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Abstract
Flow chemistry is the future of chemical processing. It represents a significant advance in energy consumption and waste 
generation regarding operations in batch and continuous flow macroscopic equipment since the transport rate (of mass, heat, 
photons, electrons, etc.) is tremendously intensified. In parallel, computational fluid dynamics (CFD) is part of engineering’s 
future. Digitalization of transport processes (involving fluid flow and scalar transport, e.g., species, energy, etc.) is the state-
of-the-art for designing, optimizing, and scaling chemical reactors, separation and purification units, heat exchangers, etc. 
This perspective initially presents relevant fundamental CFD concepts applicable to any field. In the sequence, an overview 
of applications of CFD in flow chemistry reported in the literature over the last two decades is presented, highlighting the 
evolution of complexity and variety of topics investigated (ranging from single-phase flow optimization to multiphysics 
cases involving coupling of multiphase flow and external forces—e.g., ultrasound and electric field). Next, the contribu-
tions of our research group in CFD in flow chemistry are presented—with a focus on photocatalytic and electrocatalytic 
systems—and accompanied by highlights about our personal experience. Further discussion about strengths, limitations, 
and opportunities for CFD in flow chemistry is presented, highlighting to the reader the gaps that should be in the spotlight 
over the next few years, followed by our final remarks. After reading this perspective, the reader (either a starter in this field 
or an expert) will be able to identify how CFD has evolved in flow chemistry over the years and what are the next directions 
from the authors’ point of view.
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Computational fluid dynamics (CFD): what 
is it about?

Computational fluid dynamics (CFD) uses numerical meth-
ods to solve mathematical models (transport equations) that 
describe fluid flow, heat transfer, mass transfer, chemical 
reactions, etc. [1, 2]. Such models (the CFD’s mathematical 
foundation) are represented by systems of partial differential 
equations (PDEs), usually strongly coupled, and their corre-
sponding initial and boundary conditions. Multidimensional 

models can be found, ranging from unidimensional to three-
dimensional (in space, with a possible additional dimension 
– time) mathematical representations and even a combina-
tion of them. Numerical methods such as finite difference, 
finite element, and finite volume can be used to solve these 
systems of PDEs [1, 2].

Nowadays, commercial (e.g., Ansys® Fluent®, Ansys® 
CFX®, COMSOL® Multiphysics, Simcenter® STAR-
CCM+® , etc.) and open-source CFD algorithms (e.g., 
OpenFOAM or codes developed by the user—typically in 
a research group in the academic environment) are avail-
able. Some advantages of commercial software can be enu-
merated, e.g., relatively faster learning rate (even lower in 
codes such as COMSOL® Multiphysics—from the authors’ 
personal experience teaching and introducing CFD to fresh 
students in the research group), user-friendly interface, and 
the professional support and continuous update. Disadvan-
tages of such commercial software are typically the high 
costs associated with maintenance and the inaccessibility 
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to the source code (i.e., they are typically black boxes). On 
the other hand, the nowadays widely used open-source code 
OpenFOAM offers some advantages such as no charges and 
full access to the source code. However, such software often 
demands more learning hours to starters to acquire enough 
expertise to carry out scientific studies. Tailored codes, typi-
cally developed by research groups, offer the advantages of 
open-source codes like OpenFOAM and high flexibility but 
are sometimes unavailable to the broad scientific community 
(difficulting the reproducibility of research outcomes).

Such CFD codes can create virtual prototypes of complex 
domains representing real-world scenarios (e.g., an aircraft tur-
bine, the internals of a distillation column, a baffled reactor, 
etc.) [1, 2]. These domains are discretized in small elements, 
creating the computational grid. Using an appropriate numeri-
cal method (among the previously enumerated), the continuous 
PDEs are discretized and solved in these small portions of 
the computational domain, providing information on velocity 
components, pressure, temperature, concentration, etc. [1, 2].

Coupling of CFD with optical simulation (using a Monte 
Carlo method, for instance) allows obtaining local information 
(on the grid cells) of light intensity as a new variable, which 
can be associated with the energy or species balance equations, 
allowing the simulation of light-driven chemical reactions or 
heating, for instance [3, 4]. Moreover, acoustic models can be 
solved and coupled with the Navier–Stokes equations, allowing 
the quantification of the effect of ultrasound waves on the veloc-
ity profile developed in the device [5–7]. Additional conserva-
tion equations can also be solved to describe electron flux [8, 9], 
magnetic field [10, 11], etc., allowing the fluid flow simulation 
to be truly multiphysics and, in some cases, multiscale (e.g., 
detailed information of smaller scales can be passed to higher 
scales as boundary conditions) [12–16].

All these features can be applied to single-phase or mul-
tiphase flows and laminar or turbulent flows [1, 2]. Mod-
eling gas–solid, liquid–solid, gas–liquid, liquid–liquid, 
gas–liquid-solid, and combinations is frequently carried out 
in industrial and academic applications of CFD [17–25]. 
Such simulations allow information to be obtained about the 
distribution of the phases within the domain and phase inter-
actions, i.e., momentum, energy, and mass exchange across 
the interface [26]. Turbulent flows are generally more chal-
lenging to solve, and turbulence models are widely applied 
to various scenarios where a balance of computational cost 
and precision is critical [1, 2]. However, direct numerical 
simulations have become more popular as the computational 
capacity has increased, allowing the solution of all turbu-
lence scales in space and time [27–29].

In addition to pre-processing and processing algorithms (i.e., 
geometry creation, mesh generation, model selection, and numer-
ical solution), CFD codes, either commercial or open source, 
are supported with visualization tools, allowing qualitative and 
quantitative assessment of the results [1, 2]. For instance, vectors, 

streamlines, and maps can be generated to visually assess the 
flow direction, temperature distribution, pressure field, etc. [1, 
2]. Such information is helpful to identify recirculation zones, 
hot spots, preferential paths, species depletion regions, and so 
on [30–35]. However, beyond what was for some time known as 
“color fluid dynamics”, given the visual appeal that this repre-
sentation acquired and that is frequently associated with CFD as 
its main feature, quantitative information regarding profiles and 
fluxes can be estimated and are the core outcomes for decision 
making on chemical process supported by this technology [1, 2].

