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Abstract
Primary hyperparathyroidism (PHPT), a relatively common disorder characterized by hypercalcemia with raised or inappro-
priately normal serum parathyroid hormone (PTH) concentrations, may occur as part of a hereditary syndromic disorder or 
as a non-syndromic disease. The associated syndromic disorders include multiple endocrine neoplasia types 1–5 (MEN1-5) 
and hyperparathyroidism with jaw tumor (HPT-JT) syndromes, and the non-syndromic forms include familial hypocalciuric 
hypercalcemia types 1–3 (FHH1-3), familial isolated hyperparathyroidism (FIHP), and neonatal severe hyperparathyroidism 
(NS-HPT). Such hereditary forms may occur in > 10% of patients with PHPT, and their recognition is important for imple-
mentation of gene-specific screening protocols and investigations for other associated tumors. Syndromic PHPT tends to be 
multifocal and multiglandular with most patients requiring parathyroidectomy with the aim of limiting end-organ damage 
associated with hypercalcemia, particularly osteoporosis, nephrolithiasis, and renal failure. Some patients with non-syndromic 
PHPT may have mutations of the MEN1 gene or the calcium-sensing receptor (CASR), whose loss of function mutations 
usually cause FHH1, a disorder associated with mild hypercalcemia and may follow a benign clinical course. Measurement 
of the urinary calcium-to-creatinine ratio clearance (UCCR) may help to distinguish patients with FHH from those with 
PHPT, as the majority of FHH patients have low urinary calcium excretion (UCCR < 0.01). Once genetic testing confirms 
a hereditary cause of PHPT, further genetic testing can be offered to the patients’ relatives and subsequent screening can be 
carried out in these affected family members, which prevents inappropriate testing in normal individuals.

Keywords  Multiple endocrine neoplasia · Calcium-sensing receptor · PHPT · Parathyroid

Introduction

Primary hyperparathyroidism (PHPT) is a relatively com-
mon disorder with an overall prevalence of 0.84–0.86% [1, 
2]. PHPT is characterized by hypercalcemia, with either 
raised or normal (~ 80%) parathyroid hormone (PTH) con-
centrations [3, 4]. PHPT occurs more frequently in women 
than in men with a female-to-male ratio of 2–4:1 [1, 5] and 
is most prevalent in post-menopausal women [6]. How-
ever, in people < 50 years of age, the incidence is similar 
between genders [7, 8]. PHPT is usually a sporadic (i.e., 
non-hereditary) disease caused by a single parathyroid ade-
noma (~ 80%), parathyroid hyperplasia (~ 15%), multifocal 
disease (~ 5%), or parathyroid carcinoma (< 1%) [9]. How-
ever, such sporadic forms of PHPT most commonly occur 
due to somatic mutations in ~ 90% of patients [6], with the 
two most common genetic abnormalities being the follow-
ing: loss of function (LOF) mutations in multiple endocrine 
neoplasia 1 (MEN1 OMIM: 613733), which encodes for 
the tumor suppressor protein, menin, found in 12–35% of 

