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Abstract
Experience of early life stress (ELS) and trauma is highly prevalent in the general population and has a high public health impact, as it
can trigger a health-related risk cascade and lead to impaired homeostatic balance and elevated cacostatic load even decades later. The
prolonged neuropsychobiological impact of ELS can, thus, be conceptualized as a common developmental risk factor for disease
associated with increased physical and mental morbidity in later life. ELS during critical periods of brain development with elevated
neuroplasticity could exert a programming effect on particular neuronal networks related to the stress response and lead to enduring
neuroendocrine alterations, i.e., hyper- or hypoactivation of the stress system, associated with adult hypothalamic-pituitary-adrenal axis
and glucocorticoid signaling dysregulation. This paper reviews the pathophysiology of the human stress response and provides
evidence from human research on the most acknowledged stress axis-related neuroendocrine pathways exerting the enduring adverse
effects of ELS and mediating the cumulative long-term risk of disease vulnerability in adulthood.
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Introduction

The developmental origins hypothesis suggests that the roots
of adult disease are to be found among disruptions of physio-
logical developmental processes in early life [1, 2]. The term
“early life stress” (ELS) has been used to describe a broad
spectrum of adverse exposures during fetal and neonatal life,

early and late childhood, and adolescence (e.g., childhood
trauma, maltreatment, neglect, separation, abuse, parental
loss, and starvation). Experience of such disrupting early life
adversities occurs at disturbingly high rates in the general
population (over 30–40% of the adult population have expe-
rienced some form of ELS) and constitutes a major public
health problem [3, 4]. ELS during critical phases of perinatal
and juvenile brain development is associated with higher
levels of cacostatic load and reduced adaptability to stress in
adult life, leading to enhanced vulnerability to disease [5].

Many studies have reported a negative impact of ELS and
trauma on adult general mental and physical health-related qual-
ity of life. Particularly, a higher risk of psychiatric disorders (e.g.,
depression, posttraumatic stress disorder, and schizophrenia) and
their unfavorable outcomes has been recurrently associated with
ELS experience in several retrospective [6–9] but also prospec-
tive [10] studies. In addition, risk behavior patterns such as sub-
stance use and, especially, tobacco and alcohol consumption are
considered significantly increased in individuals with ELS histo-
ry [11–13]. A recent meta-analysis by Zatti et al. also confirmed
the close association of ELS and suicide attempts in later life
[14]. Nevertheless, the chronic physical health consequences of
childhood adversities may be as substantial as mental health
consequences [7, 15]. Several studies and meta-analyses of
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related research point to a distinct association of ELS with car-
diovascular, gastrointestinal, neurological, musculoskeletal, pul-
monary, and metabolic diseases; chronic inflammatory and pain
syndromes; frequency of medical consultations, and number of
medical diagnoses [7, 16–21]. These findings indicate that ELS
experience not only alters neurobiological systems resulting in an
increased risk of mental disorders but may also have a long-
lasting effect on a number of organ systems.

ELS rarely occurs as a single event but frequently consists of
prolonged or repetitive experience of one or more types of
malicious acts. Several negative risk factors may also coexist
(e.g., poverty, parental psychopathology, and drug addiction),
contributing to a complex milieu of multiple chronic stressors,
which calls for specialized assessment [22]. In particular, the
seriousness of physical and psychological consequences has
often been linked to the number of ELS events experienced
[23–26]. In several studies, the number of ELS experiences
has been associated with a higher adult risk of psychiatric
symptom complexity and severity, psychiatric comorbidities,
prescribed psychotropic medication, poor mental and physical
quality of life, as well as several physical conditions (e.g., heart
disease, asthma, diabetes mellitus, arthritis, chronic spinal pain,
and chronic headache) [7, 9, 27–30].

The long-term effects of ELS may, thus, be conceptualized as
a common developmental risk factor triggering a health-related
risk cascade and mediating cumulative health risk leading to
increased physical and mental morbidity and all-cause mortality
in later life [1, 3, 23, 31–33]. Furthermore, genetic factors, the
specific nature of ELS and particularly its exact timing, presence
of caregivers and psychological support, family history of major
psychiatric disorders, as well as additional traumatic stress expe-
riences in adulthood may all greatly influence downstream bio-
logical pathways and further influence the individual vulnerabil-
ity for later disease [34]. Although the number of studies
assessing the causal relations between ELS and its long-term
adverse health-related effects is constantly on the rise, little is
known about the exact neurobiological pathways through which
ELS is translated into biological health risk.