A scientist or an engineer wants to use CFD to obtain the con-
centration, temperature, velocity, and phase distribution profiles 
across a reactor’s cross-section [14]. The researcher also intends 
to calculate the position-dependent and time-dependent heat and 
mass fluxes across an interface, such as a catalyst film deposited 
on the internal reactor’s walls or forming a fixed bed, as well 
as a growing bubble in an electrolytic reactor [25, 36, 37]. This 
information is crucial. This is the critical point for deciding the 
optimal curvature of the reactor’s channels for relevant passive 
mixing [38], and arranging a light illumination system (such as 
an array of LEDs) to minimize energy losses [4, 39], etc. Some-
times, the local profiles and fluxes calculated with CFD cannot be 
assessed experimentally due to limitations in terms of resolution 
of the current techniques or due to security reasons. Thus, the 
model can be verified or validated macroscopically, and the local 
information is assessed through virtual prototyping to optimize 
the device or extract information with scientific significance.

These outstanding features have motivated the application 
of CFD in several fields, including understanding the asso-
ciated phenomena, designing, and scaling up flow chemistry 
systems. This perspective initially presents an overview of how 
CFD has been encountered in flow chemistry over the last two 
decades, highlighting important advances reached in distinct 
periods (2003–2007, 2008–2012, 2013–2017, 2018–2023). 
Moreover, the contributions of our research group to this 
field over the last decade are presented. A discussion about 
our major learnings and design guidelines is also introduced. 
Finally, our vision about CFD's strengths, limitations, and 
opportunities in flow chemistry is presented and discussed.

At the end of this perspective, the reader, either starting 
investigating in this field or an expert, will be able to get a 
big picture of the past, the present, and the future of CFD 
in flow chemistry– from the authors’ point of view –, being 
able to identify gaps for further research in this exciting area.

CFD in flow chemistry: an overview 
of the last two decades

2003 – 2007

CFD has been widely applied in flow chemistry over the 
last two decades. Back in 2003, Steinfeldt et al. [40] used 
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the commercial CFD code Fluent® to investigate the ther-
mal behavior of multichannel microreactors applied to 
the oxidative dehydrogenation of propane, showing that 
microchannels with thick walls and high heat conductivity 
operate isothermally. Similarly, using ammonia oxidation 
on a platinum catalyst as a model reaction, Rebrov et al. 
[41] used a 3D model to simulate the thermal behavior 
of microchannels, finding an optimal distance reactor-to-
cooling channels when a highly conductive material was 
used. The authors used a supercomputer (CRAY Origin 
2000) to run their simulations, taking 20 h of CPU time.

Harries et al. [42] improved the commercial code CFX® 
through Fortran routines to simulate a bidimensional (2D) 
fluid flow and mass transfer in segmented flow (Taylor 
flow) in a microreactor and validated the numerical results. 
Hardware limitations were clearly a drawback at that time. 
Two computers (500 MHz processor, 256 MB memory, 
and 15 GB internal disc; 30 × 400 MHz processors with 
6 GB memory) were used for the simulations, and a finer 
mesh took 50 h of simulation. As indicated by the authors, 
the CFD model could be used to predict the behavior of 
important industrial chemical reactions, e.g., the nitra-
tion of benzene or toluene, at the expense of a substantial 
increase in computational effort.

Choe et al. [43] used the mixture model available in 
the commercial CFD code Fluent to investigate the micro-
mixing in a microreactor applied to synthesizing a phar-
maceutical intermediate with controlled exothermal reac-
tion and improved product yield. At that time, including 
chemical reactions in the mixture model calculations was 
a limitation. Hence, the authors evaluated the micromixer 
performance by monitoring the volume fraction of two 
fluids flowing through the microchannel. The authors car-
ried out an experimental investigation supported by the 
design of experiments (DoE) and used the CFD outcomes 
to corroborate their hypotheses about the flow behavior in 
the intensified reactor.

In the following years, works on flow distribution in 
multi-channel microreactors [44–46], investigation of mix-
ing effects in microreactors [47, 48], simulation of the per-
formance of plasma microreactors [49] and microreactors 
applied to free-radical polymerization [50] and catalytic 
reforming [51], investigation of heat and mass transfer in 
single-phase microreactors [52–54], design of multifunc-
tional microreactors [55], simulation of the hydrodynamics 
and mass transfer of liquid–liquid Taylor flow in micro-
channels [56–58], and gas–liquid mesh microreactors [59] 
were also conducted using CFD codes. Interestingly, the 
all-time most cited work (at the time when this article was 
written) with the keywords “CFD” and “microreactor” is 
from this period—on the hydrodynamics of liquid–liquid 
Taylor flow in microreactors [56].

2008 – 2012

This period was marked by interesting works applying 
CFD on microreactors for production of synthetic fuels 
and fuel cells. Cordiner, Mariani, and Mulone [60] used 
a commercial code to investigate the local transport phe-
nomena in microtubular solid oxide fuel cells. Zamaniyan 
et al. [61] used a bidimensional CFD code to investigate 
syngas production in a microreactor. Similarly, Mettler 
et al. [62] used CFD to study the scale-out of microreac-
tors for syngas production, considering the coupling of 
exothermic and endothermic processes. Moreover, steam 
reforming [63, 64], autothermal reforming [65], and etha-
nol steam reforming [66, 67] in microreactors were inves-
tigated with CFD techniques. The fluid dynamics and heat 
transfer in low-temperature Fischer–Tropsch synthesis in 
a microreactor were also investigated by Arzamendi et al. 
[68].

This age also marks the start of CFD investigations on 
microreactors applied to environmental protection. Using 
the commercial code COMSOL® Multiphysics, Hernández 
Carucci et al. [69] studied the fluid flow and the radial con-
centration profiles in a microreactor applied to selective 
catalytic reduction of NOx. Early investigations on pho-
tocatalytic reactions in microreactors were also developed 
in this period [70].

Moreover, optimization of fluid flow and heat transfer in 
an enzymatic microreactor [71], investigation of flow oscil-
lation to improve mixing in microbioreactors [72], design of 
microfluidic reactor for continuous cultivation of yeast (Sac-
charomyces cerevisiae) [73], polystyrene polymerization 
[74] and polymeric micelles production [75], and diverse 
geometric optimization [76, 77] in microfluid reaction sys-
tems were explored with support of CFD simulations.

