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Abstract
We investigate the practicality of the Bouchaud–Mézard (BM) model for the real 
economy simulation using an information of Japanese production network, which 
contains basic financial information for more than a million firms and several million 
links of supplier–customer links. We found that the BM model can fit the power-law 
tail of the sales distribution and partially predict the sales for the individual firm.

Keywords Stochastic model · Real economy simulation · Japanese production 
network

Introduction

One of the most important but challenging issues is to realize the simulation of the 
real economy in real time. This is because the real economy results from the aggre-
gation of the dynamics of micro level numerous agents such as consumers, firms 
and financial institutions; they form the multi-layered network roughly estimated in 
Japan of hundreds of millions of people, millions of firms and hundreds of banks. 
Inevitably, considerable computation should be involved to simulate whole system. 
In addition, it must be time-consuming to take into account interaction with non-
economic condition such as social media. Although it might be achieved in coming 
decades by the supercomputer developments and the application of machine learn-
ing, there remains a need for an efficient model that can save the computational cost 
and provide a real understanding at micro level in terms of network structure.

Initial attempts focused on identifying the cause of macro phenomenon with 
power law by using stochastic process of micro units. While they can help us obtain 
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a deep understanding of the phenomenon for the system, over-simplistic assumption 
tends to make this approach an impractical option in cases such as the real economy 
simulation. However, the practicality of the stochastic model using the real eco-
nomic data at micro level remains unclear.

The purpose of this study is to revisit the stochastic model on networks and exam-
ine its practicality for the real economy simulation. The Bouchaud–Mézard (BM) 
model is one of the simplest stochastic models on networks, which was introduced 
to explain the wealth distribution with a power-low tail [1]. Although the application 
for complex networks has been studied in [2, 3], there has been no research to apply 
the BM model to actual economic networks. Therefore, we investigate the practical-
ity of the BM model for the real economy simulation using an information of firm-
level Japanese production network, which contains basic financial information for 
more than a million firms and several million links of supplier–customer links. The 
approach we use in this study aims to simulate the firm size such as sales in terms of 
only network structure.

This paper is organized as follows: first, we introduce the firm-level data of Japa-
nese production network and review the BM model briefly. After fitting the power-
law tail of the sales size distribution using the BM model, we check the accuracy of 
our simulation comparing with the real data for each firm. Finally, we summarize 
our results and conclude.

Method

Since it is difficult to acquire the data of material flow in general, we discuss the 
flow of money using the information of production network. Therefore, we simulate 
the distribution process of sales size with the BM model. The BM model includes 
the interactions of firms which depends on the weighting. To investigate the signifi-
cance of the network structure to the simulation, our weighting is based on only the 
degree of firm.

Data: Japanese production network

The data were collected by Tokyo Shoko Research (TSR) on July 2016, which con-
sists of two datasets of ‘TSR Kigyo Jouhou’ (firm information) and ‘TSR Kigyo 
Soukan Jouhou’ (firm correlation information). They contain basic financial infor-
mation for 1,546,583 firms and 5,943,073 links of supplier–customer and ownership 
links. Although TSR collected the data based on questionnaires to firms, for which 
the maximum number of suppliers and customers reported is limited to 24, it does 
not mean that the number of links is limited to 24 because the links of large firms 
can be complemented by those suppliers or customers. For the sake of coherence, 
we followed the method to define the Japanese production network from TSR data-
sets used by the previous study [4].

Let us denote a money flow of supplier–customer link as i → j , where firm j is 
a supplier to another firm i, and consider Japanese production network as directed 
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graph using TSR datasets. To exclude inactive and failed firms, we used an indicator 
flag for them in the firm information. Note that we eliminated self-loop and paral-
lel links which are duplicated links recorded in the data. The network has the giant 
weakly connected component (GWCC), which corresponds to the largest connected 
component when viewed as an undirected graph. The GWCC can be decomposed 
into the parts defined as follows:

where the giant strongly connected component (GSCC) is the largest connected one 
when viewed as a directed graph and the firms which can reach to and from the 
GSCC via a directed path are named IN and OUT components, respectively. The 
rest of the GWCC are named as tendrils (TE). We show the number of the firms 
each components in Table 1. It has been known that Japanese production network 
has a walnut structure [4].