Key points   
• Primary hyperparathyroidism (PHPT) in > 10% of patients may be 
due to germline mutations, which can be divided into syndromic and 
non-syndromic forms.
• Multiple endocrine neoplasia type 1 (MEN1) is the most common 
genetic cause of syndromic PHPT.
• Familial hypocalciuric hypercalcemia (FHH) is the most common 
cause of non-syndromic PTH-dependent hypercalcemia.
• In selective cases, screening for germline mutations causing 
PHPT is important to inform patient management, and screening 
for associated tumors.
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cases, and over-expression of cyclin D1 (encoded by CCND1 
OMIM: 168461), which is found in 20–40% of cases [9]. 
However, there is also increasing evidence that familial or 
de novo germline mutations cause PHPT as either part of a 
multiple tumor syndrome, e.g., MEN1, or isolated PHPT, 
e.g., familial isolated hyperparathyroidism (FIHP). Syn-
dromic forms of PHPT (Table 1) include MEN1, MEN2 
(formerly MEN2A) due to activating missense mutations 
in the rearranged during transfection protooncogene (RET; 
OMIM: 164761)), MEN4 due to LOF mutations in the 
cyclin-dependent kinase Inhibitor 1B (CDKN1B; OMIM: 
600778)), MEN5 due to LOF mutations in the MYC-asso-
ciated factor X (MAX; OMIM: 154950), and hyperparathy-
roidism-jaw tumor (HPT-JT) syndrome due to LOF muta-
tions in cell division cycle 73 (CDC73; OMIM: 607393). 
Non-syndromic forms of PHPT include FIHP, familial 
hypocalciuric hypercalcemia (FHH), and neonatal severe 
primary hyperparathyroidism (NS-HPT). FIHP may be 
caused by germline mutations in MEN1 [10, 11], CDC73, 
calcium-sensing receptor (CASR; OMIM: 601199) [12], and, 
as reported more recently, glial cells missing transcription 
factor 2 (GCM2 OMIM: 603716) and familial hypocalciuric 
hypercalcemia type 1 (FHH1). Three types of FHH (FHH1-
3) are recognized with FHH1 caused by LOF mutations 
in the CASR, namely, FHH2 caused by LOF mutations in 
the guanine nucleotide-binding protein, alpha-11 (GNA11 

OMIM: 139313) and FHH3 caused by LOF mutations in 
the adaptor-related protein complex 2, and sigma-1 subunit 
(AP2S1 OMIM:602242; Fig. 1). This review will focus on 
the genetics of hereditary forms of PHPT.

Physiology of calcium homeostasis

Serum calcium is maintained within a narrow range 
(< 0.4 mmol/L), with extracellular calcium concentrations 
monitored by parathyroid gland chief cells. PTH secretion 
from the parathyroid glands is predominantly determined 
by extracellular calcium concentrations [Ca2 +] by the cal-
cium-sensing receptor (CaSR; encoded by the CASR gene 
located on chromosome 3q13.33-q21.1; Figs. 1 and 2). In 
addition to the direct effect of extracellular [Ca2 +], PTH 
is also suppressed by circulating 1,25-dihydroxyvitamin D 
(calcitriol or active vitamin D) concentrations which act on 
the vitamin D receptor (VDR), and by fibroblast growth fac-
tor 23 (FGF23) concentrations via its action on the fibro-
blast growth factor receptor (FGFR), in association with 
α-Klotho. FGF23 is released by osteocytes in response to 
raised extracellular phosphate and predominantly acts by 
increasing renal phosphate excretion and by inhibiting the 
renal conversion of 25-hydroxyvitamin D to 1,25-dihy-
droxyvitamin D (Fig. 2). The CaSR is a G-protein coupled 

Table 1   Syndromic forms of PHPT

PHPT primary hyperparathyroidism (PHPT), PNET pancreatic neuroendocrine tumor, MTC medullary thyroid carcinoma, PA pituitary adenoma
a Loss of function
b Gain of function
c Overall, 76 cases have been reported [13, 14]
d Germline MAX mutations and pheochromocytomas in association with other endocrine tumors have been reported in 11 cases (PHPT, pituitary 
adenoma, and PNETs) [15–22]
e PHPT has been reported in four cases in patients with MEN5
f CDC73 mutations are reported to account for ~ 12% of patients with hereditary PHPT [23, 24]
* There are three classical types of MEN2 syndrome, as follows: MEN2A (now referred to as MEN2), MEN2B (now referred to as MEN3) which 
is characterized by the occurrence of aggressive MTC, and pheochromocytoma in association with a Marfinoid habitus, mucosal neuromas, 
medullated corneal nerve fibers, and intestinal ganglioneuromas; and familial MTC, in which MTC is the sole manifestation. MEN2 has also 
been reported to be associated with cutaneous lichen sclerosis and Hirschsprung’s disease

Syndrome Gene and location Gene product Prevalence Associated phenotypes % PHPT

MEN1 MEN1 11q13 Menina 1–3 per 100,000 PHPT, PNETs, PA, lung carcinoids, lipomas, cola-
genomas, meningiomas, adrenocortical tumors, 
facial angiofibromas

 > 90% 
by age 
70 years

MEN2* (MEN2A) RET 10q11.2 RETb 13–24 per 1,000,000 MTC, pheochromocytoma, PHPT 5–15%
MEN4 CDKN1B 12p13 P27a ?c PHPT

