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Abstract
There is growing use of selective serotonin reuptake inhibitor antidepressant (SSRI) medications during the perinatal period to
treat maternal affective disorders. Perinatal SSRI exposure can have a long-term impact on offspring neuroplasticity and behav-
ioral development that remains to be fully elucidated. This mini-review will summarize what is known about the effects of
perinatal SSRIs on plasticity in the developing hippocampus, taking into account the role that maternal stress and depression may
have. Emerging clinical findings and research in animal models will be discussed. In addition, sexually differentiated effects will
be highlighted, as recent work shows that male offspring are often more sensitive to the effects of maternal stress, whereas female
offspring can be more sensitive to perinatal SSRIs. Potential mechanisms behind these changes and aims for future research will
also be discussed. Understanding the impact of perinatal SSRIs on neuroplasticity will provide better insight into the long-term
effects of such medications on the health and well-being of both mother and child and may improve therapeutic approaches for
maternal mood disorders during the perinatal period.

Keywords Antidepressants . Perinatal depression . Prenatal stress . Neurogenesis . Hippocampus . Adolescence . Sex
differences . 5-HT . Serotonin

Introduction

Up to 20% of women are diagnosed with depression or anxiety
during the perinatal period [1–4]. These affective disorders can
have detrimental effects for both the mother and developing
child, thus treatment is needed [4, 5]. Many antidepressant
treatments are available to treat maternal affective disorders,
with selective serotonin reuptake inhibitor medications
(SSRIs) being the recommended first line of treatment [4, 6,
7]. SSRIs, with the exception of paroxetine, are considered safe
for use during pregnancy as they have no major teratogenic

effects on the fetus [8]. SSRI prescription rates for pregnant
women in industrialized countries (including Canada, Iceland,
Denmark, Sweden, UK, Italy, the Netherlands, and France)
range between 2 and 7% and between 5 and 13% in
Australia and the USA [6, 7, 9–12]. These medications are
expected to promote maternal mental health and thus promote
the health and well-being of both the mother and child [13].
However, SSRIs can cross the placenta and, to a lesser degree,
are found in breast milk, thereby modulating the serotonergic
environment for the developing fetus and having potentially
long-term effects on neurodevelopment [14–17].

Clinical research has shown that children exposed to SSRIs
prenatally may be at increased risk of behavioral abnormali-
ties including attentional deficits, neuropsychiatric disorders,
and neurodevelopmental disorders [18–20]. As the hippocam-
pus is a key mediator of behavior and cognition and receives
substantial serotoninergic innervation, such effects are likely
linked to SSRI-related changes in hippocampal development.
Therefore, this mini-review will focus on how perinatal SSRIs
affect plasticity in the developing hippocampus. First, we will
briefly review how SSRIs during the perinatal period may
alter the developing serotoninergic system, and then, we will
review what is known about perinatal SSRI effects on
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biomarkers of neuroplasticity in clinical studies and measures
of hippocampus plasticity from work in laboratory rodent
models. Early-life exposure to maternal mental illness, in the
presence of SSRIs, can also have a persistent effect on off-
spring neurobehavioral outcomes [21, 22]. Thus, the implica-
tions of both perinatal SSRIs and maternal stress-related dis-
orders will be discussed in terms of offspring outcomes where
possible [23, 24]. Understanding the long-term effect of peri-
natal SSRIs on hippocampus plasticity will aid in understand-
ing the risks and benefits of exposure to these medications
during the perinatal period.

Serotonin, SSRIs, and the developing
hippocampus

During development, serotonin (5-hydroxytryptamine or 5-
HT) plays an important role in regulating proliferation, migra-
tion, and differentiation of neurons as well as axonal connec-
tivity and synaptic pruning [25–27]. A number of studies in-
dicate that serotonin signaling during early life is critically
involved in the development of neuronal circuits [27–32].
Hence, any changes to serotonin levels and/or serotonergic
system functioning during the perinatal period could disrupt
the development of not only the serotonergic system in infants
but also countless brain regions which receive serotonergic
input, such as the hippocampus.

