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Abstract

@ CrossMark

The interaction between obesity and bone metabolism is complex. The effects of fat on the skeleton are mediated by both
mechanical and biochemical factors. Though obesity is characterized by higher bone mineral density, studies conducted on bone
microarchitecture have produced conflicting results. The majority of studies indicate that obesity has a positive effect on skeletal
strength, even though most likely the effects are site-dependent and, in fact, obese individuals might be at risk of certain types of
fractures. Mechanical loading and higher lean mass are associated with improved outcomes, whereas systemic inflammation,
observed especially with abdominal obesity, may exert negative effects. Weight loss interventions likely lead to bone loss over
time. Pharmacological treatment options seem to be safe in terms of skeletal health; however, the skeletal effects of bariatric
surgery are dependent on the type of surgical procedure. Malabsorptive procedures are associated with higher short-term adverse
effects on bone health. In this narrative review, we discuss the effects of obesity and weight loss interventions on skeletal health.
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Introduction

Obesity is becoming a global epidemic, with 2.8 million peo-
ple estimated to die each year as a result of being overweight
or obese [1]. The worldwide prevalence of obesity virtually
doubled between 1980 and 2008 and the numbers are expect-
ed to increase further. In Europe, more than 20% of men and
women were obese in 2008, while, alarmingly, rates of obesity
and overweight are very high among children as well [2].

The interaction of obesity with bone metabolism is com-
plex and not as yet fully elucidated. Traditionally, it was
thought that obesity, as demonstrated by high body mass in-
dex (BMI), has protective effects on the skeleton [3]. BMI is
incorporated in the fracture risk assessment tool (FRAX), and
higher BMI is associated with lower future fracture risk.
However, this notion has recently been challenged, with stud-
ies showing that obesity is associated with lower risk for cer-
tain fractures but higher risk for others [4]. Results from ani-
mal studies have also resulted in conflicting findings.
Moreover, medical and surgical management of obesity can
also directly affect bone metabolism.

In this narrative review, we discuss the molecular mecha-
nisms associated with the interaction between obesity and the
skeleton and discuss the effects of obesity on the risk of frac-
tures and on bone mineral density (BMD). We also review the
effects of treatment interventions for obesity on skeletal
health.

Pathophysiology

Various molecular pathways have been proposed by which
adipose tissue communicates with the bone microenvironment
(Fig. 1). This involves systemic factors such as vitamin D,
leptin and proinflammatory cytokines, and local factors main-
ly associated with local changes in the bone marrow
microenvironment.
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Leptin

Leptin, a cytokine-like hormone, is the protein product of the
ob (Lep) gene. It is produced primarily by adipocytes and is
involved in the regulation of appetite and energy homeostasis
by inducing satiety signals in the hypothalamus (Fig. 1).
Systemic levels of leptin increase with increased fat content.
Leptin plays an important role in bone metabolism with both
direct and indirect effects, by peripheral and central
(hypothalamic) pathways, though in vivo studies have pro-
duced seemingly discrepant results, depending on the experi-
mental design. In vitro, leptin stimulates the differentiation of
stromal cells to osteoblasts [5], increases proliferation of oste-
oblasts, and inhibits osteoclastogenesis, without affecting ma-
ture osteoclasts [6]. Deficiency in leptin signaling, through
knockout of the leptin receptor gene, decreases bone volume
and BMD [7], indicating an important role of leptin in bone
homeostasis. In mice, peripheral action through the adminis-
tration of low doses of leptin seems to promote bone forma-
tion, without inducing anorexigenic actions of the hormone to
the central nervous system [8]. In animal models, increased
leptin levels caused by increased adipose tissue seem to have a
protective role in / effect on bone tissue [9]. By contrast,
leptin-deficient models have increased cancellous bone vol-
ume fraction [10] and increased trabecular content (volume
and thickness), indicating a possible antiosteogenic role of
leptin [11]. The negative effects of leptin in bone homeostasis
seem to be mediated through its central hypothalamic action,
as intracerebroventricular infusion of leptin in both leptin-
deficient and wild-type mice induces bone loss [12]. This
effect seems to be mediated by activation of the sympathetic
nervous system (Fig. 1) [13]. Data in humans are also con-
flicting, indicating either a beneficial role of leptin [14, 15] or
a detrimental one [16, 17], this probably being due to limita-
tions of association studies. Moreover, obesity is characterized
by leptin tolerance, at least as concerns the hypothalamus, as
administration of leptin has not proved to be an effective treat-
ment for obesity [18]. Overall, the high levels of leptin ob-
served in obese individuals are unlikely to have negative ef-
fects on bone metabolism.

