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Abstract The massive, uncontrolled, and oftentimes systematic spread of inaccu-

rate and misleading information on the Web and social media poses a major risk to

society. Digital misinformation thrives on an assortment of cognitive, social, and

algorithmic biases and current countermeasures based on journalistic corrections do

not seem to scale up. By their very nature, computational social scientists could play

a twofold role in the fight against fake news: first, they could elucidate the funda-

mental mechanisms that make us vulnerable to misinformation online and second,

they could devise effective strategies to counteract misinformation.
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Introduction

Information is produced and consumed according to novel paradigms on the Web

and social media. The ‘laws’ of these modern marketplaces of ideas are starting to

emerge [1, 2], thanks in part to the intuition that the data we leave behind as we use

technology platforms reveal much about ourselves and our true behavior [3]. The

transformative nature of this revolution offers the promise of a better understanding

of both individual human behavior and collective social phenomena, but poses also

fundamental challenges to society at large. One such risk is the massive,
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uncontrolled, and oftentimes systematic spread of inaccurate and misleading

information.

Misinformation spreads on social media under many guises. There are rumors,

hoaxes, conspiracy theories, propaganda, and, of course, fake news. Regardless of

the form, the repercussions of inaccurate or misleading information are stark and

worrisome. Confidence in the safety of childhood vaccines has dropped significantly

in recent years [4], fueled by misinformation on the topic, resulting in outbreaks of

measles [5]. When it comes to the media and information landscape, things are not

better. According to recent surveys, even though an increasing majority of

American adults (67% in 2017, up from 62% in 2016) gets their news from social

media platforms on a regular basis, the majority (63% of respondents) do not trust

the news coming from social media. Even more disturbing, 64% of Americans say

that fake news have left them with a great deal of confusion about current events,

and 23% also admit to passing on fake news stories to their social media contacts,

either intentionally or unintentionally [6–8].

How to fight fake news? In this essay, I will sketch a few areas in which

computational social scientists could play a role in the struggle against digital

misinformation.

Social media balkanization?

When processing information humans are subject to an assortment of socio-

cognitive biases, including homophily [9], confirmation bias [10], conformity

bias [11], the misinformation effect [12], and motivated reasoning [13]. These

biases are at work in any situations, i.e., not just online, but we are finally coming to

the realization that the current structure of the Web and social media plays upon and

reinforces them. At the beginning of the Web, some scholars had hypothesized that

the Internet could in principle ‘balkanize’ into communities of like-minded people

espousing completely different sets of facts [14–16]. Over the years, various web

technologies have been tested for signs of cyber-balkanization [17] or bias, for

example, the early Google search engines [18] or recommender systems [19].

Could social media provide fertile ground for cyber-balkanization? With the rise

of big data and personalization technologies, one concern is that algorithmic filters

may relegate us into information ‘bubbles’ tailored to our own preferences [20].

Filtering and ranking algorithms like the Facebook NewsFeed do indeed prioritize

content based on engagement and popularity signals, and even though popularity in

some cases may help quality contents bubble up [21], it may not be enough for our

limited attention, which may explain the virality of low-quality content [22, 23],

and why group conversations often turn into cacophony [24].

Combining together the effect of algorithmic bias with the homophilistic

structure of social networks, one concern is that this may lead to an ‘echo chamber’

effect, in which existing beliefs are reinforced, thus lowering barriers to the

manipulation of misinformation. There have been some attempts at measuring the

degree of selective exposure of social media [25, 26], but as platforms continuously

evolve, tune their algorithms, and grow in scope the question is far from settled.
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It worth noting here that these questions have not been explored only from an

empirical point of view. There is in fact a very rich tradition of computational work

that seeks to explain the evolution of distinct cultural groups using computer

simulation, dating back to the pioneering work of Robert Axelrod [27–30]. Agent-

based models can help us test the plausibility of competing hypotheses in a

generative framework, but they often lack empirical validation [31]. The compu-

tational social science community could contribute in a unique fashion to the debate

on the cyber-balkanization of social media by bridging the divide between social

simulation models and empirical observation [32].

A call to action for computational social scientists

What to do? Professional journalism, guided by ethical principles of trustworthiness

and integrity, has been for decades the answer to episodes of rampant misinfor-

mation, like yellow journalism. At the moment, the fourth estate does not seem to be

effective enough in the fight against digital misinformation. For example, analysis

of Twitter conversations has shown that fact-checking lags behind misinformation

both in terms of overall reach and of sheer response time—there is a delay of

approximately 13 h between the consumption of fake news stories and that of its

verifications [33]. While this span may seem relatively short, social media have

been shown to spread content orders of magnitude faster [34].

Perhaps, even more troubling, doubts have been cast on the very effectiveness of

factual corrections. For example, it has been observed that corrections may

sometimes backfire, resulting in even more entrenched support of factually

inaccurate claims [35]. More recent evidence seems to paint a more nuanced, and

optimistic picture about fact-checking [36–39], showing that the backfire effect is

not as common as initially alleged. Still, to this date, the debate on how to improve

the efficacy of fact-checking is far from resolved [40, 41].

The debate on the efficacy of fact-checking is important also because there is a

growing interest in automating the various activities that revolve around fact-

checking. These include: news gathering, verification, and delivery of correc-

tions [42–46]. These activities are already capitalizing on the growing number of

tools, data sets, and platforms contributed by computer scientists to detect, define,

model, and counteract the spread of misinformation [47–56]. Without a clear

understanding of what are the most effective countermeasures, and of who is best

equipped to deliver them, these tools may never be brought to complete fruition.

Computational social scientists could play a pivotal role in the collective effort to

produce and disseminate accurate information at scale. A challenge for this type of

research is how to test the efficacy of different types of corrections on large samples

and possibly in the naturalistic settings of social media. Social bots, which so far

have been responsible for spreading large amounts of misinformation [57–60],

could be employed to this end, since initial evidence shows that they can be

employed to spread positive messages [61].
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Conclusions

The fight against fake news has just started, and many answers are still open. Are

there any successful examples that we should emulate? After all, accurate

information is produced and disseminate on the Internet every day. Wikipedia

comes to mind here, as perhaps one of the most successful communities of

knowledge production. To be sure, Wikipedia is not immune to vandalism and

inaccurate information, but the cases of intentional disinformation that have

survived for long are surprisingly few [62]. Wikipedia is often credited for being the

go-to resource of accurate knowledge for millions of people worldwide [63]. It is

often said that Wikipedia only works in practice; in theory, it should never work.

Computational social scientists have elucidated many of the reasons why the

crowdsourcing model Wikipedia works [64], and thus could effectively contribute

to a better understanding of the problem of digital misinformation.
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28. Centola, D., González-Avella, J. C., Eguı́luz, V. M., & San Miguel, M. (2007). Homophily, cultural

drift, and the co-evolution of cultural groups. Journal of Conflict Resolution, 51(6), 905–929. https://

doi.org/10.1177/0022002707307632.
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