SSRIs act by blocking the serotonin transporter (SERT) on
the presynaptic neuronal membrane and subsequently reduc-
ing serotonin reuptake, increasing serotonin’s concentration in
the synaptic cleft and aiding in chemical transmission between
neurons which can have mood-stabilizing effects. As perinatal
SSRIs target maternal SERT activity and are present in both
the placenta and, at much lower levels, in breast milk [33], the
use of such medications during pregnancy and lactation sug-
gests an effect on infant neural development. The conse-
quences of perinatal SSRI exposure may not occur immedi-
ately after birth but may manifest later during childhood, ad-
olescence, or even in adulthood [14, 34, 35].

Perinatal SSRI treatment can increase hippocampal seroto-
nin levels in adolescent and adult male mice [36] and pread-
olescent male and female offspring [37]. Interestingly, early-
life exposure to SSRIs also normalizes hippocampal levels of
serotonin and serotonin’s metabolite 5-hydroxyindolacetic ac-
id (5-HIAA) in prenatally restraint stressed offspring at
weaning [38], serotonergic transmission in the ventral hippo-
campus of adolescent rat offspring after prenatal dexametha-
sone treatment [39], and serotonin turnover (via 5-HIAA/5-
HT ratios) in the hippocampus of prenatally stressed male
mouse offspring (Table 1) [36]. Although not well studied in
the hippocampus, perinatal SSRIs do affect serotonergic re-
ceptors in cortical and hypothalamic brain regions, and thus,
many layers of the serotonergic system are likely altered by

perinatal SSRIs [49–51]. It should not be forgotten that ma-
ternal stress can also have enduring effects on serotonin, even
when combined with perinatal SSRIs. Recently, we have
shown that pregestational chronic unpredictable stress results
in significantly reduced hippocampal serotonin levels in pre-
adolescent offspring, particularly in female offspring, regard-
less of perinatal fluoxetine exposure [17, 34]. Others have
shown that pregestational stress increases serotonin levels
and decreases serotonin transporter expression in the hippo-
campus of fetal rats [52] and that prenatal stress increases
serotonin in weanling offspring, regardless of fluoxetine ex-
posure. Changes in early-life serotonin, and serotonin trans-
porters, may have enduring effects on serotonergic function-
ing of offspring later in life. Together, these findings show that
there are long-term effects of both SSRIs and maternal stress
on the serotonin system of the hippocampus and that the
timing and duration of maternal stress (pregestational versus
prenatal), as well as offspring age and sex, may mediate these
effects on the developing serotonergic system. Therefore, un-
derstanding how fluctuations in serotonin and the serotonergic
system impact developing neuroplasticity via early-life SSRIs,
and maternal stress, is critical in integrating what we know
about hippocampal plasticity in offspring.

Perinatal SSRIs and biomarkers
of neuroplasticity in clinical research

Findings from clinical studies are starting to point to an effect
of prenatal SSRIs on fetal and neonatal neurodevelopment by
investigating biomarkers in peripheral fluids related to central
nervous system development. It has been reported that prenatal
SSRIs decrease S100B, an astroglial-specific Ca2+-binding
protein [53, 54] in human neonates at birth [55]. S100B medi-
ates the positive outgrowth and survival of neurons [56, 57]
and stimulates glial cell proliferation [58]; therefore, S100B
levels in human biological fluids may be a useful indicator of
brain maturation and the impact of prenatal drug exposure on
neural development [55]. Since this reduction in S100B occurs
when controlling for maternal levels of depression, which
serves as a confounding variable in clinical work [5], such
outcomes imply a significant effect of perinatal SSRI exposure
itself on potential markers of neurodevelopment. In addition,
reelin levels are decreased in neonates prenatally exposed to
SSRIs [59]. Reelin is an important glycoprotein which plays a
critical role in neuronal migration and positioning during
neurodevelopment, and these findings further suggest an effect
of early-life changes in serotonin, via SSRIs, on the brain of
developing offspring. Recent imaging data has confirmed that
prenatal SSRIs do indeed alter the developing brain, at least in
very preterm infants, with prenatal SSRI-exposed infants
showing decreased activity in the basal ganglia and thalamus
[60]. However, due to limitations in the ability of clinical
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research to investigate central neurodevelopment in SSRI-
exposed offspring, animal models have been used to gain in-
sight into the specific effects of perinatal SSRIs on
neurogenesis and synaptic plasticity in the hippocampus.
Below is a summary of findings on how perinatal SSRIs affect
the developing hippocampus of male and female offspring.

