
a very large cycle of best responses so that players with limited memory and itera-
tive reasoning cannot form a belief that rationalizes an action outside of the cycle. 
Note also that the unique and strict Nash equilibrium is efficient when z > x , i.e., 
there is no action profile that makes any player better off. Then it is the way to play 
this game, but finite-algorithms may never find it.

The impossibility result of course hinges on the fact that there is no “sufficiently 
wide experimentations” among actions or beliefs, as assumed in Foster and Young 
[3], Matros [12], and Mohlin [14]. However, we do allow randomness in choosing a 
behavior rule.

Concluding remarks

Extensions

We can weaken many of the assumptions without changing the result. First, a wide 
variety of informational structures can be allowed. The impossibility result does not 
change, even if players sample among K-period histories with or without recall (e.g., 
as in the model of Young [20]), because such samplings do not enlarge the set of 
iterative best responses. Second, players need not play a pure action each period. 
They can play a mixed best response to their beliefs, i.e., they can randomize over 
the actions in the best response set.

We did not consider behavior rules that assume that the opponent is as smart 
as yourself. To play a best response to the action by such an opponent, one needs 
to find a fixed point of the mutual best responses. This is essentially asking play-
ers (algorithms) to find a Nash equilibrium of a “restricted” game, where the set of 
available actions is the support of the starting belief. Even if we extend the model 
in this way, the impossibility result still holds, because, if the support of the starting 
belief is limited, players may not be able to find a way out of a cycle.
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Practical impossibility and future directions

A possible remedy to the impossibility result is to install large volatility in actions 
(e.g., make the learning mechanism choose every available action with a small 
probability). This will take the process away from non-curb sets. However, we face 
another “practical impossibility”: since algorithms are made to conduct routine tasks 
efficiently, installing sufficient randomness to find a Nash equilibrium in any game is 
at odds with this goal. Imagine that a self-learning, car-navigation system has some 
built-in random actions. To avoid any possible cycle with another navigated car, 
such randomness may be useful. But, for the day-to-day activities, random actions 
delay the time to reach the destination.
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