PA
Adrenal
Renal
Gonads

75%

MEN5 MAX 14q23.3 MAXa ?d Paragangliomas, pheochromocytomas, PHPT, PA, 
PNETs

?e

HPT-JT CDC73 1q31.2 Parafibromina ?f PHPT, ossifying fibromas of the jaw 95%
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receptor (GCPR) that is stimulated by a rise in extracellu-
lar [Ca2 +] that leads to inhibition of PTH secretion. Con-
versely, when the CaSR detects a decrease in extracellular 
[Ca2 +], signaling is reduced and PTH secretion increases. 
PTH works to increase serum [Ca2 +] directly at the bone 
and in the kidney and indirectly via the gut (by increased 
production of 1,25-dihydroxyvitamin D which increases gut 
absorption of both calcium and phosphate). At the kidney, 
PTH causes a decrease in phosphate absorption, predomi-
nantly by degradation of the sodium-phosphate cotransport-
ers (NaPTs) in the proximal tubule, where up 70% of phos-
phate reabsorption takes place. PTH directly affects calcium 
reabsorption in the kidney, predominantly in the ascending 
limb of the renal tubule and in the distal tubule. PTH also 
stimulates 1-ɑ hydroxylase in the kidney, which converts 
25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. In bone, 
PTH acts on osteoblasts which release receptor activator of 
nuclear factor kappa-B ligand (RANKL) which, in turn, acts 

on osteoclasts, leading to a release of calcium from bone 
and, thereby, raising serum [Ca2 +].

Pathology of PHPT and hypercalcemic 
disorders

The current WHO 2022 classification of parathyroid tumors 
aims to pathologically distinguish parathyroid disease sec-
ondary to germline mutations, i.e., multiglandular multiple 
parathyroid adenomas as seen with syndromic forms of 
PHPT (e.g., MEN1 due to MEN1 mutations) or parathyroid 
carcinoma due to CDC73 mutations, from that of parathy-
roid hyperplasia, usually seen in patients with secondary 
hyperparathyroidism (e.g., chronic renal failure) [25]. The 
syndromic forms of PHPT are due to LOF of tumor sup-
pressor genes, e.g., MEN1, CDKN1B, and CDC73, with 
patients harboring germline CDC73 mutations having a 

Fig. 1   Examples of genetic 
changes associated with familial 
hypocalciuric hypercalcemia 
(FHH). In FHH types 1–3, inac-
tivating mutations in the CaSR, 
GNA11, or AP2S1 lead to loss 
of function of signaling through 
the CaSR pathway and therefore 
require higher extracellular cal-
cium concentrations (red arrow) 
to suppress PTH secretion. 
These germline genetic changes 
affect all parathyroid cells
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higher occurrence of parathyroid carcinomas [23, 26] or 
increased oncogenic signaling (e.g., activating RET muta-
tions; Table 1). Some inherited non-syndromic forms of 
PHPT may be associated with MEN1 [10, 11], CASR, e.g., 
FHH1, and neonatal severe hyperparathyroidism (NS-
HPT) [12, 27], or CDC73 mutations [26, 28, 29]. However, 
it is important to note that the majority of LOF mutations 
of the CaSR and its signaling pathway components, the 

G-protein alpha 11 subunit (Gα11, encoded by GNA11) 
and the adaptor-protein 2 sigma subunit (AP2σ encoded by 
AP2S1), result in FHH1, FHH2, and FHH3, respectively 
(Fig. 1). The impaired signaling via the CaSR pathway in 
these disorders results in a higher set-point for the CaSR, 
which leads to hypercalcemia in association with plasma 
PTH concentrations that are in the normal reference range 
(~ 80%) or elevated [30]. In sporadic parathyroid adenomas, 