High-fat diet

There are data from animal studies implying possible negative
effects of obesity on bone metabolism. These effects are likely
to be mediated through local alterations in the bone microen-
vironment or through systemic effects of obesity, mainly
through inflammation. One of the most commonly used
models to study the effects of adiposity on bone metabolism
is obesity caused by a high-fat diet (HFD). Trabecular BMD
decreased in mice that were fed with HFD [19], while obesity
induced by HFD is associated with higher bone tissue quantity
but worse bone quality [20]. Obesity induced by HFD causes
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Fig. 1 Principal central and peripheral molecular signaling between bone,
adipose tissue, and SNSLeptin action has, through the hypothalamus,
direct and indirect effects on osteoblast and osteoclast activity that alters
bone metabolism. IGF-1 and inflammation increase cortisol response of
fat tissue and proinflammatory cytokines, such as TNF-a, and increase
cortisol action on bone by increasing the expression of 113-HSDI.
Insulin promotes the differentiation of osteoblasts through the insulin

significant bone resorption [21] and can increase bone marrow
adiposity leading to alteration of trabecular architecture. The
bone marrow (BM) microenvironment in obesity seems to be
associated with bone resorption; meanwhile, accumulation of
adipocytes in the BM microenvironment promotes inflamma-
tion that leads to increased bone resorption by enhancing
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osteoclastogenesis and inhibiting osteoblast development
[22]. Adiposity is associated with proinflammatory cyto-
kines such as TNF-a and IL-6. TNF-« stimulates osteo-
clastogenesis via the activation of NFkB in hyperphagia-
induced obesity by increasing the expression of c-fms,
RANK, and RANKL [23]. Several studies have
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demonstrated a role of TNF-« in obesity-related bone loss
through its enhancement of adipogenesis and osteoclasto-
genesis and suppression of osteoblastogenesis [24, 25]. In
addition, HFD-induced obesity, through IL-6, suppresses
osteoblasts, upregulates osteoclasts, and inhibits osteo-
clast apoptosis [26]. Acetoacetyl-CoA synthetase
(AACS) is a ketone body-utilizing enzyme that converts
acetoacetate to acetoacetyl-CoA in the cytosol and conse-
quently provides acetyl units as the precursors for lipo-
genesis [27]. AACS mRNA expression in the adult femur
is increased in HFD, in the differentiated osteoclast cells
(RAW 264), and upregulated by IL-6 only in osteoclasts.
These results indicate that bone resorption is induced by
HFD through bone inflammation and increased ketone
utilization [28].

11B-hydroxysteroid dehydrogenase type 1

The negative effects of glucocorticoids on bone metab-
olism are well recognized. 11f3-hydroxysteroid dehydro-
genase type 1 (113-HSDI1) is an enzyme that converts
the inactive glucocorticoid cortisone to the active gluco-
corticoid cortisol and is expressed in both osteoblasts
and adipocytes [29]. Its expression is affected by local
factors and activation results in higher local exposure to
active cortisol. Local activity of 113-HSDI1 is believed
to determine the skeletal response to different types of
glucocorticoids [30]. The local expression of 113-HSD1
in osteoblasts is upregulated by proinflammatory cyto-
kines (IL-1 and TNF-a) (Fig. 1) [31]. This constitutes
another mechanism by which adipocyte accumulation in
the bone marrow can have detrimental effects on bone
metabolism.

Visceral adipose tissue (VAT) is metabolically more active
than subcutaneous adipose tissue (SAT), and this might be
why some human studies have indicated that VAT might be
associated with a less favorable skeletal phenotype, though
most studies do not find a negative association between SAT
and bones.