Important fundamental investigations continued to 
appear in the literature, including the effect of micro-
channel aspect ratio on residence time distribution and 
axial dispersion [78], mixing in microreactors [79] (and 
in microbioreactors [80]), the behavior of turbulence in 
confined impinging-jets microreactors [81], characteristics 
of liquid–liquid Taylor flow [82–84] and falling film [85, 
86] microreactors and optimization of reaction rate [87] 
and catalyst design [88].

2013 – 2017

The following years marked the consolidation of different 
applications of CFD in flow chemistry, including investiga-
tions on mixing, dispersion and residence time distribution 
in multichannel microreactors [89, 90], heat transfer [91], 
mass transfer [92], multiphase flow [93–96], reforming 
[97–100], combustion [101, 102], polymerization [103], 
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photocatalysis (for hydrogen production) [104], and design 
of microreactors [105–109].

Interesting contributions appeared in this period on mul-
tiphysics simulations, including coupling CFD with popula-
tion balance model for the analysis of nanoparticle synthe-
sis [110, 111], and coupling CFD with ultrasound [112] for 
microflow applications. Moreover, CFD was combined with 
the response surface methodology to optimize a microreac-
tor [113].

2018 – 2023

Traditional and novel applications characterize the last 
period analyzed. Studies on the design of microreactors 
(including geometric optimization) [114, 115], flow man-
agement [116], mixing efficiency [117–120], combustion 
[121, 122], reforming [123], polymerization [124], and on 
photocatalytic/photochemical microreactors [125–127] were 
found.

Additionally, investigations on microbioreactors (enzy-
matic microreactors) [128] and on environmental protec-
tion (pollutant degradation) gained momentum [129, 130]. 
A wide range of studies about synthesis in flow was also 
published in this period [130–144], including fuels, nanopar-
ticles, and added-value compounds. Exciting applications of 
CFD on scale-up of flow chemistry systems are also encoun-
tered in this age [145–147]. This is a remarkable example of 
the potential of CFD in this field since the codes can be used 
to predict a variety of scenarios, allowing the rapid transla-
tion of milligram scale into kilogram scale systems with 
low cost. Several virtual prototypes can be testes per day, 
depending on the complexity of the problem and the com-
putational resources available, even before experimentation. 
Promising designs can be converted into physical prototypes 
and tested experimentally, retro-validating the virtual model, 
and proving the concept. Integration of CFD with 3D print-
ing [148, 149] is outstanding in this context.

Multiphysics studies also gained more space in this 
period. Maity et al. [150] used CFD to investigate the effect 
of an external alternating current (AC) electric field on the 
yield and conversion of a multiphase microreactor. The 
authors coupled the two-phase flow simulation with mul-
ticomponent transport, chemical reaction, and Maxwell’s 
stresses, reaching a complex CFD model. Xu et al. [151] 
used a three-dimensional CFD model to investigate ultra-
sonic oscillation in a microchannel carrying out Taylor 
flow—an interesting route for process intensification. Dong 
et al. [152] also presented an exciting study in this field 
applying CFD to investigate the synthesis of FePO4 parti-
cles with ultrasound-intensified turbulence in a T-junction 
microreactor – a highly complex multiphysics case.

Last but not least, exploring the intensification provided 
by different flow patterns is a remarkable application of CFD 

found in this period. For instance, Gaddem et al. [114] inves-
tigated Taylor-Dean flow in curved microchannels and evalu-
ated the impact of different scenarios on the mass transfer 
performance.

CFD in flow chemistry: an overview of our 
contributions

As we highlighted in Sect. "CFD in Flow Chemistry: An 
Overview of the Last Two Decades", there is a perfect match 
in the combination of computational fluid dynamics and flow 
chemistry. It represents the state-of-the-art procedure for the 
design, optimization, and scale-up of any flow system and 
for the description of the phenomena taking place in such 
equipment – to acquire fundamental knowledge that can be 
formalized into theoretical postulates –.

Herein, we will present some applications of CFD in flow 
chemistry developed within our research group, or in collabo-
rative work, created over the past few years to illustrate the 
potential of this technology. Over a decade ago, Padoin [153] 
and Dal’Toé [154] implemented algorithms in the commer-
cial code ANSYS® CFD (Fluent®) for calculating interfacial 
heat and mass transfer fluxes in liquid–vapor systems based 
on the Maxwell–Stefan theory for species diffusion, consid-
ering the Euler-Euler and Euler–Lagrange frameworks. Such 
an approach is relevant for concentrated systems, where the 
hypotheses of Fick’s law for diffusion may fail and some 
anomalous phenomena, e.g., diffusion against concentration 
gradient and diffusion barrier, can be observed.

The outcomes of these investigations are relevant for micro-
separation systems– such as micro-distillation, micro-absorp-
tion, and micro-extraction devices –, and for microreactors. 
One can use such a CFD code to estimate the concentration 
and temperature distribution in the liquid and the vapor phases 
throughout the computational domain, considering the Ther-
modynamics governing the interfacial equilibrium and the 
effect of the flow on the heat and mass transfer rates.

The computational model was verified with calculations 
from a commercial process simulation software (i.e., a mac-
roscopic simulator), and a 1D implementation was considered. 
Therefore, validation with experimental data– always pre-
ferred over verification with another computational approach 
–, and an extension to 2D and 3D domains are a natural path-
way. Such a computational model would benefit the most from 
at least a 2D implementation, allowing the calculation of heat 
and mass transfer rates in a diversity of gas–liquid flow pat-
terns, such as Taylor flow – commonly encountered in micro-
channels. However, the numerical stability of such a 2D (and, 
by extension, 3D) implementation is critical.

This is a crucial point. Implementing algorithms to cus-
tomize commercial and open-source CFD codes allows the 
inclusion of volumetric source terms in the conservation 
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equations, the modification of transport properties, the inclu-
sion of new transport equations, the calculation of fluxes 
through interfaces using specific models, and so on. How-
ever, this feature demands substantial expertise, not just in 
utilizing the software but also in understanding the asso-
ciated numerical methods. This observation extends to the 
general use of such codes. Nowadays, CFD codes, especially 
commercial ones, have a user-friendly graphical interface 
and various online guiding materials (tutorials). New users 
tend to focus on software usage in model building, solution 
strategy, and results analysis. However, the fundamentals 
regarding the numerical methods and their coding must be 
deeply known. This is crucial for correct simulation proce-
dures and accurately identifying error sources during the 
simulation workflow. Focus on the fundamentals behind the 
CFD code, and it will reward you.