Among all the systems involved though, the most apparent
link between ELS and adult disease is neuroendocrine alter-
ations reflecting a chronic dysregulation of the stress system
[34]. This paper reviews the pathophysiology of the human
stress response and provides evidence from human research
on the most acknowledged stress-related neuroendocrine tra-
jectories, mediating the cumulative long-term risk of disease
vulnerability in later life after ELS exposure (cf. Fig. 1).

The biology of stress

Stress, homeostasis, and cacostatic load

Τhe capacity to maintain a state of complex dynamic balance
and constant fluctuation around an ideal homeostatic

condition (non-equilibrium homeodynamic state) serves self-
regulation and adaptability of the organism to ongoing chal-
lenges [35, 36]. This optimal state is constantly challenged by
intrinsic or extrinsic, real or perceived altering conditions or
stimuli, defined as stressors. When stressors exceed a certain
severity or temporal threshold, perceived stressor-related in-
formation initiates a complex stress response, redirecting en-
ergy according to the current needs [5, 37–40]. The organ-
ism’s total response to these ongoing demands is defined as
allostatic load and mirrors a state of disharmony. Thus, stress
is defined as the state of threatened homeostasis [5, 41].

Repeated, ephemeral, and motivating stress states lead to re-
sponse habituation and are fairly beneficial, while inadequate,
aversive, excessive, or prolonged stress may surpass the natural
regulatory capacity and adjustive resources of the organism and
majorly affect adaptive responses [5]. Cumulative or excessive
stress exposure, especially in developmental stages of particular
stress sensitivity and plasticity (e.g., early childhood), but also
following a single but extreme stress experience (e.g., traumatic
stress) may oversensitize neuroendocrine responses to stress.
This can lead to excessive and prolonged activation of the stress
system or, in a subgroup of individuals, to chronic hypoactivation
of this system and a vulnerable phenotype with disrupted stress
reactivity. This chronic condition can result in an altered
homeodynamic state, called allostasis or, more accurately,
cacostasis (i.e., negatively altered homeodynamic state,
dyshomeostasis), and accumulated cacostatic load which is relat-
ed to chronic physical and mental morbidity [5]. In the long run,
secondary biological alterations with profound and debilitating
effects on homeodynamic balance, health, and development are
the sequelae of this state [42–46].

The human stress system and the stress response

The human stress system includes central and peripheral com-
ponents. The central, greatly interconnected components of
the stress system are located in the hypothalamus and the brain
stem and include the following: (a) the parvocellular neurons
of corticotropin-releasing hormone (CRH), (b) the arginine-
vasopressin (AVP) neurons of the hypothalamic
paraventricular nuclei (PVN), (c) the CRH neurons of the
paragigantocellular and parabranchial nuclei of the medulla
and the locus coeruleus (LC), (d) the arcuate nucleus
proopiomelanocortin-derived peptides alpha-melanocyte-
stimulating hormone (MSH) and beta-endorphin, (e) other
mostly noradrenergic (NE) cell groups in the medulla and
pons (LC/NE system), and (f) the central nuclei of the auto-
nomic nervous system (ANS). The peripheral components of
the stress system include (a) the hypothalamic-pituitary-
adrenal (HPA) axis and (b) the limbs of the ANS comprising
(i) the sympathetic nervous system (SNS) and sympatho-
adrenomedullary (SAM) system and (ii) the parasympathetic
system (PNS).
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Activation of the stress system through perception of a threat
by the limbic system (i.e., PVN) leads to a normally adaptive
and time-limited micro-, meso-, and macrophysiologic com-
pensatory response, redirecting energy according to the current
needs [5, 37–40]. Together, these responses through different
stress effector tissues produce an orchestrated “symphony” en-
abling a fine-tuned response to challenge in both the central
nervous system (CNS) and the somatic periphery [47]. The
stress response is remarkably consistent in its qualitative pre-
sentation. The principal peripheral effector molecules are the
HPA axis-regulated glucocorticoids (GCs) and the SAM-
regulated catecholamines (CAs) NE and epinephrine. GCs par-
ticipate in early direct and non-genomic molecular events as
well as in transcriptional cellular procedures [5, 37–41, 48]
and are essential to the maintenance, duration, and downregu-
lation of the stress response mainly through GC binding to
glucocorticoid receptors (GRs) in the hippocampus [49, 50].