Perinatal SSRIs and plasticity in the hippocampus

With clinical work pointing to an effect of perinatal SSRIs on
both S100B and reelin, key players in neural migration and
plasticity, it is not surprising that there is growing interest in
the long-term impact of SSRIs on hippocampal neurogenesis
and plasticity. The hippocampus is one of two brain regions
where there is a remarkably high rate of neurogenesis through-
out the lifespan (the other region being the subventricular zone)
[61, 62]. These new neurons, and their ability to form and
establish new connections in the hippocampus, play an impor-
tant role in learning and memory, stress regulation, and, as
determined more recently, social behaviors [62–66]. The hip-
pocampus consists of three main regions: cornu ammonis 1
(CA1), cornu ammonis 3 (CA3), and the dentate gyrus, the
latter being a site with a high rate of continuous neurogenesis
in adulthood (Fig. 1) [67, 68]. Understanding how neurogenesis
and neuroplasticity may shift following perinatal SSRIs will
further clarify the role that early-life exposures have on neuro-
behavioral development.

To date, findings have highlighted the long-term effects of
perinatal SSRIs on hippocampal plasticity in rodent offspring,
particularly after maternal stress. These studies have primarily
focused on measures of brain-derived neurotrophic factor
(BDNF), neurogenesis, and synaptic modifications in the hip-
pocampus. Of particular importance are alterations of BDNF
signaling, epigenetic changes in the BDNF gene, and changes
in hippocampal plasticity, which have been strongly implicat-
ed in the pathophysiology and treatment of mood disorders
during adulthood [69, 70]. Developmental exposure to SSRIs
has resulted in long-term impact on BDNF in offspring: early
developmental treatment with fluoxetine can induce long-
lasting behavioral impairment, via increased inhibition to
stressful events and reduced behavioral despair, accompanied

with upregulation of hippocampal BDNF mRNA and TrkB
mRNA levels in adult male mice [41] and a decrease in global
DNA methylation in the hippocampus of male rats [43].
Serotonin transporter (5-HTT) knockout rats, which have el-
evated levels of serotonin throughout life, display decreased
BDNF levels in the hippocampus, concomitant with increased
DNA methylation at BDNF promoters IV and VI [71]. An
exact comparison between perinatal SSRI exposure and 5-
HTT KO rat models with regard to BDNF levels and methyl-
ation status has not been carried out; however, it is likely that
the apparent differences between models on BDNF effects in
the hippocampus are due to the fact that 5-HTT KO animals
have elevated levels of serotonin throughout life and not just
during the perinatal period. While this work suggests an effect
of perinatal SSRI exposure on BDNF, these three previous
studies did not investigate female offspring. We have recently
reported in adult female rat offspring that early-life exposure to
SSRIs (fluoxetine) increases immobility in the forced swim test,
decreases hippocampal BDNF exon IV mRNA levels, and in-
creases levels of the repressive histone 3 lysine 27 tri-methylated
mark at the corresponding promoter [46]. We also found a sig-
nificant negative correlation between hippocampal BDNF exon
IV mRNA levels and immobility in the forced swim test, with
higher hippocampal BDNF mRNA expression being associated
with less immobility in this test [46]. In adult male offspring,
developmental fluoxetine exposure decreased BDNF IV and
TrkB mRNA expression in the hippocampus and these changes
were not associated with changes in the immobility measure
[47]. In addition, adult male offspring showed an enduring effect
of prenatal stress in decreasing hippocampal BDNF IV mRNA
expression [47], further demonstrating that these effects are sex-
ually differentiated following SSRI exposure. Regardless, peri-
natal SSRI effects on epigenetic modifications and changes to
BDNF signaling, a critical growth factor required for neuronal
growth and development, suggest an impact on additional as-
pects of neurodevelopment such as neurogenesis and
neuroplasticity.

Early-life exposure to SSRIs reduces cell proliferation in
the hippocampus of adolescent offspring [42]. However, when
combined with a model of maternal stress, early-life exposure
to SSRIs prevents the effects of maternal stress on