Later, Padoin and Soares [36] used CFD to optimize the 
film thickness of a photocatalyst (pristine TiO2) deposited 
on the walls of a flow system (see Fig. 1). This is an exam-
ple of how CFD can be used in research. Our focus on this 
investigation was not to predict the equipment performance 
in terms of conversion or selectivity, allowing design or 
scale-up – which is undoubtedly a massive benefit of CFD in 
industry. Instead, our attention was directed to calculations 
considering the effects of convection, diffusion, reaction, 
and photon transfer on the optimal photocatalyst film thick-
ness in terms of reaction rate for two distinct configurations: 
back-side illumination (BSI) and front-side illumination 
(FSI), i.e., when illumination and flow occur in “counter-
current” and “co-current” directions regarding the film itself. 
The CFD model, previously validated with data from the 
literature [155], allowed the proposition of two correlations 
(for BSI and FSI) to calculate the optimal film thickness as 
a function of relevant operational parameters and physical 
properties.

Further investigations considering BSI and FSI mech-
anisms were performed by Matiazzo et al.  [3], using a 
Monte Carlo method to simulate light intensity distribu-
tion at the surface of a thin film photocatalyst (pristine 
TiO2) deposited on the walls of the NETmix reactor (see 
Fig. 2). The code allowed investigating the effect of dif-
ferent configurations of high-power LEDs (arrangement 
– inline or staggered –, LED-to-LED distance, and LED-
to-reactor distance) on the light intensity and homogene-
ity at the photocatalyst surface. An optimal scenario was 
found since both variables depend inversely on the LEDs-
to-reactor distance. Moreover, Matiazzo et al. [4] coupled 
the photon transport modeling with a CFD code, investi-
gating the impact of the LEDs arrangement and view angle 
[39] on the irradiance levels, light absorption efficiency, 
homogeneity of the field, and overall photonic efficiency, 
taking n-decane photocatalytic degradation as a bench-
mark. Again, optimal scenarios were found.

CFD was also used by Lira et al. [6–9] to investigate 
gas-phase photocatalytic abatement of NOx [38, 156–158]. 
A commercial code was customized to account for multi-
ple complex kinetics at the surface of a thin photocatalyst 
film deposited on a slit reactor’s wall [158]. Such a model 
allowed investigating the effect of varying the reactor’s 
dimensions and the impact of light intensity and moisture 
content on conversion and selectivity. An optimal opera-
tion point was identified in terms of selectivity and reac-
tion rate.

Further investigations were performed in slit and micro-
channel reactors aiming to achieve a CFD-based optimi-
zation strategy. Initially, a design of experiments (DoE) 
approach was adopted [157]. Based on a well-defined 
exploratory space, as widely performed in experimental 
investigations, several CFD simulations were run on the 
selected points. Then, surface responses for conversion, 
selectivity, and pressure drop were built. Finally, a desir-
ability function allowed the determination of the optimal 
operation conditions.

A hybrid optimization method was then performed, 
combining CFD and artificial intelligence (artificial 
neural networks and genetic algorithms) [156] A CFD 
model– considering the effect of residence time, light 
intensity (solved through the discrete ordinates method), 
relative humidity, and initial concentration of nitrogen 
monoxide (NO)– was implemented and run as a numeri-
cal experiment, allowing the generation of 256 data points. 
The artificial neural network was trained to yield the NO 
consumption rate and the pressure drop as outputs. A 
multi-objective optimization to maximize the NO con-
sumption rate while minimizing the pressure drop was 
then run in a genetic algorithm.

A phenomenological investigation of microchannel cur-
vature on the performance of a photocatalytic reactor with 
TiO2 deposited on an inner wall was also carried out using 
CFD and light modeling through the discrete ordinates 
method [38] (see Fig. 2). The authors observed a significant 
mass transfer intensification as the microchannel's curvature 
radius was reduced and the velocity was increased. Such 
a computational model allows the identification of optimal 
design guidelines and the proposition of efficient scale-up 
strategies.

In a collaborative work, Oliveira et al. [159] developed 
a CFD model for the simulation of the luminescent solar 
concentrator photo-microreactor (LSC-PM) for the [4 + 2] 
cycloaddition of 9,10-diphenylanthracene considering a 
kinetic model with a variable constant rate according 
to the light intensity reaching the microchannels. After 
a thorough investigation of the reaction kinetics consid-
ering the illumination level, the CFD model allowed the 
prediction of control strategies for the system operating 
under fluctuating light intensity aiming to keep conversion 
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constant. Moreover, the influence of the channel geometry 
on the reactor’s performance was also assessed.

This is an exciting example of how a CFD model can 
tailor a flow system's operation and design. Of course, it 
relies on a precise kinetic model. Ideally, an intrinsic kinetic 
expression should be used since it also allows the investiga-
tion of mass transfer limitations in the reactor. With robust 
kinetics, a proper model implementation (choosing perti-
nent equations based on the given hypotheses, incorporating 
variable physical properties where applicable, ensuring a 

cohesive mesh refinement, and employing a comprehensive 
selection of solvers) allows the scientist and the engineer 
to test a variety of scenarios regarding design and control 
– saving time and money during the exploratory phase –. 
However, the model should be compared with experimental 
data at specific points within the exploratory space to discern 
its connectivity with observed reality.

Padoin et al. [160] used a commercial CFD code (Ansys® 
Fluent®) to simulate gas–liquid flow patterns arising from a 
T-junction microchannel subjected to different wall contact 

Fig. 1   CFD applied to optimizing a photocatalyst thin film deposited 
on a microreactor’s wall. A Generic scheme of a photocatalyst activa-
tion under proper illumination. B Back-side illumination mechanism 
(BSI). C Front-side illumination mechanism (FSI). D Normalized 
reaction rate as a function of the film thickness for the BSI mecha-
nism. E Normalized reaction rate as a function of the film thickness 
for the FSI mechanism. F Optimal film thickness as a function of dif-

ferent operation variables for the BSI mechanism. G Optimal film 
thickness as a function of different operation variables for the FSI 
mechanism. H-J Concentration maps for flow system with photocata-
lyst thickness of 1 μm, 5 μm, and 10 μm, respectively. K Optimal film 
thickness as a function of the inlet velocity. L-N Optimal film thick-
ness as a function of the inlet concentration – 0.5 mg⋅L−1, 1.0 mg⋅L−1 
and 1.5 mg⋅L−1, respectively. Adapted from [36]
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angles, validating the results with experimental data avail-
able in the literature. This parameter strongly influences 
the flow pattern, ranging from Taylor flow to stratified flow 
regimes as the wall changes from a superhydrophilic to a 
superhydrophobic contact angle. The effect of such variation 
on the process performance is significant since the velocity 
pattern and pressure drop change and the interfacial area 
available for heat and mass transfer is greatly affected.