Vitamin D

Vitamin D deficiency is very common among obese individ-
uals and may have significant implications for skeletal health.
Supplementation with vitamin D is more effective in increas-
ing its serum levels in non-obese children and adults com-
pared to obese, possibly due to sequestration of vitamin D in
the body fat stores [32, 33]. It has been noted that vitamin D
deficiency is common in morbidly obese individuals and up to
43% of those with vitamin D deficiency also suffer from sec-
ondary hyperparathyroidism [34].
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Conjugated linoleic acids and calcium
supplementation

Poor calcium intake during adolescence, especially in the
presence of vitamin D deficiency, might contribute to fracture
risk; however, obese and overweight adolescents have in-
creased calcium retention (as assessed by calcium intake, fe-
cal, and urinary calcium) when compared with healthy-weight
subjects of the same age, and this is correlated positively with
calcium intake [35]. In animal models, co-supplementation of
conjugated linoleic acids (CLA) and calcium has beneficial
effects on bone and energy-related metabolic markers in tibia
in obese animals fed with HED. It prevents bone loss induced
by HF feeding and increases the expression of bone formation
markers, such as bone gamma-carboxyglutamate protein 2
(Bglap2) and collagen Il (Collal) [36].

Fat and bone molecular crosstalk

Interestingly, the crosstalk between fat and bone seems to be
more complicated and to also involve effects of bone metab-
olism on energy homeostasis. In animal models, there are data
showing positive effects of calcium on energy homeostasis.
Supplementation with CLAs and calcium in adult obese mice
decreases body weight and body fat [37, 38]. It also modulates
the expression of genes involved in energy metabolism, insu-
lin receptor (Insr), and leptin receptor (Lepr) [36]. Osteocalcin
is a bone matrix protein and is considered a marker of bone
formation. Animal studies have indicated that the
undercarboxylated form of osteocalcin regulates energy ho-
meostasis by enhancing B cell proliferation, insulin secretion,
and sensitivity (Fig. 1) [39]. Emerging evidence shows that
there is also crosstalk between bone and adipose tissue
through central signals. For example, osteoblast-derived
lipocalin 2 (LCN2), a protein that was previously known as
an adipokine, suppresses appetite and decreases food intake
by signaling directly to melanocortin 4 receptor-expressing
hypothalamic neurons [40].

Bone density and microarchitecture

Obese individuals have higher BMD than the normal weight
population, though it has been postulated that this might be an
artifact due to overlying soft tissue. Moreover, the coefficient
of variation between repeat measurements is higher in obesity
[41] and therefore longitudinal BMD monitoring in obese
individuals might be challenging.

BMD measurements using quantitative computed tomog-
raphy (QCT) and peripheral QCT (pQCT) are not as affected
by overlying soft tissue, providing a more reliable way to
assess bone density in obesity. Moreover, they provide sepa-
rate information about the cortical and trabecular
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compartment of the bone. In a cross-sectional case-control
study, it was demonstrated that obese women had higher vol-
umetric BMD (vBMD) at the lumbar spine and that both
obese men and women had higher vBMD at the distal radius
and distal tibia when compared to normal weight individuals
[42]. This suggests that the higher BMD is a true effect and not
an artifact caused by overlying soft tissue. Moreover, param-
eters of bone microarchitecture were better in obese compared
to normal weight individuals, suggesting higher skeletal
strength.

Lean mass, which is usually higher in obese individuals
along with fat mass, correlates positively with BMD and pa-
rameters of bone microarchitecture, as measured by pQCT
[43, 44]. This is especially relevant to cortical thickness and
area, whereas total fat mass has a positive correlation with
trabecular number and density even after adjusting for lean
mass [44]. It seems that fat mass is not the main contributing
factor to increased bone strength, while muscle force (repre-
sented by lean mass) is associated with osteogenic adaptation
[45]. Fat mass does not seem to have a positive association
with BMD in obese adults [46] and adolescents [47]. A case
control study has shown that excess weight or higher BMI
does not have a proportional positive effect on bone strength
parameters. Moreover, lean mass seems to be an important
determinant of bone microarchitecture, geometry, and metab-
olism when compared to fat mass [48].

As VAT is metabolically active and associated with inflam-
mation, there has been growing interest in the differential ef-
fects of VAT and SAT. In a study investigating the correlation
of visceral fat with skeletal parameters in the peripheral skel-
eton, VAT was measured using CT scans, and skeletal bone
microarchitecture parameters were measured by high-
resolution pQCT (HR-pQCT) at the distal radius and tibia.
The investigators found that higher visceral fat was associated
with higher BMD and improved microarchitecture with the
exception of higher cortical porosity at the distal radius.
When findings were adjusted for BMI, they were no longer
significant, suggesting that the effect is mostly associated with
obesity in general rather than with visceral fat [49].

In contrast, in another study examining the correlation of
VAT with vBMD using data from CT scans, researchers found
that VAT had an inverse correlation with vBMD at the spine
and that there was an inverse correlation with low muscle
attenuation (a marker of fat infiltration in the muscle) even
after adjusting for age, sex, and BMI [50].