Fig. 2   Parathyroid hormone (PTH) synthesis and/or secretion can be 
decreased in the chief cell of the parathyroid gland by different mech-
anisms, which include the following: increased extracellular calcium 
concentrations by activation of the calcium-sensing receptor (CaSR), 
activation of the fibroblast growth factor (FGF)/αKlotho receptor 
complex by FGF23, and activation of the retinoid X receptor (RXR)/
vitamin D receptor complex by 1,25-dihydroxyvitamin D. In bone, 
PTH acts on the osteoblast to secrete receptor activator of nuclear fac-
tor kappa-B ligand (RANKL), which acts on the osteocytes to release 
calcium, thereby increasing extracellular calcium. FGF23 is released 

by the osteocytes in response to increased extracellular phosphate 
concentrations, which acts on the FGF/αKlotho receptor complex in 
the parathyroid gland and decreases synthesis of PTH mRNA and 
PTH secretion. PTH acts on the kidney to decrease the reabsorption 
of phosphate and increase the absorption of calcium, thereby increas-
ing serum calcium and decreasing serum phosphate concentrations. 
PTH acts on 1αhydroxylase in the kidney to convert 25 hydroxyvita-
min D to active 1,25-dihydroxyvitamin D, which increases both cal-
cium and phosphate absorption and interacts with the RXR/vitamin 
D receptor complex in the parathyroid gland to suppress PTH mRNA
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overexpression of CCDN1 has been observed in 20–40% 
of tumors [9] and loss of expression of the CaSR has been 
reported in up to 90% (36/40) of tumors [31]. Additionally, 
promoter methylation of the CASR promoter 2 was found 
in 45% (18/40) of tumors with increased expression of the 
repressive histone mark trimethylation of lysine 9 on histone 
3 (H3K9me3) [31]. Biochemically, elevated serum [Ca2 +] 
and normal or elevated PTH concentrations may be indistin-
guishable between the different causes of hereditary PHPT 
and sporadic PHPT [3, 27, 32].

Syndromic forms of PHPT

Multiple endocrine neoplasia 1

Multiple endocrine neoplasia 1 (MEN1) is an autosomal 
dominant hereditary multiple endocrine neoplasia syndrome 
due to a germline heterozygous LOF mutations in the MEN1 
gene, located on chromosome 11q13.1, which encodes 
for the 610 amino acid tumor suppressor menin. Multifo-
cal tumors develop in endocrine glands after a second hit 
to the remaining functional MEN1 allele, consistent with 
Knudson’s two-hit hypothesis. MEN1 is characterized by 
tumors in the parathyroids, pituitary, and pancreas, although 
other tumors can be found, including adrenal cortical ade-
nomas and bronchopulmonary and thymic tumors [3]. The 
prevalence of MEN1 is reported to be between 1 and 3 per 
100,000 [33]. PHPT is the most common endocrine disorder, 
with ~ 75% penetrance by the age of 50 years and > 90% by 
70 years in MEN1 patients [34, 35]. MEN1 accounts for the 
majority of people presenting with PHPT due to a hereditary 
cause, which is in part due to MEN1 being the most com-
mon hereditary disorder associated with PHPT and is highly 
penetrant. More than 1500 individual MEN1 mutations have 
been reported in patients with MEN1 syndrome, with the 
majority resulting in protein-truncating variants with no 
clear correlation between genotype and phenotype [10, 36]. 
PHPT is characterized by multiple clonal parathyroid tumors 
that previously were classified histologically as parathyroid 
hyperplasia, a term which has subsequently changed with the 
latest WHO guidelines [25]. Menin is a scaffold protein and 
plays an integral role in epigenetic regulation: for example, 
it is required for the formation of the active histone mark tri-
methylation of lysine 4 on histone 3 (H3K4me3). One study 
reported that four parathyroid adenomas associated with 
MEN1 syndrome showed no global change in H3K4me3 
levels by immunohistochemistry when compared to two 
normal parathyroid tissue samples and seven sporadic para-
thyroid adenomas [37]. In another study of parathyroid tis-
sue, menin loss was reported to be associated with increased 
DNA methylation, a DNA mark associated with transcrip-
tional repression [38] and 12 human MEN1-associated and 

one sporadic parathyroid adenoma with a L338P missense 
MEN1 mutation were found to have increased global DNA 
methylation when compared to twelve sporadic parathyroid 
adenomas with no MEN1 gene mutations and nine normal 
parathyroid tissue samples [38]. Finally, menin loss in seven 
separate parathyroid adenomas from patients with MEN1 
has been reported to be associated with a reduction in the 
expression of the VDR when compared to both sporadic ade-
nomas (n = 12) and normal parathyroid tissue (n = 6) [37].