Moreover, Cao et al. studied gas–liquid [9] and liquid–liq-
uid [8] Taylor flow electrochemistry in microchannels based 
on CFD simulations (see Fig. 3). The CFD code was used 
to gain insights into the controversial effect of improved 
mixing (beneficial) and electrical resistance (detrimental) 
induced by the gas bubbles in the micro-electrochemical 
reactors, taking the reduction of furfural to furfuryl alcohol 
as a benchmark [8]. The larger the bubble, the higher the 
energy losses expected in these reactors. Moreover, the CFD 
simulations allowed a detailed investigation of the effect 

of different operation variables (bubble size, gas holdup, 
interelectrode distance, electrolyte velocity, and species con-
centration) on the reactor’s performance, providing design 
guidelines.

On the other hand, when studying the coupled fluid 
flow, charge transfer, mass transfer, and chemical reac-
tion in a liquid–liquid micro-electrochemical reactor (tak-
ing the electrochemical oxidative coupling of thiophenol 
and fluoride yielding sulfonyl fluoride as a benchmark), 
the authors observed a different behavior [8]. Differently 
from gas–liquid systems, the presence of a secondary 
phase in liquid–liquid Taylor flow in such reactors can 
induce a crucial beneficial effect, depending on the ratio 
of electrical conductivity of the phases, for instance. The 
CFD simulations allowed identifying limiting current sce-
narios, providing guidelines for efficient reactor design 
and scale-up. Moreover, CFD can be used to predict dif-
ferent flow patterns, depending, for instance, on the wall 

Fig. 2   CFD applied to the investigation of gas-phase photocatalytic 
reactions. A Velocity profile under laminar flow in a straight channel. 
B Velocity profile under laminar flow in a curved channel. C Qualita-
tive velocity profile at the microreactor’s cross-section as a function 
of the radius of curvature – the more pronounced the curvature, the 
higher the shift of the velocity profile regarding the straight channel 
pattern –. D Qualitative concentration maps of NO at the microreac-
tor’s cross-section as a function of the radius of curvature – the more 
pronounced the curvature, the higher the mixing induced intensifying 
the process –. These maps were taken at the center of the curvature 

region. E Light intensity distribution in the NETmix reactor illumi-
nated by 5 staggered high-power LEDs distant 6 mm to the reactor’s 
window. F Light intensity distribution in the NETmix reactor illu-
minated by 28 inline high-power LEDs distant 6 mm to the reactor’s 
window. G The degradation rate in the NETmix reactor illuminated 
by 28 inline high-power LEDs distant 6  mm to the reactor’s win-
dow. H Pollutant molar fraction in the NETmix reactor illuminated 
by 28 inline high-power LEDs distant 6 mm to the reactor’s window. 
Adapted from [4, 38]
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wettability [160]. The association of such a framework 
with electron and/or photon transfer allows an in-depth 
investigation of the transport phenomena occurring in the 
microdevice.

Finally, Raman et al. [25] investigated bubble growth/
detachment's fluid dynamics and mass transfer characteris-
tics in an electrolyzer with spatially decoupled electrodes. A 
DNS approach was adopted in this study, as the gas–liquid 
interface was resolved with the arbitrary Lagrangian–Eule-
rian (ALE) method. The bubble radius as a function of time 
was compared with experimental data for successive bub-
bles under different current densities applied at the cathode, 
and a good agreement was observed in all cases. Based on 

the validated model, mass transfer fluxes and concentration 
profiles were extracted from the simulations, allowing the 
observation of relevant phenomena that are challenging to 
measure experimentally. As the bubble outgrows the super-
saturation region, there is an outward hydrogen flux at the 
apex, limiting the H2 evolution efficiency– a phenomenon 
less pronounced as the current density increases.

Although the examples provided herein are mostly related 
to chemical reactors (a focus of our research group), one 
must consider that CFD has been successfully used in a 
variety of scenarios in flow chemistry, including the design, 
optimization, and scale-up of micromixers, micro-heat 
exchangers and micro separation units.

Fig. 3   CFD applied to the investigation of micro-electrochemical 
reactors. A The velocity profile in a liquid–liquid electrochemi-
cal reactor – indicating the recirculation pattern typically observed 
in Taylor flow; UD stands for dispersed phase velocity, while UTP 
is the velocity of the two-phase flow. B Electrolyte current density, 
electrolyte potential, concentration of the starting material, absolute 
current density profile at the electrode surface, and concentration pro-

file of starting material for a single-phase micro-electrochemical reac-
tor. Electrolyte current density, electrolyte potential, concentration of 
the starting material, absolute current density profile at the electrode 
surface, and concentration profile of starting material for a gas–liq-
uid non-reactive (i.e., with inert gas bubbles) C and reactive D micro-
electrochemical reactor. Adapted from [8, 9]
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Major learnings and design guidelines

During the development of the aforementioned studies, sig-
nificant insights were gained. First, integrating a tailored 
code with commercial CFD software is not straightforward. 
Particularly, challenges arose when integrating user-defined 
functions for calculating interfacial heat and mass fluxes 
in multicomponent gas–liquid flow using the Euler-Euler 
and the Euler–Lagrange approach [153, 154] and coupling 
the light intensity distribution with the reactive flow in the 
NETmix reactor [3, 4, 39]. Apart from the implementation 
challenge– especially in the case of interfacial heat and mass 
transfer in a multicomponent system –-, the numerical stabil-
ity was compromised.

In the case of the simulation of the NETmix reactor, 
integrating the light intensity distribution with the kinet-
ics through a specific macro was challenging since the 
coupling of the two software (for optical simulation and 
CFD) by Ansys® occurred at the time when the study was 
carried out. In addition, we observed along the studies of 
optical simulation coupled with CFD in the NETmix reac-
tor that considering the entire reactor in the investigation 
was mandatory for precise modeling – instead of cutting 
the geometry and exploring symmetry or periodicity to save 
computational resources –. Such an observation is probably 
valid for simulating every system in which coupling light 
intensity distribution and CFD is the target.