The trabecular bone score (TBS) is a dual-energy x-ray
absorptiometry (DXA)-derived variable which has a good cor-
relation with bone microarchitecture and predicts vertebral
fracture risk independent of BMD [51]. However, TBS seems
to be affected by overlying soft tissue [52]. TBS has been
shown to have a negative correlation with body size variables,
and this correlation is higher for waist circumference than for
other variables and for trunk fat mass [53, 54]. However, the

latter finding is probably not reflective of higher fracture risk.
In older men, obesity variables were positively associated
with lumbar spine vBMD, but had a negative correlation with
TBS, while the association between vBMD and TBS was
variable and depended significantly on BMI and lean trunk
mass [55]. It is therefore postulated that TBS might not predict
fracture risk in individuals with high BMISs or high trunk lean
mass as accurately as in normal weight subjects.

It has been postulated that the effects of fat on the skeleton
might differ according to age and that they might have more
pronounced negative effects during growth. In a pQCT study
in girls post- adolescence where girls were divided into groups
according to the percentage body fat rather than their weight,
the girls with higher fat content were found to have lower total
CSA and cortical CSA and lower bone strength after adjusting
for body weight [56]. In a longitudinal study in adolescents,
VAT was inversely associated with bone strength at the tibia
and radius, as measured by pQCT, in girls but not in boys, and
the association was more significant for younger rather than
older girls, indicating that early obesity might have more pro-
nounced effects on bone accrual [57].

In young adults with a history of early onset severe obesity
at a young age, both obese men and women had improved bone
parameters as compared to normal weight controls, but after
adjustment for BMI, the findings were attenuated [58].
However, obese men had lower radius cross-sectional area after
adjustment for BMI. Interestingly, even though as expected,
obese individuals had lower levels of physical activity, there
was no correlation between bone parameters and physical ac-
tivity. Overall, these findings suggest that obesity during skel-
etal growth might interrupt the skeletal adaptation to mechan-
ical forces. This might either be associated with decreased
physical activity in obese individuals, with direct effects of fat
on bone metabolism, or come about through negative effects on
the muscles. Interestingly, in young girls, researchers found a
negative association between SAT and bone strength in the
weight bearing tibia, and this finding was correlated with
higher fat infiltration in the calf and thigh muscles [59].

Obesity is associated with low bone turnover as measured
by bone turnover markers [60]. To our knowledge, there are
no histomorphometric data on bone mineralization in obese
humans, apart from occasional reports showing abnormal
mineralization compatible with mild osteomalacia, these,
however, in the context of vitamin D deficiency and second-
ary hyperparathyroidism [61]. Data from animal studies indi-
cate that obesity induced by HFD, despite inducing higher
bone mass probably caused by an increase in mechanical load-
ing, leads to reduced bone formation [62]. This is associated
with an increase in bone marrow adiposity. In
histomorphometric studies, obesity has been shown to induce
lower osteoblast surface, osteoid surface, and osteoid volume,
indicating low osteoblastic activity, though with no change in
the mineralization process [63].
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In conclusion, the existing data seem to differ depending on
the technique employed to estimate BMD and
microarchitecture and the methods used to assess fat mass,
VAT and SAT, age, and bone compartment (cortical vs trabec-
ular). In general, obesity results in higher BMD and improved
bone microarchitecture parameters, albeit it might be associ-
ated with negative effects (mostly VAT), especially during
bone accrual, resulting in impaired adaptation of the skeleton
to the increased weight.

Fracture risk in obesity

Data regarding fracture risk in obese people are somewhat
contradictory (Table 1). Originally, it was thought that fracture
rates in obese individuals were lower compared to normal
weight individuals due to the higher areal BMD (aBMD)
and local fat padding. The association of BMI with fracture
risk, however, is more complex and seems to be different
depending on the skeletal site [64, 65]. Data from a multisite,
multiethnic cohort of 1924 women were analyzed and dem-
onstrated that obesity is associated with increased aBMD but
lower bone strength relative to load, with increased fracture
hazard and increased impact forces in falls [66]. Higher ap-
plied loads from higher body weight may contribute to in-
creased fracture risk during certain activities [67].