Pathophysiology of the stress response

Traumatic and long-term stress exposure is considered to lead
to sustainable alterations in stress regulation and psychophys-
iological reactivity [1, 3, 15, 19, 23, 31–33, 51–53], impaired

GC signaling [54–56], and changes in ANS function, the HPA
axis, and the SAM system [57, 58]. Previous results have
pointed to a particularly crucial role of GC signaling in the
pathophysiology of chronic stress. Insufficient glucocorticoid
signaling, although through dysregulations at different levels
(resulting from either hyper- or hypoactivation of the HPA
axis), may have similar devastating effects on the organisms’
physiology [55]. Such effects may be related to the particular
role of GC signaling in the regulation of the immune system
and the ANS [54]. The typical example of chronic hyperacti-
vation of the stress system is observed in melancholic depres-
sion [5, 48], with chronic hypersecretion of CRH/AVP by the
hypothalamus and hypersecretion of ACTH by the pituitary
[49], resulting in repeated activation of the stress system and
increased peripheral cortisol levels due to an insensitive neg-
ative GC feedback of the HPA axis loop [59]. Similarly, other
conditions, such as anorexia nervosa, obsessive–compulsive
disorder, panic disorder, alcohol withdrawal, excessive
exercising, poorly controlled diabetes mellitus, and hyperthy-
roidism among others, may also be associated with increased
cortisol levels through hyperactivation of the HPA axis [60].
On the other hand, repeated or chronic stress may also result in
hypoactivation of the HPA axis (rather than sustained

Fig. 1 Schematic model of
developmental neuroendocrine
aspects of prolonged stress
system dysregulation after early
life stress exposure
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activation), with lower peripheral cortisol levels, possibly
reflecting a compensatory physiologic adaptation [56, 60,
61]. Patients with atypical depression, chronic fatigue syn-
drome, fibromyalgia, hypothyroidism, nicotine withdrawal
syndrome, and PTSD fall into this category. This diminished
secretion seems to be the result of a negative feedback hyper-
sensitivity of GCs associated with an upregulated leukocyte
GR number and sensitivity [62–66], downregulated secretion
of CRF/AVP to the pituitary [49], or a long-lasting dropping of
glucocorticoid catabolism to increase the persistence of active
cortisol in the liver and kidney without elevation of circulating
levels [67]. These effects appear even greater in individuals
with ELS history, suggesting a developmental programming
through GC signaling.

ELS and the stress system

Preclinical and clinical studies have shown that ELS can irre-
versibly disrupt central neurobiological systems crucial for
growth and puberty in the most vulnerable periods of human
development and, thus, lead to long-lasting altered neuroen-
docrine stress responses [64, 68, 69]. Because of their pivotal
role in the regulation of the dynamic stress response, the HPA
axis and ANS have received the closest scrutiny in relation to
other systems that may be longitudinally affected by ELS [34,
70]. However, progress in this research area is hampered by
the complex and often conflicting associations found between
markers of HPA axis function (i.e., both increased and de-
creased HPA axis activity) and ELS [5, 70], as well as the
broad definition of ELS (i.e., broad timewindowof 0–18 years
of age). For example, ELS has been repeatedly positively
associated with HPA axis hyperactivity not only in adults with
depression and PTSD but also in healthy individuals (e.g.,
increased peripheral cortisol and dehydroepiandrosterone-
DHEA levels, enhanced CAR, increased ACTH and cortisol
responses to psychosocial stress or endocrine challenges)
[71–80], while several studies have reported HPA axis
hypoactivity (e.g., reduced peripheral cortisol levels and
blunted cortisol responses to psychosocial stress) in similar
populations and study designs [81–85]. Therefore, several
factors may have influenced study results, such as the exact
subtype of trauma, gender, and the assessment of phasic (e.g.,
diurnal saliva cortisol and cortisol reactivity to challenge) ver-
sus tonic cortisol values (e.g., hair cortisol) [86, 87]. However,
probably the most important factor modulating the impact of
ELS in later HPA axis activity is its exact timing.

Timing of ELS and HPA axis development

Although the HPA axis develops continuously from infancy to
adolescence and adulthood, specific periods of greater plastic-
ity may also represent periods of greater vulnerability and,

very likely, profound and enduring consequences [88]. In con-
junction with the HPA axis, amygdala, and hippocampus de-
velopment, there are also evolving non-linear patterns until
the age of 25 years, with specific gender differences
[89–91]. Accordingly, several findings suggest a differential
impact of ELS according to specific developmental age of
exposure.