Mutation‑negative MEN1

It is estimated that 10–30% of patients with a MEN1-like 
phenotype have no genetic mutation found in the MEN1 
gene, and these patients present with endocrine neoplasms 
at a later age and have a similar life expectancy to that of the 
general population [39]. CDKN1B mutations (MEN4) have 
been reported in ~ 1.5% of patients with mutation-negative 
MEN1, thereby being reclassified as having MEN4 syn-
drome. Germline mutations in other CDKIs have been found 
in 0.5–1% of patients, including CDKN1A (p21), CDKN2C 
(p18), and CDKN2B (p15) [40]. Genetic analysis for MEN1 
mutations usually involves sequencing the coding region of 
MEN1 (exons 2–10); however, mutations involving the pro-
moter region (for example, a 596 bp deletion in the MEN1 
5′UTR) have been reported in a MEN1 kindred with no 
MEN1 mutation in the coding region [41]. The significance 
of this deletion was tested in vivo, which reported ~ 80% 
reduction in MEN1 mRNA and ~ 80% reduction in menin 
protein expression [41]. Other causes of mutation-negative 
MEN1 syndrome may include the chance co-occurrence 
of two endocrine tumors without an underlying germline 
predisposition syndrome or a germline mutation in a gene 
not commonly screened for as part of a MEN1 panel (e.g., 
aryl hydrocarbon receptor-interacting protein (AIP OMIM: 
605,555) mutations in familial isolated pituitary adenoma) 
with the co-occurrence of sporadic PHPT [42].

Multiple endocrine neoplasia type 2

Multiple endocrine neoplasia type 2 (MEN2, previously 
MEN2A) is due to activating missense mutations in the RET 
proto-oncogene, located on chromosome 10q11.21. RET 
encodes a 1114 amino acid receptor tyrosine kinase which is 
associated with cell differentiation and proliferation. MEN2 
is characterized by the occurrence of medullary thyroid 
carcinoma (MTC), pheochromocytomas, and PHPT. The 
prevalence of MEN2 is 13–24 per 1,000,000 [43]. MEN2 
is more common than MEN3 (previously MEN2B; 95 vs 
5%) which is not associated with PHPT [43]. MEN2 may be 
further classified into four subtypes, namely, classical MEN2 
(MTC, pheochromocytoma and PHPT), MEN2 with cutane-
ous lichen sclerosis, MEN2 with Hirshsprung’s disease, or 
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familial MTC with no other phenotype. The prevalence of 
PHPT in MEN2 ranges between 5 and 15%. Approximately 
95% of MEN2 cases are due to activating mutations at amino 
acid residues 609, 611, 618, 620, and 634 (all cysteine resi-
dues), with the majority (~ 87%) at codon 634 [43, 44]. A 
genotype–phenotype correlation is reported with patients 
presenting with MEN2, in which mutations at codon 634, 
in particular C634R, have the highest penetrance of PHPT 
[45, 46].

Multiple endocrine neoplasia type 4

Multiple endocrine neoplasia type 4 (MEN4) is character-
ized by germline mutations in CDKN1B, located on chromo-
some 12p13.1. CDKN1B transcription requires the active 
histone mark H3K4me3 which is maintained by a function-
ing menin. CDKN1B encodes for the 196 amino acid, p27kip1 
or p27, a nuclear protein which is involved in cell cycle regu-
lation and inhibits cycle progression at G1. Tumors associ-
ated with MEN4 include PHPT (75%), pituitary adenomas 
(44%), pancreatic neuroendocrine tumors (PNETs), pap-
illary thyroid cancer, and renal, thymic, and reproductive 
organ tumors [47, 48]. MEN4 (previously termed MENX) 
was initially discovered in a rat [49], which developed highly 
penetrant multiple neuroendocrine tumors within the first 
year of life, with the causative gene (CDKN1B) discovered 
a few years later [50]. A recent case series and comprehen-
sive literature review of MEN4 reported a total of 32 unique 
CDKN1B variants associated with MEN4 (with six located 
in the 5′UTR) from 22 studies [13]. Since then, a further two 
unique CDKN1B variants have been reported in association 
with familial PHPT [14]. The overall prevalence of PHPT 
in the entire cohort was ~ 42%, with 53.2% diagnosed with 
PTHP by the age of 60 years [13].