Fig. 1 Photomicrographs of A)
synaptophysin-immunoreactivity
(ir) in the hippocampus (2×) and
B) immature neurons in the
granule call layer (doublecortin-
ir) (40×) of preadolescent rat
offspring. CA= cornu ammonis,
DG= dentate gyrus. The arrows
indicate immature neurons. Scale
bar = 200 μm (a) and 10 μm (b)
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hippocampal neurogenesis (immature neurons) in adolescence
and adulthood [42, 45]. These effects occur in both male and
female offspring. Others have shown similar effects with post-
natal SSRIs preventing the reduction in hippocampal cell pro-
liferation and increased cell death observed in juvenile rat
offspring subjected to premature maternal separation [40].
Developmental exposure to fluoxetine can also have a sexu-
ally differentiated effect on the number of immature neurons
after maternal corticosterone treatment [48], with maternal
postpartum fluoxetine increasing the density of immature neu-
rons via doublecortin expression in the hippocampus of adult
male offspring but decreasing the density of immature neurons
in adult female offspring. Interestingly, additional reports
found no effects of perinatal fluoxetine on hippocampal
neurogenesis in the dorsal hippocampus at weaning or in pre-
adolescent offspring [37, 38]. Thus, it appears that after ado-
lescence and puberty, the effects of perinatal SSRIs on hippo-
campal neurogenesis and plasticity become pronounced and
sexually differentiated.

With regard to perinatal SSRI effects on spine densities and
synaptic proteins, these effects appear to be primarily depen-
dent on offspring age and sex. For example, early postnatal
treatment with fluoxetine reverses the reduction in CA3 spine
and synapse density observed in prenatally stressed juvenile
and adolescent male mice (females were not studied) [36].
However, in rat offspring at weaning, we found no effect of
early-life exposure to fluxotine on presynaptic protein densi-
ties (via synaptophysin-immunoreactivity) in the CA3 or den-
tate gyrus [38]. Effects on spine density appear to emerge
during preadolescence, with preadolescent female, not male,
rat offspring perinatally exposed to fluoxetine showing in-
creased hippocampal presynaptic density in the dentate gyrus
[37]. These effects are region-specific, with perinatal fluoxe-
tine exposure increasing CA2 density in preadolescent fe-
males but decreasing such density in combination with
pregestational maternal stress exposure. As previously men-
tioned, although females seem particularly sensitive to the
effects of perinatal fluoxetine exposure, male offspring appear
particularly sensitive to maternal stress and depression [37].
For example, preadolescent males, but not females, exposed to
perinatal fluoxetine show reductions in presynaptic density
and immature neurons in the dentate gyrus following
pregestational maternal stress [37]. Furthermore, SSRI expo-
sure appears to affect the developmental trajectory of synaptic
protein density, with adult female, but not male, offspring
exposed during lactation/suckling to SSRIs showing signifi-
cantly reduced presynaptic density in the dentate gyrus [45].
This enduring effect of SSRIs on synaptic proteins extends
recent work showing that perinatal fluoxetine exposure can
reduce perineuronal nets in the CA1 and DG region of juve-
nile mice hippocampi [44]. In addition, postnatal fluoxetine
treatment significantly alters gene expression related to hippo-
campal synaptic functioning and neurogenesis in selectively

bred “Low Responder” rats predisposed for increased anxiety
and behavioral abnormalities [72]. Thus, there is a likely role
for perinatal fluoxetine exposure in altering hippocampal syn-
aptic plasticity during development: effects that are likely sex-
ually differentiated and age-dependent (Table 1).

SSRIs and sex effects on hippocampal
plasticity

As mentioned above, there is a persistent effect of sex in me-
diating perinatal SSRI exposure effects on hippocampal plas-
ticity in adulthood. For example, adult female offspring, but
not male offspring, exposed early in life to SSRIs have in-
creased new cell survival, decreased BDNF mRNA expres-
sion, and reductions in hippocampal synaptophysin density
in the granule cell layer [45–47]. Others have shown that ma-
ternal postnatal fluoxetine treatment increases adult male im-
mature neuron density in the hippocampus via doublecortin
expression while reducing such density in the adult female
hippocampus [48]. Changes in steroid hormone levels during
puberty likely contribute to sex-dependent SSRI sensitivity
and structural changes in the hippocampus as a result of altered
estrogen and androgen receptor expression [73–75]. Serotonin
plays a key role in sexual differentiation through its role in the
development of the hypothalamic-pituitary-gonadal (HPG) ax-
is [76, 77]. The inhibition of the natural drop in serotonin in the
first week of life resulting from SSRI exposure likely antago-
nizes the perinatal masculinization effects of testosterone dur-
ing the second and/or third week postpartum and alters femi-
nization of the brain. Previous work has shown that postnatal
stimulation of serotonin synthesis, by injection of L-trypto-
phan, inhibits female sexual behavior and has an inhibitory
effect on postnatal “organization” of female sexual behavior
as well as on “activation” of female sexual behavior in adult-
hood [76, 77]. In addition, a defeminization of sexually dimor-
phic brain structures in females results from early-life stimula-
tion of the serotonin synthesis [78] and, conversely, treatment
with parachlorophenylalanine, a serotonin synthesis inhibitor,
enhances masculinization and defeminization [78, 79].
Therefore, sexually differentiated effects of perinatal SSRIs
on hippocampal plasticity may be a result of changes to the
serotonergic system early in life, as serotonin plays a role in
sexual differentiation of the brain via development of the HPG
axis [76, 77].