In a study in older men (> 65 years), it was demonstrated
that overweight/obese men had a lower risk of hip, clinical
vertebral, and upper limb fractures, although there was no
association between BMI and the risk for proximal humerus
and tibial fractures [65]. However, it should be noted that in
the above study, the control group consisted of men with BMI
<25 kg/mz; therefore, men with lower BMI and thus higher
fracture risk were apparently included. In a large, multination-
al, prospective study of postmenopausal women, obese wom-
en were shown to have a higher risk of ankle and upper leg
fractures and a lower risk of wrist fractures as compared to
non-obese women [4].

In a meta-analysis of 25 prospective cohorts, including
398,610 women with an average age of 63 years and a
follow-up for approximately 2.26 million person-years, it
was demonstrated that even though osteoporotic fractures as
a whole were observed less often in obese compared to non-
obese women (HR 0.85, 95% CI 0.82—0.88), upper arm frac-
tures were observed more often, while there was no associa-
tion between BMI and lower leg fractures [64]. As previously
demonstrated, low BMI was associated with a higher risk of
all osteoporotic fractures but was, however, protective against
lower leg fractures. The differences in the effects of obesity at
different skeletal sites are thought to be related to differences
in the pattern of falls and the characteristics of mechanical
forces induced by a fall. However, it should be noted that
differences among studies might also be related to the control
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Table 1 Fracture risk in

obese individuals Upper limb Lower limb Ref.
compared to normal
weight l ! 83
! T 4
1 — 82
1 86
1 87

population. Including subjects with low BMI as controls
might mask the increased fracture risk associated with obesity
or increased risk for certain fractures.

Interestingly, differences in fat distribution seem to be im-
portant for skeletal health. Two separate recent meta-analyses
showed that abdominal obesity might in fact be associated
with higher hip fracture rates [68, 69]. Higher waist circum-
ference and higher waist to hip ratio conferred a higher risk of
hip fracture and individuals with a waist circumference higher
than 105 cm had a 55% higher risk by comparison with those
with a waist circumference of less than 80 cm [68]. The dif-
ferential effects of visceral fat and subcutaneous fat to system-
ic inflammation might be the causal factor behind this finding.

Effects of weight loss interventions on bone
Diet

The effects of restricted diet (RD) on body composition and
musculoskeletal health in middle-aged obese female rats were
evaluated and show that RD after prolonged HFD has a det-
rimental impact on bone matrix, remodeling, and microstruc-
ture (suppressed bone formation and increased bone resorp-
tion), probably through decreased insulin-like growth factor-1
and leptin, elevated adiponectin and proinflammatory mecha-
nisms (increased expression of TNF-o messenger RNA) [70].
Diet-induced weight loss in obese patients is accompanied
by increased bone loss [71, 72]. It is also associated with an
increase in markers of bone formation (serum osteocalcin) and
bone resorption (serum N-telopeptide of type I collagen,
pyridinoline, deoxypyridinoline) [73]. Another interesting
finding is that a history of chronic dieting behavior is associ-
ated with detrimental effects on bone health, even in obese
women [74]. Weight loss is associated with higher calcium
intake requirements. In a study evaluating true fractional cal-
cium absorption, women randomized to energy-restricted diet
for weight loss had lower calcium absorption compared to
women randomized to a weight maintenance diet [75].
Conversely, in premenopausal women, mild-to-moderate
weight reduction for a period of 3 months did not seem to
have detrimental effects on bone strength, as assessed by
pQCT [76], even after a 9-month weight maintenance period
[77]. Moreover, during a 1-year weight loss maintenance
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program following weight loss by restricted-energy-diet, there
were no negative effects on BMD and bone mineral content
(BMCO) [78].

Potential strategies to avoid bone loss associated with diet-
induced weight loss include higher calcium intake and exer-
cise. Energy restriction is associated with reduced urinary cal-
cium excretion; however, a high-protein diet rich in calcium
prevents increases in bone resorption markers and minimizes
bone loss when compared to a high-protein diet alone [79]. In
healthy overweight premenopausal women who lost 7.2 +
3.3% of body weight (5.5 + 3.2 kg) after 6 months, intake of
1 g Ca/day prevented bone loss and intake 1.8 g Ca/day in-
creased BMD [80].

Exercise during weight loss

In animal models, exercise during weight loss seems to protect
from bone loss. Combinations of diet and exercise appear to
be of great importance for losing weight without affecting
bone mass [81]. The moderate intensity exercise improved
the tibia BMD of obese rats and was associated with preser-
vation of microarchitecture parameters as compared to weight
loss alone. Another study has shown that the voluntary wheel
running exercise under a high-fat diet increases metaphyseal
trabecular density and decreases marrow cavity, while even-
tually decreasing maximum flexure load in the femoral neck,
this showing the complex interaction between physical activ-
ity and obesity [82]. Moderate treadmill exercise reduced the
body weight of obese Zucker rats without causing significant
differences in femoral or tibial bone mass [83].