Other genes associated with syndromic PHPT

Multiple endocrine neoplasia type 5 and MAX mutations

MYC-associated protein X (MAX) is a 160 amino acid protein 
encoded by the MAX gene, located on chromosome 14q23.3. 
The MAX protein typically forms a heterodimer with the 
MYC family of proteins and is involved in cellular prolifera-
tion [51]. Heterozygous LOF MAX mutations, which cause 
hereditary paraganglioma-pheochromocytoma syndrome, 
have also been reported with other endocrine and non-endo-
crine tumors [15, 52]. Multiple endocrine tumors have been 
associated with germline LOF MAX mutations, and these 
including pituitary adenomas and PNETs [15–19, 52]; there-
fore, it has been suggested that germline LOF MAX mutations 
have been suggested may cause multiple endocrine neoplasia 
type 5 (MEN5) [16]. There have been four reported cases of 
MAX mutations in association with PHPT [15–17, 20]. Given 

the rare number of case reports of PHPT in association with 
MAX mutations, further study is required to determine the role 
of MAX mutations in syndromic PHPT [53].

Hyperparathyroidism‑jaw tumor syndrome

Cell division cycle 73 (CDC73; previously hyperparathy-
roidism type 2 (HRPT2)) is located on chromosome 1q31.2 
and encodes a 531 protein, parafibromin; it was initially dis-
covered in 26 affected kindreds with hyperparathyroidism-
jaw tumor syndrome (HPT-JT) [54]. HPT-JT is characterized 
by PHPT in up to 95% of patients and ossifying fibromas in 
the jaw in 25–50% [28, 54–56]. HPT-JT is also associated 
with renal tumors including hamartomas, Wilm’s tumors, 
and uterine tumors [55]. Importantly, parathyroid carci-
noma is over-represented in patients with CDC73 germline 
or somatic mutations, which suggests that parafibromin 
plays an important tumor suppressor role in the parathy-
roid gland [23, 26]. Parafibromin is a nuclear protein with 
both tumor-suppressive and oncogenic properties. Parafi-
bromin can exert its antiproliferative effect by interacting 
with nuclear beta-catenin by polymerase associated factor 1 
(PAF1) complex [57, 58] and by decreasing the expression 
of cyclin D1 [59, 60], for example, by H3K9 methylation at 
CCND1 and by suppression of the c-myc proto-oncogene 
[60, 61]. Loss of function of CDC73 is usually by protein-
truncating variants seen in up to 80% of germline variants 
causing HPT-JT [28]. In a cohort of 68 patients from 29 kin-
dreds with HPT-JT, 85% presented with PHPT as their initial 
manifestation, with a median age of 26 years (interquartile 
range: 20–35 years) [23]. Of the patients with PHPT, 65% 
had parathyroid adenomas and 31% had features of para-
thyroid carcinoma [23]. PHPT is typically due to a single 
parathyroid adenoma, although multiple parathyroid tumors 
have also been reported [62, 63]. CDC73 mutations are also 
seen in FIHP [62].

Non‑syndromic forms of PHPT 
and hypercalcemia

Familial isolated hyperparathyroidism

Familial isolated hyperparathyroidism (FIHP) may be due 
to incomplete penetrance of mutations causing syndromic 
PHPTs, as the genes found in FIHP overlap, for example, 
MEN1, CDC73, or CASR [3, 12, 26, 28, 29, 64]. However, 
there is no genotype–phenotype correlation between patients 
with these LOF mutations and FIHP [6, 53]. Recently, acti-
vating mutations in GCM2 located on chromosome 6p24.2, 
which encodes the 506 amino acid transcription factor 
GCMb, have been reported in 18% of patients with FIHP 
[65], with specific variants enriched among different ethnic 
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backgrounds [66]. GCMb is important for parathyroid gland 
development, as evidenced by Gcm2 knockout mice devel-
oping hypoparathyroidism [67] and LOF GCM2 mutations 
causing familial isolated hypoparathyroidism [68]. GCM2 
activating mutations have been reported to be enriched in 
patients with both FIHP and sporadic PHPT; however, the 
penetrance appears to be low and further studies are needed 
[69, 70].