On the other hand, some geometric simplifications proved 
to be useful in other simulation studies. When investigat-
ing Taylor flow in micro-electrochemical reactors [8, 9] 
we found that considering a unit cell is representative and 
it allows huge savings in computational cost (i.e., hardware 
requirements and time). The bubble is static in this bubble 
reference frame, and the reactor’s walls move with the bub-
ble velocity in a lab reference frame.

For the gas–liquid study [9], we learned that account-
ing only for the liquid phase by imposing a slip bound-
ary condition at the interface constructed based on widely 
available correlations in the literature is accurate. For 
the liquid–liquid investigation [8], we used a multiphase 
model – arbitrary Lagrangian–Eulerian (ALE) method – to 
simulate the droplet morphology. An iterative procedure 
was adopted, starting from an arbitrary rectangular shape 
for the internal phase (aqueous droplet) and varying the 
wall velocity until the droplet shape develops while it 
remains at the center of the unit cell. We found excellent 
agreement after comparing relevant metrics with correla-
tions available in the literature (for film thickness, pressure 
drop, and droplet velocity). Interestingly, we used a mul-
tiphase model for simulating liquid–liquid flow since the 
shear stress at the interface is not usually negligible – so 
our workflow can be applied to a wide range of veloci-
ties. However, for very low velocities (i.e., high residence 

times), the shear stress at the interface is so low that the 
same procedure used in the gas–liquid simulations can be 
adopted without considerable inaccuracies.

When simulating gas–liquid flow with variable wettabil-
ity [160], we started the investigations with a 3D domain. 
Nevertheless, we encountered an excessively high com-
putational cost to properly capture the thin liquid film. In 
fact, at least five mesh elements are recommended in this 
region to adequately simulate Taylor flow [161]. Changing 
to a 2D geometry enabledan accurate representation of the 
thin liquid film at a reasonable computational cost while 
maintaining a good agreement with the experimental data. 
From this study, we also learned that spurious currents could 
adversely impact the simulation outcomes if insufficiently 
addressed. Using different algorithms apart from the geo-
reconstruct (piecewise linear interface construction – PLIC) 
method – usually applied in the context of the volume of 
fluid approach – can solve this problem adequately. For more 
information about multiphase flow algorithms, the reader 
can find interesting literature elsewhere [26, 162].

In studying bubble growth and departure in electrolytic 
system [25], we learned the importance of developing a 
cutting method for handling the topology variation in the 
moving mesh approach (arbitrary Lagrangian–Eulerian, 
ALE, method). In COMSOL® Multiphysics, the moving 
mesh algorithm does not allow topological variations. This 
limitation could hinder the development of this investiga-
tion – since accounting for the growth and detachment of 
multiple bubbles was essential to reach our goals. How-
ever, in most cases, the researcher can implement strat-
egies to overcome the limitations encountered in some 
CFD simulation projects. Mastering coding in different 
languages, integrating external codes with the CFD pack-
ages, and fluently handling the core algorithm is key to 
advanced applications. Most of these computer science-
related skills can be learned from exhaustive practice and 
reading relevant literature.

When studying NOx decomposition in microreactors 
[158], we found that correcting the rate laws provided in 
the literature to extract intrinsic parameters is mandatory 
for every CFD investigation. When using a rate law, espe-
cially for heterogeneous systems, the reader should check if 
the parameters do not account for mass transfer limitations. 
Otherwise, this effect is computed twice.

Moreover, we learned about the importance of consid-
ering trade-offs when simulating flow chemistry systems 
from the NOx degradation studies. Optimizing the reac-
tor’s geometry only based on reaction rate and selectivity is 
inaccurate since the pressure drop can be quite high in that 
scenario. Therefore, a multi-objective optimization – using 
the response surface methodology [157] or artificial intel-
ligence (machine learning and genetic algorithms) [156] – is 
recommended.
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We also learned from the studies mentioned above the 
importance of properly handling dimensionless numbers 
in CFD simulations applied to flow chemistry. Dimension-
less numbers are fundamental in decision-making on model 
selection, spatial representation, mesh refinement, etc. More-
over, they are crucial for properly analyzing the outcomes of 
the CFD simulations –providing in-depth information about 
the relative importance of the physics involved, as it was the 
case in some of our investigations [8, 9, 25, 38, 160] –.

A relevant observation from the studies mentioned in 
Sect. "CFD in Flow Chemistry: An Overview of Our Con-
tributions" of this article is related to the computational 
resources effectively used. Some of those simulations were 
run on personal computers (desktops and notebooks). All 
cases can be successfully run in a 64 GB RAM Intel® Core™ 
i5-9400F CPU @ 2.90 GHz with Microsoft® Windows® 
10 operating system. Considering that most of the studies 
reported involve solving complex multiphysics problems, 
this aspect underscores the notable strength of CFD nowa-
days. The reader should note, however, that our applications 
usually involve laminar flow –considering turbulence could 
sensibly impact the computational cost –.

Last but not least, we would like to mention some 
design guidelines. When investigating flow systems with 
CFD –especially in the context of photocatalytic and electro-
catalytic devices, i.e., the focus of our work –maximizing the 
surface-to-volume ratio is fundamental. Reducing the diffu-
sion path by decreasing the microchannel diameter can posi-
tively impact the reaction rate and the selectivity –but this 
comes at the disadvantage of a higher pressure drop –. Using 
CFD combined with optimization techniques –e.g., surface 
response methodology or artificial intelligence (machine 
learning and genetic algorithms) – allows for the pursuit of 
optimal scenarios.

Using static mixers is a well-known solution for improv-
ing the performance of such intensified reactors. They have 
been extensively studied with CFD techniques, but there 
is still room for investigation in this field. Moreover, tak-
ing advantage of the improved mixing arising from Taylor, 
Dean, and Taylor-Dean flow, for instance, is an interesting 
process intensification strategy.

In photocatalytic systems with immobilized catalysts, the 
BSI and FSI configurations reach optimal scenarios under 
different circumstances – depending on the light intensity 
reaching the photocatalyst, the material’s optical proper-
ties, the reaction rate, and the mass transfer in the catalyst 
layer –. Moreover, when using LEDs as photon sources (a 
common strategy nowadays), optimal scenarios can be found 
depending on the LED-to-LED distance, the LED-to-reactor 
distance, and the LEDs’ view angle. The optimal conditions 
are significantly influenced by the reactor geometry, as it can 
lead to highly exposed or shaded zones.. This case represents 
a perfect example where scientific computing –CFD coupled 

with optical simulation – is crucial for the design and scale-
up of chemical reactors.