In humans, the data are somewhat contradictory. A 1-year
randomized, controlled trial showed that exercise training
with diet-induced weight loss cannot prevent hip bone loss
and the associated high bone turnover [84]. These changes
persist after partial weight regain independently of continued
weight-bearing aerobic exercise [85]. However, in another
randomized trial, older obese individuals who lost weight with
a combination of diet and exercise rather than diet alone did
not exhibit increases in bone turnover, and this was associated
with an attenuation of the observed hip BMD loss [86]. Even
though it seems that exercise is unlikely to be enough to pre-
vent bone loss induced by weight loss, it seems that it attenu-
ates the effects of weight loss and should therefore be encour-
aged alongside weight management strategies in order to min-
imize bone loss.

Pharmacological management of obesity

Orlistat, a gastrointestinal lipase inhibitor, an agent that has
been approved for the treatment of obesity for many years,
had no significant effect on biomarkers of bone formation
and resorption when given for 21 days to obese men [87]. A
relative increase in bone resorption but no changes in bone

mass and density were observed when it was administered for
1 year [88].

Liraglutide is a GLP-1 analog, initially licensed for the
management of T2DM, that was recently licensed both by
the Food and Drug Administration (FDA) and European
Medicines Agency (EMA) for the management of obesity,
albeit at a different dose (3 mg daily) to that used to treat
T2DM. There are some data on the effects of liraglutide on
bone metabolism in both animal and human studies. In animal
studies, liraglutide has been shown to exert anabolic effects on
bone [89, 90]. In humans, in a randomized control trial,
liraglutide (1.2 mg) was administered for 52 weeks in healthy
obese women after achieving weight loss of 12% with a low-
calorie diet [91]. Administration of liraglutide resulted in pres-
ervation of BMC and increase in bone formation markers as
compared to the control group that experienced loss of BMC
and no change in bone formation. Both the liraglutide and
control groups maintained their initial weight loss. In two
different meta-analyses of RCTs conducted in patients with
T2DM (and using the lower dose), the use of liraglutide was
associated with either similar or lower risk of fractures com-
pared to controls [92, 93]. Even though there are no data on
skeletal effects from the weight loss studies with liraglutide,
results so far are reassuring.

A combination of phentermine and topiramate is licensed
by the FDA for the treatment of obesity in the USA. The
effects of the combination on bone metabolism have not been
investigated in trials; however, its use has been associated with
metabolic acidosis [94] which could potentially have negative
effects on bones. This is a theoretical concern and investiga-
tions into the issue are warranted.

Lorcacerin is a 5-HT2C receptor agonist approved by the
FDA for the treatment of obesity. In a double-blind, random-
ized, placebo-controlled trial, lorcacerin had no effects on total
BMC and total BMD [95].

A combination of naltrexone hydrochloride and bupropion
hydrochloride is approved for obesity by the FDA and EMA.
To date, there are no data on its effects on bone metabolism.

Bariatric surgery

Bariatric surgery leads to weight loss by restricting the capac-
ity of the stomach (restricting procedures) or causing malab-
sorption of calories and nutrients (malabsorptive procedures),
or by a combination of both. In addition, bariatric procedures
often cause hormonal changes which are thought to promote
weight loss. There are four major types of bariatric surgery,
Roux-en-Y gastric bypass (RYGB), laparoscopic adjustable
gastric banding (AGB), sleeve gastrectomy (SG), and duode-
nal switch with biliopancreatic diversion. These procedures
lead to different results, especially as regards average excess
weight loss and the improvement of obesity-related comorbid-
ities. Bariatric surgery patients show rapid weight reduction
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for the first 4 months following surgery. Slower weight loss is
observed for the remaining follow-up of 4 years.

Gastric bypass and sleeve gastrectomy are associated with
greater initial weight reduction rate than gastric banding [96].
Trends in body weight post-surgically show that patients un-
dergoing RYGB exhibit the greatest weight loss, patients un-
dergoing SG experience less weight loss and patients under-
going AGB have the least weight loss [97].