One of the most vulnerable periods in CNS development is
infancy and early childhood (0–2 years of age) [44, 88, 92,
93]. Animal and human research implies that the HPA axis,
after an initial hyperresponsive period, may later transition
into a stress hyporesponsive period (SHRP) with blunted basal
and stress-induced cortisol [88, 92, 94, 95]. Several longitudi-
nal studies indicate that stress responses in early childhood
decrease with age throughout the preschool period [88,
94–96]. There are several studies demonstrating that these
findings might reflect a particular social buffering of the
HPA axis (i.e., blunted response) by a nurturing caregiver,
who may operate as a safety signal and help maintain low
GC levels [97–99]. Interestingly, in a recent review, Struber
et al. have also proposed important interactions of GC signal-
ing with oxytocin pathways, which may, in part, explain some
of results in early childhood [100]. Collectively, these findings
suggest that the shift from a hyper- to a relatively hyporespon-
sive stress axis during the first 2 years of life within the first
2 years of age may be an important stress-sensitive period,
especially in the absence of a nurturing caregiver [92]. ELS
accompanied by heightened cortisol during the hyporespon-
sive period could lead to greater exposure to glucocorticoids
and, in turn, to glucocorticoid receptor insensitivity over time,
affecting the physiological development of a hyporesponsive
HPA axis [88, 101]. Studies from Kuhlman et al. [87, 102]
confirm that ELS exposure prior to the age of 2 years was
associated with prolonged cortisol responses to an acute social
stressor among adolescents. Similarly, in their longitudinal
orphan study, McLaughlin et al. [103] reported that youth
who had been placed in foster care before the age of 2 showed
similar cortisol responses to never-institutionalized children,
while youth in prolonged institutionalization exhibited
blunted cortisol responses to psychosocial stress. These find-
ings support the hypothesis of a particularly high sensitivity
and plasticity during the first 2 years of life.

Another particularly sensitive and vulnerable period is the
later developmental stage of adolescence/puberty, which sig-
nifies a new major change in HPA axis activity, transitioning
from hyporesponsivity to a period of increased activity [88,
104–106] with continuously higher basal [95, 99, 107, 108]
and reactive [95, 107, 109–111] cortisol levels. Interestingly,
during this developmental stage, parental support does not
seem to buffer HPA axis reactivity in humans [99].
However, the autonomy and sexual maturation characterizing
this period in humans may reprogram HPA axis reactivity for
the new challenges in interaction with sex and environmental
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cues [102]. The individual, but also gender-specific onset of
gonadal hormone production (pubertal maturation completed
around the age of 16 years), plays a pivotal role in stress and
HPA axis reactivity, since estrogen secretion suppresses HPA
axis hyperactivity in women [112]. Some human studies on
ELS during adolescence reported lower baseline cortisol [113]
and blunted cortisol responses to psychosocial stress [114],
hence pointing to an opposite effect of ELS on HPA axis basal
activity and reactivity than in infancy.

Taken together, ELS during the first hyposensitive 2 years
of life may lead to a hyperactivity and hyperresponsiveness of
the HPA axis and ELS during the hyperactive phase of ado-
lescence to a hypoactive and hyporesponsive HPA axis [88].
The study by Bosch et al. [115] confirms this hypothesis by
reporting a particular association between adversities in the
first year of life, but not late childhood or adolescence, and
heightened cortisol reactivity later in life. In addition, they
reported greater cortisol output later in life after experience
of adversities during childhood, but lower cortisol output after
experience of adversities in adolescence. These age-related
differences in HPA axis activity and reactivity seem also to
be reflected in the specific risk of developing a mental disor-
der. Accordingly, after traumatization in early childhood, the
risk of developing major depressive disorder in adulthood
equals the risk of developing PTSD, while after traumatization
in adolescence, the risk of PTSD is greater than that of depres-
sion [6].