The role of maternal stress

As shown above, the effects of perinatal SSRIs can differ in
the presence of maternal stress in some regards, the effects of
maternal stress being more pronounced and enduring than the
effects of SSRIs. For example, maternal stress, regardless of
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perinatal SSRI exposure, significantly reduces presynaptic
densities in preadolescent male, but not female, offspring
and decreases the number of immature neurons in the granule
cell layer of dentate gyrus in preadolescent and adult male, but
not female, offspring [45]. Interestingly, pregestational mater-
nal stress effects on offspring are in agreement with a number
of studies showing that perinatal maternal stressors reduce
hippocampal neurogenesis and plasticity later in life, particu-
larly in males [80, 81]. In line with this, an increasing amount
of clinical research is reporting that child development out-
comes are often more affected by maternal depression and
associated risk factors prior to conception than by perinatal
SSRI exposure [5, 21, 22]. Thus, a mother’s level of stress
and depression during the perinatal period and prior to gesta-
tion can have a long-term impact on neurobehavioral out-
comes in offspring, regardless of, or in addition to, perinatal
SSRI effects.More research is needed to investigate additional
therapeutic approaches which treat the effects of perinatal de-
pression in both mothers and offspring.

Summary and future directions

It is clear that perinatal SSRIs can have a long-term effect on
plasticity in the hippocampus of offspring. Perinatal SSRIs
can at times protect against the effect of maternal stress, have
effects independent of maternal stress, and have effects on
offspring that are sexually differentiated. The effects of peri-
natal SSRIs on hippocampal plasticity may be both direct, due
to perinatal drug exposure, and indirect, with effects mediated
by maternal care as well as SSRI effects on the placenta [17,
82–84]. Apart from effects on hippocampal plasticity, a grow-
ing body of literature shows that perinatal exposure to SSRIs
affects a number of neuroendocrine systems and neurobehav-
ioral outcomes which may be linked to the hippocampus. For
example, developmental exposure to SSRIs alters the HPG
axis [79, 85] and the hypothalamic-pituitary-adrenal axis
[36, 86, 87] and has been linked to poor social behaviors
and increased mood disorders in children [34]. However, there
are also persistent effects of maternal stress and maternal
mood on childhood outcomes, even with maternal treatment
of SSRIs [5, 21, 22].

What is abundantly clear is that untreated maternal depres-
sion is not an option for the mother or developing child. SSRIs
are often the first-line treatment for maternal mood disorders
and these medications are more effective if combined with
psychotherapy. However, there are a number of treatments
available that may also be beneficial to the mother, such as
psychotherapy alone, parenting classes, exercise, and diet
change [13, 88, 89]. Regardless, the goal is to effectively treat
the mother as the risk of untreated maternal depression out-
weighs the risk of the SSRI treatment exposure. On the other
hand, many pregnant women prescribed SSRIs also remain

depressed and anxious and this is detrimental to the mother,
child, and family. Therefore, SSRI treatment for maternal af-
fective disorders during pregnancy should be treated on an
individualized basis which takes into account depression se-
verity, likelihood of treatment response and probability of ad-
verse fetal effects, and individual patient values and health
[90]. The data reviewed here suggest that future treatment
for maternal affective disorders may also need to consider
offspring sex as well as SSRI timing and dosage.

Unfortunately, to date, there has been very little research on
the neurobiology of maternal mental illness, even though one
in seven women suffer from perinatal depression or clinical
levels of perinatal anxiety [4]. Thus, more research is needed
to understand the mechanisms behind maternal mental illness
in order to develop effective and safe treatments for these
disorders. Only then will we be able to improve the health
and well-being of the mother and child.
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