As shown in Fig. 1, the distribution of sales normalized by its mean has power-
low tail mainly composed of the GSCC, whose tail exponent can be computed as 
� = 1.0223 ± 0.0150 , where p(x) ∝ x−(1+�) in large x. In general, the simulation on 
a directed network requires some extension to deal with a dead end as can seen in 
PageRank [5]. Note that from the aspect of the money flow, the whole production 
network is also incomplete for the lack of the workers and consumers. Hence, we 
only focus on the GSCC hereafter. We show the cumulative distribution function for 
the in- and out-degree of the GSCC in Fig. 2 (left). As shown in Fig. 2 (right), it is 

(1)GWCC = IN + GSCC + OUT + TE ,

Table 1  Japanese production 
network structure: sizes of 
different components

Component # of firms (with sales data) Ratio (%)

GSCC 530,174 (521,419) 49.7
IN 278,880 (274,070) 26.2
OUT 219,927 (216,809) 20.6
TE 37,056 (36,312) 3.5
GWCC 1,066,037 (1,048,610) 100.0

Fig. 1  Rank plot of the normalized sales and the distributions of each component
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apparent that there is correlation between the degree and the sales size of firm. Since 
the simulation does not always reflect these features, we simulate using the weight-
ing based on network structure for confirmation.

Simulation with Bouchaud–Mézard model

The BM model consists of the multiplicative stochastic process and the network 
effect from interactions of firms as follows:

where Xi(t) is the sales size of the ith firm and ai is a Gaussian random variable 
N(m, �2) . The interaction coefficients Jij constitute a dealing matrix from the jth firm 
to the ith firm. In this work, we assume a dealing matrix as

where kout
j

 and Aij is the out-degree of the jth firm and the adjacency matrix, respec-
tively. In our weighting, Eq. (2) can be rewritten as

where Xi is a local mean field of ith firm, which corresponds to the additive noise 
from network effects, defined as

(2)Xi(t + 1) = ai(t)Xi(t) +

N
∑

j(≠i)

(

JijXj(t) − JjiXi(t)
)

,

(3)Jij = JAij∕k
out
j
,

(4)Xi(t + 1) = ai(t)Xi(t) + J
(

Xi(t) − Xi(t)
)

,

(5)Xi(t) =

N
∑

j(≠i)

AijXj(t)∕k
out
j
.

Fig. 2  Left: complementary cumulative distribution function (CCDF) for the in- and out-degree of the 
GSCC. Right: correlation diagram between the normalized sales and degree for the GSCC. The blue and 
red colors correspond to in- and out-degree, respectively
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Hence, all the firms distribute JXi(t) equally to the supplier. Moreover, it has been 
known that the multiplicative stochastic process with additive noise obeys the 
power-law distribution [6]. Therefore, the additive network effect can be seen as 
additive noise in the previous literature to explains the power-low tail. Note that the 
additive term in our weighting is proportional to its in-degree; Xi(t) ∝ kin

i
.

To have a stationary distribution, we use the normalized sales by the mean 
xi(t) = Xi(t)∕X(t) where X(t) = N−1

∑N

k
Xk(t) . Under the mean approximation in 

large N limit, which is the case ( kout
i

= N ), the probability density function is known 
as

where the exponent � is the Pareto index in economics. In general, therefore, the 
tail exponent of the normalized sales distribution can be fitted by only the param-
eter �2 and J in the BM model. After fitting the power-law tail, we compute the 
ratio between the simulation result of the BM model and the data for each firm, 
ri = xi∕x

data
i

 to estimate the simulation accuracy.

Simulation results and discussion

The main purpose of this work was to test the practicality of the simulation of the 
real economy using the simplified model. As mentioned previously, we sought to 
explain the sales size of firms by using only the BM model and the information of 
a real network. Numerical simulations were carried out for the GSCC of Japanese 
production network and repeated ten times using Eq.  (2) with an initial condition 
xi(0) = 1 , a Gaussian random variable N(1.01, �2) and various values of J. The dis-
tribution at t = 104 was taken as the stationary distribution.