Several studies have investigated the effects of bariatric
surgery on BMD and bone turnover markers. The results are
somewhat conflicting as regards investigation of bone loss
after bariatric surgery, and again, there are differences among
the types of procedures and methods of BMD measurement,
while there are also differences associated with baseline vita-
min D and parathyroid function status.

Effects of bariatric surgery on bone turnover

Bariatric surgery has been associated with increased bone
turnover [98, 99]. RYGB in morbidly obese patients increases
bone resorption 1-year postoperatively [100] and this is inde-
pendent of weight loss [101]. Bone resorption can predict
bone loss, a longitudinal study having demonstrated that mor-
bidly obese patients have an increase in bone resorption
markers as early as 3 months after RYGB associated with a
decrease in BMD after 9 months [98]. Bone resorption is
increased also after LSG, as demonstrated by a significant
increase in N-telopeptide crosslinks (NTx) [102]. Marked
weight loss after long limb-biliopancreatic diversion (BPD-
LL) increases bone turnover [103] and increases in bone turn-
over are associated with percentage of lost BMI in patients
who underwent biliopancreatic diversion [104].

Effects of bariatric surgery on BMD

A decrease in BMD occurred during weight loss in morbidly
obese patients undergoing vertical banded gastroplasty
(VBG). The change in BMD was evident 1 year post-
surgery and was associated with the degree of weight reduc-
tion [105]. The marked weight loss after long limb-
biliopancreatic diversion (BPD-LL) has been associated with
decrease in BMD 1 year after surgery [103], RYGB in mor-
bidly obese patients decreases BMC and BMD 1 year postop-
eratively [106] and, similarly, in a study with follow-up for a
year after gastric bypass surgery there was total hip BMD
decrease as well as at the lumbar spine [107]. Fewer data are
available for the relatively newer sleeve gastrectomy. A lon-
gitudinal study shows that laparoscopic sleeve gastrectomy
(LSG) may lead to a significant decline in BMD at the spine
and proximal femur [71] and in a study comparing the effects
of RYGB and SG on age- and BMI-matched morbidly obese
women, BMD at the femoral neck and the lumbar spine 1 year
after bariatric surgery was similar between the two groups
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[108], suggesting that even if SG is not a typical
malabsorptive procedure, it might have effects that are similar
to RYGB. In contrast, in another 2-year follow-up study of
patients undergoing LSG, a significant increase in BMD of the
lumbar spine was demonstrated mainly during the first year
post-surgery [109]. However, in this study, patients at baseline
had vitamin D deficiency and secondary hyperparathyroidism
which were corrected during follow-up. In a meta-analysis of
studies evaluating LS and FN BMD post-bariatric surgery, it
was shown that bariatric surgery was associated with lower
FN but not LS BMD [110]. As DXA can be affected by over-
lying soft tissue, it has been suggested that weight loss can
result in factitious loss of BMD. In a study comparing QCT
and DXA post-RYGB, there was loss of LS BMD with both
modalities, whereas at the femur, the loss of aBMD observed
with DXA was not confirmed with QCT [111]. Studies in the
peripheral skeleton using HR-pQCT indicate that post-
bariatric surgery, the cortical compartment of bone is affected
and this results in decreased bone strength, which is more
significant for the tibia than for the radius [112, 113]. In longer
follow-up studies (2 years), even though cortical bone loss
stabilized after 12 months, further deterioration in trabecular
parameters was observed at 24 months [114]. Results, how-
ever, have not been unanimous, with occasional studies show-
ing preservation of bone strength [115].

Effects of bariatric surgery on fracture risk

There are some data concerning the effects of bariatric surgery
on fracture risk, with most studies reporting a higher risk of
fracture post-surgery [116—118]. The type of surgical proce-
dure seems to play a very important role, malabsorptive pro-
cedures being associated with a higher risk and restrictive ones
having minimal, if any, effect on the risk of fracture [116,
118].