Interplay between the HPA axis and the ANS

Normally, the HPA axis and the ANS are closely interconnect-
ed at several neuroendocrine levels and their activity shows
some degree of analogy and complementarity throughout the
body. The HPA axis and the ANS are increasingly studied
together [116], as integrated and interrelated components of
an internal neural regulation system (central autonomic net-
work, CAN). Dysregulation of the central autonomic network
[117–119] may affect downstream autonomic core centers,
from the prefrontal cortex (PFC) via the amygdala and the
hypothalamus to the brain stem, thereby altering peripheral
ANS activity and overall stress responsiveness [118, 120,
121]. Accordingly, findings suggest that the appropriate regu-
lation of the HPA axis depends, at least in part, on the ANS,
especially on vagal influences [122]. On the other hand, ANS
activity is heavily implicated in the development of trauma-
and stress-related pathophysiological alterations. The signifi-
cant overlap of the fear/arousal circuitry with the CAN [123]
could, at least in part, be responsible for autonomic dysregu-
lation after ELS or trauma exposure [124]. The high comor-
bidity of stress- and trauma-related psychiatric disorders with
cardiovascular disease [125–130] confirms an important path-
ophysiological link between these disorders and autonomic
control [131–133].

With respect to these findings, some studies have reported
increased ANS activity in adults with ELS exposure. For ex-
ample, Otte et al. [134] have shown increased CA responses to
psychological stress in police academy recruits with ELS his-
tory, while O’Hare et al. [135] reported a strong association
between ELS experience and syncope frequency in adulthood.
However, the number of adult ELS-exposed studies is limited
in relation to the numerous studies assessing ANS activity in
adult PTSD patients and pointing to an increased sympathetic
and/or decreased vagal activity as a sequel of trauma [136].

Lately, several pediatric studies have sought to shed some
light on the interplay between the HPA axis and the ANS after
ELS. De Bellis et al. have reported significantly higher 24-h
urinary concentrations of CAs and their metabolites but sim-
ilar responses to CRH injection in sexually abused girls rela-
tive to matched controls [137]. In another pediatric study,
Gordis et al. [138] reported an asymmetry between concentra-
tions of salivary alpha-amylase (sAA), an indicator of SNS
functioning, and cortisol reactivity to a social stressor, with
maltreated youth showing no associations between the periph-
eral biomarkers of HPA axis and SNS activity. Pervanidou
et al. [139] reported a successive normalization of cortisol
levels but a continuous increase of CA levels after 6 months
of trauma exposure in children with PTSD following a motor
vehicle accident, suggesting a lifted cortisol-mediated restraint
on the catecholaminergic response in limbic structures (e.g.,
locus coeruleus and other brain stem centers), resulting in
enhanced ANS activity. With respect to these findings,
Pervanidou [56] has proposed a progressive divergence of
HPA axis and ANS activity following ELS, which may rep-
resent another potential pathophysiological pathway leading
to the long-term impact of ELS and the preservation of symp-
toms over the years. Hence, the low cortisol levels and en-
hanced ANS activity found in adult PTSD patients and some
ELS exposed individuals may represent a late event in the
natural history of stress-axis divergence in trauma-related dis-
orders [140].

The stress system and immune axis

The central and peripheral limbs of the stress system and the
immune axis are implicated in a very complex, two-way
neuroimmunoendocrine interplay [141–143], which impli-
cates the immune system in stress resilience, influencing pe-
ripheral and central stress-related neurobiological and neuro-
endocrine responses [144]. Acute stress-related adrenergic
and CRH-peptidergic stimulation activates the secretion of
proinflammatory cytokines, which coordinate further immune
responses (e.g., stimulation of systemic acute-phase proteins,
such as C-reactive protein, CRP) [45, 145]. Proinflammatory
cytokines also stimulate the secretion of GCs, while GCs, in
turn, help terminate the inflammatory response [143,
146–148]. A dysregulated stress response could, thus, lead
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to a dysregulation of inflammatory feedback mechanisms,
thereby promoting biological aging and the development of
inflammatory-related or immunosuppressed medical condi-
tions [54, 64, 149–151].

ELS has therefore been increasingly associated with pe-
ripheral immune dysregulation and long-term, low-grade in-
flammatory excess, leading to a proinflammatory phenotype
and an increased risk of disease with immune origin in adult-
hood [19, 33, 88, 152–156]. Although the precise underlying
mechanisms involved are still not completely understood
[141], the two major limbs of the stress system may play a
crucial role. On the one hand, an ELS-related ANS dysregu-
lation with compromised vagal activity could directly enhance
inflammation via direct vagal efferent effects of autonomic
brain regions [157–159]. On the other hand, ELS-related
HPA axis dysregulation could affect GR-mediated transcrip-
tional and post-transcriptional responses of immune-related
genes and result in reduced recovery capability [54, 160].
Human and preclinical research has confirmed GC resistance
and insensitivity in immune cells and, thus, altered inhibitory
signaling of GCs [101, 161] following repeated acute and/or
chronic stress [162, 163].