A personal note on strengths, limitations, 
and opportunities for CFD in flow chemistry

From the authors’ perspective, all things will be simulated 
in the short or long term. Chemical processes play a cen-
tral role in this context. Flow systems take a lot of advan-
tage from virtualization. Such systems may be subjected 
to transport limitations, e.g., non-uniform distribution of 
photons in photocatalytic systems, limiting current den-
sities due to poor mass transfer in electrochemical reac-
tors, hot spots in catalytic reactors carrying out strongly 
exothermic reactions, inefficient mixing in laminar flow 
systems, inhomogeneous phase distributions in multiphase 
systems, and so on.

Physical experiments can offer insights into the phenom-
ena within such equipment, guiding scientists and engineers 
toward optimized design and scale-up. Over the years, they 
have served as the predominant methodology for such pur-
poses. However, they will not stand alone in the era of Indus-
try 4.0. We live in the age of virtualization. The period of 
automatization of decision-making. The era where artificial 
intelligence has a central role.

In this context, we bring physics-informed machine learn-
ing strategies to the attention, integrating domain knowledge 
and artificial intelligence. Unlike machine learning models 
trained purely from experimentally collected datasets that 
can provide outputs without comprehensive reasoning of 
the fundamentals relating to the inputs, physics-informed 
machine learning uses physical laws as the background for 
the surrogate model formulation. Typically, this strategy is 
based on numerically solving the balance equations through 
CFD techniques and generating a dataset (with inputs –e.g., 
flow rate, reactor geometry, and LEDs arrangement –, and 
outputs –e.g., liquid film thickness in Taylor flow, bubble 
length, reaction rate, etc. –) to train the machine learning 
model (based on neural networks, for instance). Importantly, 
physical constraints should be included in the training step 
(e.g., penalizing deviations from the physical model predic-
tions), ensuring the alignment of the machine learning algo-
rithm with the physical limits. Finally, the AI model should 
be validated (with an independent physically generated 
dataset) and applied to possibly more accurate and efficient 
predictions. One should note that such an approach intrinsi-
cally depends on comprehensively validated CFD models 
(otherwise, the dataset does not represent the physical real-
ity). Moreover, this workflow can be iteratively improved 
as new data points can be simulated and incorporated to 
enhance accuracy and efficiency. Such guidelines were 
mostly adopted in our recent publication [156].
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In flow chemical systems, progress is achieved through the 
virtualization of the transport processes taking place within 
the equipment. CFD is a critical technology for this purpose. 
Well-established models and state-of-the-art codes are avail-
able to represent the equipment's local and instantaneous per-
formance accurately. Physical experiments can be performed 
under limiting conditions in each exploration space and used 
as validation platforms for the CFD models. With a validated 
model, one can propose design and scale-up guidelines much 
faster and with reduced cost, finding optimal conditions in 
terms of performance, energy requirements, feedstock con-
sumption, waste generation, etc. The CFD simulations can 
then create data clouds for training AI algorithms with predic-
tive or classificatory purposes. Such a surrogate model can be 
used for decision-making regarding design, scale-up, optimi-
zation, and control even faster and more accurately.

As we evolve to genuinely multiphysics simulations, the 
capabilities of combining CFD and AI are exciting. There-
fore, we should move in this direction, exploring the inte-
gration of CFD with photon transport modeling, acoustics, 
magnetic fields, etc., to build robust and trustful models. The 
challenge of associating external physics with multiphase 
flow is still significant. This is a hot topic with huge poten-
tial to be explored. For instance, combining multiphase flow 
with optics or acoustics is complex, especially in strongly 
advective and time-dependent problems. Novel simulation 
strategies and better numerical approaches are demanded to 
advance this area. Furthermore, it is essential to carefully 
consider the simulation of clogging phenomena in micro-
channels. Undoubtedly, it poses a significant challenge, yet 
the potential rewards are equally exceptional.

In addition, multi-scale approaches are outstanding and 
form the foundation of the future in this field. The more 
information we extract from the molecular level and upscale 
it to the continuous level, the more robust our models will 
become. For instance, one could start from force field mod-
eling at an adsorbent or catalyst surface level and end in the 
simulation of an entire fixed-bed microdevice.

Challenges need to be overcome for a comprehensive 
simulation framework. Nowadays, most of the limitations 
rely on the simulation of turbulent flows. Direct numeri-
cal simulation can be used to solve all spatial and temporal 
turbulence scales accurately, but the associated computa-
tional cost is significantly expensive. They are available in 
high-level computer facilities worldwide but are not widely 
used, especially in emerging countries. If we need to rely 
on turbulence models, our simulations under this scenario 
will be limited in terms of accuracy and physical represen-
tation. By the way, an early transition to turbulence can be 
found under micro-flow conditions. The conditions for such 
transitions and their modeling still need systematization, so 
this field has exciting opportunities for research over the 
next few years.

Moreover, the reader should be aware of limitations 
related to artificial mass transfer caused by numerical dif-
fusion and spurious currents or artificial velocities associ-
ated with wetting and interfacial tension. These problems 
can significantly impact the results of a CFD simulation if 
not adequately handled, deviating it from the real (accurate) 
values of the variables being solved.

Numerical diffusion emerges during the discretization of 
balance equations or due to mesh resolution issues, poten-
tially influencing mass conservation across the computa-
tional domain. Using higher-order schemes, adaptive mesh 
refinement, upwind schemes, and implicit methods can be 
cited as strategies to overcome this problem, all of them 
usually encountered in CFD codes nowadays.

Additionally, the numerical treatment of wetting and 
interfacial tension is challenging in the simulation of 
gas–liquid and liquid–liquid flows. At the same time, it rep-
resents an opportunity for further improvement of numerical 
schemes over the next few years. Some strategies are avail-
able to overcome this limitation, such as using immersed 
boundary methods (decoupling the interface from the 
mesh), applying level set and phase field methods (available 
in the commercial software COMSOL® Multiphysics, for 
instance), and using adaptive mesh refinement and higher-
order schemes.