Familial hypocalciuric hypercalcemia

Familial hypocalciuric hypercalcemia (FHH) is a relatively 
common disorder with an estimated prevalence of 74 per 
100,000 [71]. FHH is caused by inactivating mutations 
in either CASR (FHH1), GNA11 (FHH2) [72], or AP2S1 
(FHH3) [73]. FHH patients require a higher extracellular 
[Ca2 +] to activate the CaSR pathway, mobilize intracellu-
lar calcium, and activate mitogen-activated protein kinases 
(Fig. 1) [74, 75]. Therefore, patients with FHH tend to 
have a higher serum [Ca2 +] and normal or elevated PTH 
concentrations. CASR LOF mutations lead to a decreased 
ability of the kidney to excrete calcium relative to serum 
[Ca2 +], which results in relative hypocalciuria [76]. FHH1 
is the most common form, accounting for ~ 65% of cases 
and, depending on the location and amino acid change in 
the CASR gene, determines the degree of loss of function 
and the severity of hypercalcemia [12]. There are > 230 dif-
ferent CASR variants that have been reported to be associ-
ated with FHH1. FHH2 is due to LOF mutations in GNA11 
located on chromosome 19p13.3 which encodes for Gα11. 
Gα11 binds to the intracytoplasmic tail of the CaSR and 
is responsible for signal transduction [77]. Only four vari-
ants in GNA11 have been reported in FHH2 (T54M [78], 
namely, L135Q [72], I200del [72], and F220S) [79]. Patho-
genic variants in GNA11 causing FHH2 are rare and occur 
in < 1% of individuals undergoing genetic testing for FHH 
[80]. FHH3 is due to LOF mutations in the AP2S1 gene 
found on chromosome 19q13.32 and encodes for the pro-
tein AP2σ. FHH3 causes < 10% of cases of FHH [73]. AP2σ 
is integral for CaSR endocytosis via clathrin-mediated pits 
and for receptor trafficking and CaSR signaling potentiation 
(Fig. 1) [77]. The prevalence of FHH3 has been reported 
at ~ 7.8 per 100,000, and mutations causing FHH3 most 
commonly involve the R15 residue [81]. Classical teaching 
describes FHH as a benign condition that needs to be distin-
guished from PHPT to prevent FHH patients from undergo-
ing inappropriate parathyroidectomy [82]. One of the main 
distinguishing features of FHH compared to PHPT is that 
of low urinary calcium excretion (UCCR of < 0.01) and is 
seen in ~ 80% of patients with FHH type 1 and in < 20% of 
patients with PHPT. Other clues indicating FHH include 
a personal or family history of recurrence of hypercalce-
mia post-parathyroidectomy. However, FHH is not always a 

benign condition and has been associated with renal calculi, 
osteoporosis, and pancreatitis [12]. For patients with signs 
and/or symptoms suggestive of symptomatic hypercalcemia, 
case reports have shown efficacy with the use of cinacalcet 
[83]. Cinacalcet is a calcimimetic that is able to stimulate 
the CaSR, leading to a decrease in serum [Ca2 +] [79, 84].

Neonatal severe hyperparathyroidism

Neonatal severe hyperparathyroidism (NS-HPT) is caused 
by either homozygous or compound heterozygous LOF 
CASR mutations. NS-HPT may also occur in a child with a 
paternally inherited (or de novo) heterozygous CASR muta-
tion, born to a normocalcemic mother. NS-HPT usually pre-
sents within the first 6 months of life with life-threatening 
hypercalcemia, skeletal demineralization, bony deformities, 
fractures, constipation, dehydration, and failure to thrive. 
Patients with NS-HPT usually require urgent parathyroid-
ectomy [3, 27]. There have been 12 case reports of success-
ful treatment of NS-HPT with cinacalcet (with genetically 
confirmed CASR mutations), and three cases reported a lack 
of response to cinacalcet. Four of these 12 patients had a 
heterozygous CASR mutation R185Q (one inherited and 
three de novo) [85–87]; seven with inherited homozygous 
mutations, including R69H, G613E, and Y789fs [88–92]; 
one with a compound heterozygous mutation, C582Y and 
P682L [93]; and a homozygous donor splice site mutation 
in intron 5 [94]. All three cases reported with no response to 
cinacalcet were patients with homozygous CASR mutations 
at D99H, R690H, and R69H [95].