Sleep and the circadian system

The human circadian system (CS) enables the temporal orga-
nization and coordination of numerous physiologic processes
[164], such as the diurnal rhythmicity of the HPA axis and
ANS activity [165–168]. The central and peripheral CS syn-
chronizes hypothalamic CRH- and AVP-secreting neurons,
influences adrenal sensitivity to ACTH, stimulates circadian
GC hormone secretion, and displays a peripheral 24-h rhythm
of target tissue sensitivity to GCs through circadian acetyla-
tion and deacetylation of the GRs and peripheral clock gene
expression [165, 169–173]. The CS also modulates ANS ac-
tivity through projections to preautonomic hypothalamic neu-
rons and is essential for the physiologic autonomic diurnal
fluctuations seen in humans [174–176].

Recent research has focused on a potential causal role of
sleep and circadian disruption in the development of the long-
term cacostatic effects of trauma exposure [177–179].
Circadian disruption represents a critical loss of the strict tem-
poral order at different organizational levels and introduces a
breakdown of harmonious functioning of internal biological
systems [180–182], which may sensitize individuals to stress
and increase their vulnerability to stress-related disorders
[183, 184]. Acute and chronic physical and/or psychological
stress affects the CNS sleep centers [185–188] and can cause
both immediate and long-lasting sleep disruption [189–191],
which may, in turn, enhance maladaptive stress regulation
[192]. Some animal [193], and numerous human, studies have
repeatedly confirmed that ELS is independently associated
with enduring adult sleep disruption including global sleep

pathology (i.e., insomnia), as well as specific types of sleep
problems, most likely in a dose-response manner [194–205].
Sleep and circadian disruption occurring after trauma expo-
sure could thus represent a core pathway mediating the endur-
ing neurobiological correlates of ELS through stress system
dysregulation [177, 178, 190, 206–208].

Genetics and epigenetics

Human genetic background, environmental influence, DNA
methylation (methylome), and gene expression profiles
(transcriptome) are all integral to our understanding of
stress-related disorders, as their interaction modulates func-
tional sites controlling the human stress axis and may, hence,
increase or decrease the risk of psychobiological maladjust-
ment after exposure to ELS [209, 210].

Gene × environment interactions of gene polymorphisms
may influence the acute effects of trauma and modulate long-
term risk of disease development. After the first groundbreak-
ing studies on the interaction of ELSwith monoamine oxidase
A (MAOA) and the promoter region of the serotonin trans-
porter (5-HTTLPR) functional polymorphisms predicting
adult outcomes by Caspi et al. [211, 212], more recent studies
point to a vital role of further genes involved in HPA axis
function and GC sensitivity, in conjunction with exposure to
ELS [213]. The two key genes implicated to date are the
CRH-releasing hormone receptor 1 (CRHR1) and the GC
response elements of the FKBP5 co-chaperone gene [213,
214]. The interaction of ELS with specific single nucleotide
polymorphisms (SNPs) of the FKBP5 gene predicts the level
of adult PTSD symptoms [215] probably through an allele-
specific demethylation in the GC response elements of
FKBP5 leading to a resistance of tissues to GCs [216].
Additional studies confirmed that minor alleles of FKBP5
are particularly sensitive and interact with ELS to increase
aggressive behavior [217], suicide attempts [218], and depres-
sion [219]. The CRHR1 gene plays an important role in the
initiation and termination of the stress response as it influences
sensitivity of the negative feedback loop of cortisol. The in-
teraction of ELS with specific CRHR1 polymorphisms in-
creased the risk of adult depression and adult suicide attempts
[220–222]. Finally, imaging studies investigated the potential
interaction of specific polymorphisms in candidate genes and
ELS with brain development [223]. A number of studies pro-
posed a moderating effect of FKBP5 [224–226] and mineral-
ocorticoid receptor genotypes [227] on amygdala volume, re-
activity, and connectivity of adult individuals with ELS expe-
rience, thus implicating HPA axis-related genes in brain
development.