In a historical cohort of patients who had undergone bar-
iatric surgery (mostly gastric bypass, a malabsorptive proce-
dure), a 2.3-fold risk of any fracture was demonstrated after a
median follow-up of 7.7 years [117]. Interestingly, there was
no correlation between the pre-operative history of fracture
and fracture risk post-surgery, indicating that the higher risk
was not due to a higher baseline risk but rather to the effect of
the bariatric procedure itself. A study with a mean follow-up
of 4.8 years, in which most patients had undergone a restric-
tive procedure, a 1.21-fold risk of any fracture was observed
post-surgery, while there was a trend towards more fractures
around 1 to 2 years after the procedure [116]. Another study
showed a change in the pattern of fractures post-bariatric sur-
gery, shifting from a pattern typically associated with obesity
with a high risk of distal lower limb fractures and lower risk of
upper limb fractures to a pattern associated with osteoporosis
and more fractures of the upper limb, vertebral pelvic, hip, and
femur [118]. A single study did not demonstrate any
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difference in the rates of fracture between patients who had
undergone bariatric surgery and controls; however, in this
study, mean follow-up was only 2.2 years [119]. Moreover,
the most common procedure was AGB (60% of patients).

Patients who had undergone RYGB exhibited a 43%
higher risk of non-vertebral fractures compared to patients
who had undergone AGB, and the higher risk was observed
at least 2 years post-surgery [120].

Mechanisms of skeletal effects of bariatric surgery
and prevention strategies

Possible explanations for the bone loss post-bariatric surgery
include unloading, malabsorption of calcium and vitamin D
with secondary hyperparathyroidism, malabsorption of other
nutrients, and alteration in the gut hormone profile. Bone loss
after surgery for morbid obesity could be an adaptation of the
skeleton to the reduction of mechanical loading [121], and this
is why in studies evaluating the peripheral skeleton the effects
of bariatric surgery are more pronounced in the weight bearing
tibia. This is probably the mechanism underlying the changes
seen after purely restrictive procedures. However, in
malabsorptive procedures, nutrient deficiency and secondary
hyperparathyroidism probably play a significant role. Low
serum 250HD levels and poor absorption of calcium seem
to be related to secondary hyperparathyroidism observed in
women who had undergone RYGB [122], and there is asso-
ciation between changes in the cortical bone parameters and
changes in PTH post-surgery [112]. A 6-month prospective
clinical trial in obese patients who underwent RYGB showed
a decrease in Ca absorption without alteration of the Ca-PTH
axis, suggesting the implication of other regulating hormones
[123].

Early studies have shown that jejunoileal bypass (end-to-
side jejunoileostomy) for the management of morbid obesity
increases the possibility of 2SOHD deficiency, with vitamin D
supplementation restoring it to normal levels [124], while
others observed that vitamin D levels returned to postopera-
tive levels without the need for supplementation, possibly due
to much higher mobilization of fat stores [125].

Serum OPG levels negatively correlated with the bone re-
modeling markers osteocalcin, 3-CTX, and PINP, suggesting
a possible role of the OPG/RANKL system in bone metabo-
lism after biliopancreatic diversion or laparoscopic RYGB
[126]. Sclerostin, an endogenous inhibitor of the Wnt pathway
which plays an important role in bone formation and remod-
eling, is correlated with the ongoing loss of BMD and this is
independent of the type of bariatric surgery (RYGB or SG)
[127]. The increase in the sclerostin levels could in theory be
due to unloading from weight loss; however, interestingly,
marked increases were observed from the first month post-
surgery and were independent of weight loss.

Lifelong adequate supplementation with calcium and vita-
min D after malabsorptive procedures is extremely important.
Also, as with diet-induced weight loss, there have been some
attempts to attenuate bone loss with physical exercise. In a 24-
month, randomized, controlled study evaluating the effects of
an intervention including a combination of high vitamin D and
calcium supplementation with exercise post-bariatric surgery,
the intervention group had attenuated increase in bone turn-
over markers and less pronounced bone loss as compared with
the non-intervention group [128]. In another study, a weight-
bearing and aerobic exercise intervention program post-
bariatric surgery resulted in less pronounced bone loss which
was associated with preservation of muscle mass [129].

The American Association of Clinical Endocrinologists
(AACE), The Obesity Society (TOS), and the American
Society for Metabolic and Bariatric Surgery (ASBMS) guide-
lines recommend supplementation with vitamin D, at least
3000 IU per day. Preoperative determination of calcium is
preferred and supplementation with 1200-1500 mg of essen-
tial, dietary, or citrate, calcium is also recommended [130].

Conclusions

The relationship between obesity and bone metabolism is
complex and includes several factors. Mechanical loading,
as expected, exerts positive effects; however, low-grade sys-
temic inflammation is potentially harmful. Effects might differ
depending on the age and children, and adolescents are prob-
ably at higher risk of negative effects. Weight loss interven-
tions are very important to treat obesity, and strategies to pre-
vent the associated bone loss are needed.
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