Treatment

Special care needs to be taken in patients with syndromic 
PHPT as the majority present with multifocal multiglan-
dular disease at an earlier age than sporadic PHPT; there-
fore, operative type, risk of recurrence, risk of post-surgical 
hypoparathyroidism, and age of the patient must be taken 
into consideration. Additionally, given the higher inci-
dence of parathyroid carcinoma in patients with CDC73 
mutations, surveillance frequency and type of parathyroid 
operation will be different compared to other forms of syn-
dromic PHPT [96]. For sporadic PHPT, patients should be 
considered for parathyroidectomy when there is significant 
risk or presence of symptomatic PHPT, for example, nephro-
calcinosis or nephrolithiasis, renal failure with a creatinine 
clearance < 60 mL/min, hypercalciuria defined as > 250 mg/
day in women and > 300 mg/day in men, minimal trauma 
fracture, bone mineral density by T-score ≤  − 2.5, or serum 
calcium level > 0.25 mmol/L above the upper limit of nor-
mal, or in patients who present < 50 years of age [96]. For 
patients in whom parathyroidectomy is contraindicated, 
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treatment with cinacalcet may be considered: its efficacy 
has been reported in individuals with FHH, NS-HPT, and 
MEN1 [85–88, 92, 94, 97–99].

Genetic testing for PHPT

At present, not all patients with PHPT are tested for ger-
mline mutations in genes associated with PHPT. There 
has been one large multicenter study that examined 1085 
patients with MEN2A which found that only 10 cases pre-
sented initially with PHPT, and nine of these 10 patients 
were found to have synchronous MTC [100]. This suggests 
that the pick-up rate for diagnosing pathogenic RET muta-
tions causing MEN2A syndrome in patients presenting only 
with PHPT is low and that screening for RET mutations 
in this scenario may not be helpful. Patients with a clini-
cal suspicion of a hereditary form of PHPT (e.g., occur-
ring < 30 years old, multiglandular disease, parathyroid 
carcinoma, first-degree relative of a known mutation car-
rier, or other clinical features associated with a syndromic 
form of PHPT) [3, 4, 96] should undergo genetic testing 
as this will help guide PHTP management (e.g., parathy-
roidectomy) and determine if screening for other tumors 
is required (e.g., pituitary and pancreatic neuroendocrine 
screening in MEN1 syndrome), while it will help deter-
mine whether family members should also be tested. For 
patients with a clinical suspicion of a hereditary form of 
PHPT, genetic testing should be undertaken; however, it is 
unclear if targeted genes should be tested or a PHPT panel 
(e.g., MEN1, RET, CDKN1B, CDC73, CASR, GNA11, and 
AP2S1) [53]. Recently, a large UK cohort study looking 
at 121 patients referred for genetic testing for a hereditary 
cause of PHPT (panel: MEN1, RET, CDKN1A, CDKN1B, 
CDKN2B, CDKN2C, GCM2, CASR, GNA11, and AP2S1) 
reported that 16% (19/121) of patients had a pathogenic 
variant in one of the following genes: 11/19 CASR, 6/19 
MEN1, 1/19 CDC73, and 1 AP2S1 [101].

Conclusion

PHPT is a relatively common disorder and is associated with 
a genetic cause in ~ 10% of cases. Of the syndromic forms of 
hereditary PHPT, the MEN1 syndrome is the most common. 
Importantly, FHH is not as rare as originally thought and 
to prevent patients from undergoing inappropriate parathy-
roidectomy, an increased uptake of genetic testing may help 
with clinical decision-making. However, it is still unclear 
if targeted genetic testing of specific genes or testing with 
a global PHPT panel is the most appropriate way forward.
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