In the interaction of ELS with specific genotypes, epi-
genetic modifications play a crucial role, as they regulate
functional expression of genes by decreasing, silencing, or
increasing gene expression [228, 229]. The installment of
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such epigenetic marks in the transcriptome by early devel-
opmental challenges may play a central role in the long-
term biological trajectories of ELS through programming
effects in stress reactivity [92, 230, 231] and represents a
critical factor explaining interindividual variation in vulner-
ability or resilience. There is accumulating evidence of
gene programming and epigenetic regulation of specific
genes in the aftermath of trauma in humans [232–235].
However, gene expression profiles of PTSD patients with
and without ELS are 98% non-overlapping [236], suggest-
ing that DNA methylation changes may have a much great-
er impact during early life and possibly reflect differences
in the pathophysiology of PTSD. ELS experience has been
especially associated with epigenetic changes and altered
gene expression profiles in stress system-related genes in
the CNS (e.g., the hippocampus and amygdala) [237–240].
In particular, several GC signaling-related genes (e.g., GR
gene promoter 1F) are subject to stress- and trauma-related
epigenetic regulation throughout life and may be useful as
future biomarkers [241, 242]. For example, ELS experience
is related to postmortem changes in hippocampal neuron-
specific GR (NR3C1) promoter DNA methylation status,
implying distinct epigenetic ELS effects on hippocampal
GR expression [243]. Maternal stress during pregnancy
has been associated with epigenetic hypermethylation of
the promoter and exon 1F of the human GR gene Nr3c1
and related elevated cortisol stress reactivity in the off-
spring [244]. On the other hand, in a genome-wide blood
DNA methylation analysis, a locus in the Kit ligand gene
(KITLG; cg27512205) was shown to strongly modulate the
relation between ELS and cortisol stress reactivity [245].
Finally, cross-sectional, large-scale methylation studies have
indicated significant ELS-related differences in methylation
of a large proportion of genes responsible for HPA axis
regulation [246].

Imaging findings

ELS has been associated with remarkable structural and
functional brain changes even decades later [213, 223,
247, 248] through alterations in brain development affect-
ing behavioral, cognitive, emotional, and physiologic re-
sponses [34, 249]. The two brain structures particularly
frequently reported to be impaired in adult victims of
ELS are the amygdala and the hippocampus, strongly indi-
cating the vital prefrontal-limbic gray matter effects of ELS.
The hippocampus has a special importance due to its role
in cognition and its rich density in GR, and the amygdala
because of its pivotal role in stress responsivity. Numerous
reports and meta-analytic studies confirm the association of
ELS with reduced hippocampal volume in adulthood [223,
247, 250–254]. Concerning study results as regards the
volumetric effect of ELS on the amygdala, findings are

inconclusive [247, 250, 251, 255–258]. However, with re-
spect to amygdala responsiveness, ELS has been repeatedly
associated with facial threat- or negative emotion-related
amygdala hyperresponsiveness [223, 247, 259, 260], imply-
ing that the risk of adult depression after ELS could be
actually mediated by this preceding amygdala hyperactivity
[259, 261].

Conclusions

Coordination of the stress system is essential to develop-
ment, survival, and well-being [5, 41]. The continuum of
ELS-provoked aftermath extends from healthy adaptation
with high resilience to severe maladjustment with increased
physical and mental morbidity in later life. Despite the
resilience of many abused children, ELS is highly prevalent
in the general population and can, thus, be conceptualized
as a common developmental risk factor for disease with
high public health impact. ELS during critical phases of
perinatal and juvenile brain development with elevated
neuroplasticity is associated with impaired homeodynamic
balance, elevated cacostatic load, and reduced adaptability
to stress in adult life, consequently leading to enhanced
vulnerability. ELS disrupts developmental programming of
the related neural circuitry and results in alterations in neu-
roendocrine (re-)activity, i.e., hyper- or hypoactivation of
the stress system, associated with the adult HPA axis, glu-
cocorticoid signaling, and ANS dysregulation with related
structural and molecular changes both in the brain and in
peripheral tissues. Although most studies support a causal
relationship between ELS and psychobiological maladjust-
ment in later life, the exact developmental course of such
changes and its temporal coincidence have not yet been
fully elucidated. Understanding the pathways susceptible
to disruption following ELS exposure could provide new
insights into the neuroendocrine trajectories linking toxic
stress during developmental stages of childhood and ado-
lescence to adult maladjustment. Screening strategies for
ELS and trauma therefore need to be improved, in order
to better identify an individual’s risk level for disease de-
velopment and/or help predict his or her response to
treatment.
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