Furthermore, numerical stability and convergence indi-
cators are two factors that should be carefully considered, 
especially by those starting on CFD (as experienced users 
should already know it in-depth), since they can signifi-
cantly impact the simulation outcomes. Numerical stability 
depends on several factors, such as the method’s consist-
ency, convergence, and order. Using implicit methods with 
variable time-stepping, associated with an appropriate mesh 
and boundary conditions, are key to obtain stable numerical 
solutions. Nowadays, the CFD packages, commercial and 
open-source, usually offer several numerical schemes that 
can be efficiently used by advanced users to stabilize the 
solution (including damping strategies). Hence, a profound 
comprehension of numerical methods is imperative for indi-
viduals engaged in this field. Prior to proficiently utilizing 
software, it is essential to invest sufficient time in grasping 
the fundamentals of numerical methods in CFD by studying 
pertinent textbooks and articles available in the literature.

Judging convergence is also important for accurately 
solving a problem with CFD. Usually, those starting in this 
field focus on the residuals for declaring a solution con-
verged. However, it is important to underscore that fluxes 
(of heat and mass, for instance) and local values of cru-
cial variables at pertinent locations (lines, surfaces, or vol-
umes) should also be used to properly judge convergence. 
Additionally, one should consider adequate values of the 
residuals when monitoring convergence. Particularly for 
species, convergence can be attained with remarkably low 
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residuals (e.g., two to three orders of magnitude lower than 
the minimum anticipated species value within the compu-
tational domain). Ideally, an independency study regarding 
the convergence criteria based on residuals should be car-
ried out. Best practices should also be considered for mesh 
independence studies. The authors recommend adopting 
the grid convergence index proposed by Roache [163] as 
a standard in this regard.

Regardless of the perspective taken, one certainty remains: 
prioritize more than just grasping the software itself; strive to 
establish a solid foundation in mathematics, numerical meth-
ods, and computer science. You will only master CFD if you 
can precisely describe every single hypothesis behind your 
model, any approximation strategy, the algorithms chosen, etc. 
Build from the basics; start with more straightforward 1D prob-
lems with pure diffusion and operating at a steady state. After 
deeply understanding it, add complexity – including convec-
tion, accumulation, source terms, etc. Then you can move to 2D 
or 3D problems, work with coupled phenomena, etc.

The flow chemistry community should identify CFD's 
potential in this area. It is a golden standard. It is the state-
of-the-art for design, optimization, scale-up, and control. 
However, everyone should recognize that such an approach 
is intrinsically multidisciplinary. For those embarking on 
their journey in this field, follow the steps outlined in the 
preceding paragraph, and you will adeptly master this tech-
nology. Collaborating with chemical engineers and build-
ing truly integrative teams with mind-blowing capabilities 
is always a good idea.

Finally, some notes on CFD software and other alterna-
tives should be pointed out. As you advance in using CFD to 
solve flow chemistry problems, try to move through different 
commercial and non-commercial software based on distinct 
numerical schemes, for instance. You will benefit a lot from 
being fluent in a diversity of codes. Adopting this strategy 
will provide you with the flexibility required to become an 
expert.

Exciting alternatives to CFD should be considered. Codes 
based on the Lattice Boltzmann approach, in use since the 
late 1980’s and early 1990’s (and stablished and widely used 
since the late 1990’s and early 2000’s), could overcome limi-
tations regarding accuracy in turbulent flows, handling of 
complex geometries, stability and convergence, computa-
tional cost, and applicability in multiphase flows – and be 
more widely applied in simulating the fundamental phenom-
ena, design, and scale-up of flow chemistry –. Mastering 
this technique can bring relevant benefits in the middle and 
long term.

Moreover, the simulation of flow systems using physics-
informed neural networks is gaining momentum and should 
also be considered by the ones involved in the simulation of 
chemical processes. However, the reader must understand 
the associated limitations independently of the alternatives 

considered since this knowledge paves the way for suc-
cessful implementations regarding physical outcomes and 
timesaving.

In all scenarios, simulation has a bright future in flow 
chemistry. Current CFD approaches have reached an 
advanced stage, capable of delivering impressive solutions, 
particularly when combined with AI. Over the next few 
years and decades, significant advances in modeling, solu-
tion, and visualization will probably occur, reducing simula-
tion time while increasing accuracy.

Conclusions

Computational fluid dynamics (CFD) and flow chemistry 
are a perfect match. Combining these two powerful tech-
nologies is already a reality. It is part of our present when 
working on intensified equipment design, optimization, and 
scale-up. This article initially highlighted important con-
cepts underlying every CFD application. Then, the advances 
observed in this field over the last two decades (considering 
different periods, i.e., 2003–2007, 2008–2012, 2013–2017, 
2018–2023) were presented. The reader could clearly iden-
tify the evolution of problem complexity across the entire 
analyzed interval, ranging from single-phase flow distribu-
tion in microreactors to multiphysics simulations (coupling 
fluid flow, heat/mass transfer, chemical reactions, and exter-
nal fields – e.g., photon flux, ultrasound, and electric field).

Investigations on the thermal behavior of multichannel 
reactors, geometrical optimization of microreactors, sin-
gle and multiphase flow (with associated heat and mass 
transfer), mixing performance, polymerization, reforming, 
Fischer–Tropsch synthesis, multifunctional reactors, envi-
ronmental protection, photocatalytic and photochemical 
microreactors, electrochemical microreactors, microbiore-
actors, scale-up strategies, synthesis of diverse chemicals 
(including nanoparticles and added-value compounds), 
among other fields, were typically encountered.

In addition, some investigations conducted in our research 
group over the past decade, where efforts were mainly dedi-
cated to the simulation of photocatalytic and electrocatalytic 
microreactors, were presented and discussed. Furthermore, 
our major learnings and design guidelines were highlighted.

In the sequence, the strengths of combining CFD and flow 
chemistry were explicitly highlighted, supported by the fast-
growing coupling level of the different phenomena involved 
in the chemical processes analyzed. Moreover, noteworthy 
critical points for proper CFD simulation were critically 
discussed in this document, providing foundations to the 
beginner and a revision of best practices for the experienced 
user of this technology.

Finally, a discussion about limitations and opportunities 
was presented, guiding the scientist and the engineer toward 
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the challenges and limiting steps for further developments 
in this field. We hope this overview will encourage the flow 
chemistry community to work collaboratively in multidisci-
plinary teams to spread the word in terms of the potential of 
CFD for their research (from academic and industrial points 
of view) and overcome the bottlenecks still found, opening 
windows for an even brighter future of CFD in this field.
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