As shown in Fig. 3, we found that the BM model can fit the power-law tail of the 
normalized sales distribution with J = 0.003 , �2 = 0.02, and the ratio between the 
simulation result of the BM model and the data seemed to follow the log-normal 

(6)p(x) =
(� − 1)�

Γ[�]
exp

{

−
� − 1

x

}

x−(1+�), � = 1 +
J

�2
,

Fig. 3  Left: comparison of BM model (green) and data (gray) with respect to the distribution of sales. 
Right: histogram of the ratio r

i
= x

i
∕xdata

i



30 Journal of Computational Social Science (2019) 2:25–32

1 3

distribution, whose central value was located at ri = 1 . On comparing the simulated 
distribution with the TSR data as shown in Fig.  3 (left), it appeared that the BM 
model underestimated the firms located in the middle range of sales as lower. More-
over, it is clear that the BM model is unfit for the purpose of simulation requiring 
high precision as can be seen from Fig. 3 (right). Although this is not an ideal result, 
it is surprising that the firms simulated with 0.5 < ri < 2 accuracy account for 19.8% 
of the totla firms, despite that the stochastic model was only used for the information 
of network.

To improve our results, it is important to understand what kind of firms the BM 
model can describe accurately in our weighting. In Fig. 4, we visualized the ratio ri 
in terms of the network structure. The white dot corresponds to ri = 1 . It changes 
to blue (red) as the ratio ri becomes larger (smaller) than one. As shown in Fig. 4 
(left), the ratio increases in a downward direction. It should be noted that the IN and 
OUT components of the GWCC are ignored in our simulation, and locate above and 
below the GSCC. Therefore, these results indicate the possibility of improvement by 
extension to the whole network. As shown in Fig. 4 (right), we found that the simu-
lation with the BM model was better suited for firms which have larger in-degree. 
Nevertheless, it does not necessarily correspond to the sales. In future, reasonable 
results for specific firms might be obtained by choosing an appropriate weight. 

Finally, we carried out the same simulation using the randomized network, whose 
in- and out-degrees were conserved. In addition, to compare the network effects 
from actual and randomized network, we used the same random variable ai(t) for 

Fig. 4  Visualization of simulation accuracy. The white dots and the black solid lines correspond to r
i
= 1 

and they change to blue (red) as the ratio r
i
= x

i
∕xdata

i
 becomes larger (smaller) than one
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the simulations. As can be seen in Fig. 5 (left), distributions were almost identical in 
both cases. This is because the additive noise from network effect is determined by 
the nearest-neighbor interaction in our simulation, which means each additive noise 
was proportional to its own in-degree. It could be inferred, therefore, that the cor-
relation between the sales and in-degree shown in Fig. 2 (right) may have affected 
our simulation directly. We show the correlation between the results from actual and 
randomized network in Fig. 5 (right), which is gradationally colored by the differ-
ence in in-degree. It is evident that the results obtained from both networks have 
good agreement at large in-degree regions. This trend is in line with the previously 
discussed feature of our simulation.

Conclusion

We have investigated the practicality of the simulation of the real economy by using 
the BM model for the GSCC of firm-level Japanese production network. We found 
that the BM model can fit the power-law tail of the distribution of sales size, and the 
accuracy defined by the ratio between the result and the real data seems to follow a 
log-normal distribution, whose central value is located at one. Moreover, we con-
firmed that the accuracy of our simulation results reflects the correlation between 
the degree and the sales size. To the knowledge of the authors, this is the first result 
to evaluate the practicality of the stochastic model using real data. Although they 
seem to be unfit for the purpose of simulation requiring high precision, the results 
have potential to improve by changing our weighting.

The real economy simulation in real time can be achieved in coming decades 
by the development of high-performance computing. To implement the model on 
multi-layered network overlapping each others, it is important to partially approxi-
mate the system in accordance with the intended use; from the central bank’s point 
of view, the interactions of firms can be replaced by the stochastic model. Therefore, 

Fig. 5  Comparison of the simulation result between actual and randomized network. Left: rank plot of 
the normalized sales simulated by using the BM model with the actual (green) and randomized (red) 
network. Right: correlation between the results from the actual and randomized network gradationally 
colored by the difference of in-degree



32 Journal of Computational Social Science (2019) 2:25–32

1 3

our study can provide support for the modeling of the whole system to simulate the 
real economy.
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