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Abstract

In this paper, we present a Kantorovich-type Szdsz—Mirakjan operators. Initially, we
establish the recurrence relationship for the moments of these operators and provide the
central moments up to the fourth degree. Subsequently, we analyze the local approx-
imation properties of these operators using Peetre’s K-function. We investigate the
rate of convergence, by utilizing the ordinary modulus of continuity and Lipschitz-
type maximal functions. Additionally, we prove weighted approximation theorems
and Voronoskaja-type theorems specific to these new operators. Following this, we
introduce bivariate extension of these operators and investigate some approximation
properties. Lastly, we include several numerical illustrative examples.

Keywords Szdsz—Mirakjan operators - Weighted approximation - Kantorovich
operators - modulus of continuity

Mathematics Subject Classification 41A25 - 41A35 - 41A36

1 Introduction

There are numerous motivations for delving into the study of approximation theory
and methods. These range from the necessity of representing functions in computer
calculations to a keen interest in the mathematical aspects of a given subject. The appli-
cation of approximation algorithms is widespread across various scientific domains,
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further underscoring the significance of exploring approximation theory. It is well-
established that linear positive operators occupy a crucial position in the examination
of approximation theory. One of the most well-known operators among these is the
Szasz operators, which are an extension of the Bernstein polynomials given below to
the infinite range [35],

S, (V- _—nfoo k\ T’ 0 N
Z(iT) =e ng o TEl0,00, nel

k=0

The investigation of operators S, has consistently been a focal point of research.
Numerous authors have introduced modifications and generalizations of this opera-
tor, and approximation properties have been thoroughly investigated (see [1-6, 8, 9,
13, 14, 16, 17, 21-23, 26, 29, 31-33, 35, 40, 42]). As these operators unsuitable for
approximating discontinuous functions within the scope of achieving an approxima-
tion process in spaces of integrable functions on unbounded intervals, Butzer [37]
introduced and investigated an integral modification of the operators denoted as the
Szasz—Mirakyan—Kantorovich operators, as defined by

k
K,,(lﬁ;r)ze_’” (nk) /lp (k-H)dt 7€[0,00), neNlN.

k=0

Totik [38] studied the approximations properties of the Szdsz—Mirakjan-
Kantorovich operators. In this context, numerous researchers have proposed various
modifications and generalizations for this operator, and their approximation proper-
ties have been examined as can be seen in [7, 11, 18, 20, 24, 28, 30, 34, 36, 41]. Very
recently, in [10], Aral introduced a new modulus of continuity for locally integrable
function spaces, influenced by the inherent structure of L , spaces. This work included
a quantitative theorem on the rate of convergence for convolution-type integral oper-
ators and their iterates. Another important study was done by Finta [43]. In this study,
author proved the existence of the functions r,, (n = 1,2, ...) on [0, 1] such that the
corresponding sequence of King operators approximates each continuous function on
[0, 1] and preserves the functions eg(x) = 1 and e (x) = x/, where j € {2,3,...}is
fixed. In addition, Kara [25] introduced the following modification of Szdsz—Mirakjan
operators and studies approximation properties such as asymptotic formulas, weighted
approximation a rate of convergence.

My ) = ankmw( ) (1.1)

k=0

"
The intention of this article is to present and explore new Kantorovich Szdsz—

Mirakjan operators, derived from the generalization provided in (1.1). The remaining
sections of this study are organized as follows. In section, we compute the moments

where s — e P (k)
1,k (T) =ne il ) ,t€O,1)andy € C(0,1).

@ Springer



Bulletin of the Iranian Mathematical Society (2024) 50:75 Page3of24 75

K;‘ (t*; t) for u = 0, 1, 2, 3, 4 and central moments K;; (=" ;1) (u=1,2,4)
using the derived recurrence formula. In Sect. 3, an examination of the local approx-
imation properties of these operators is conducted employing Peetre’s K -functional.
In Sect.4, we compute the convergence rate using the standard modulus of continu-
ity. Furthermore, to see the smoothness of approximation for Lipschitz-type maximal
functions, we obtained the degree of convergence for these operators. In Sect.5, we
prove Voronovskaja type theorem. In Sect.6, we explore weighted approximation
properties of the new Szdsz—Mirakjan operators in terms of the modulus of continuity.
In Sect. 7, we introduce the bivariate extension of these operators and investigate some
approximation properties. Finally, in Sect. 8, some numerical illustrative examples are
provided.

2 The New Szasz-Mirakjan Operators

Definition 2.1 Letyr : (0, c0) — Randn € N, new modification of Kantorovich-type
Szasz—Mirakjan operator can be defined by

1
> k
Kr(:7) = an,k(wfw (%) dt, 2.1
0

k=0

- 2
where s, 1 (T) = ne i o T)

It is evident that the operator K} possesses linearity and positivity. The role of
moments in positive operators is pivotal for proving our main theorems. Therefore,
the next lemma gives the iterative formula utilized to compute the moments of the new

operators. It should be mentioned that if v does not depend on ¢, that is, ¥ (%’) =

W (%) , we get operator (1.1) studied by Kara in [25].

Lemma 2.2 The equality presented below is applicable for all T € (0, 0c0) and n € N;

"
k(. ) — K ! * (4P
) _pz=0<p>(ﬂ_,0+l)77u_pMn (7:7).
where
> k
My ) = sya(m)y (;) : 22)
k=0
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Proof According to the definition of K ;‘(w; 7) (2.1), we have

1
oo
1
Ky (") = ,;)S”’k(T)n_“/ (k +t)* dt

,00

00 1
Zs,,k(r)z ( )/k"t“ Pdi

0
° o

" 1 k
. <p) NP (= p+ 1) ,;S”’kmn_”

1
<M) — M;(tp;r).
c\o/ P (= p+1)

I
M= I

>
Il

I
M=

>
Il

Lemma 2.3 [25] Forall T € (0, 00) and n € N, we have
M; (1;7) =1,

N 1
n

1 5
M;‘ (tz; ‘() ==+ 1412
n n

3 11312
M,7<r;r)=—+—r+—r + 73,
7

,73
129 61, 2

My () = o+ Srd et ot
A n

By employing Lemmas 2.2 and 2.3, the next lemma follows immediately.

Lemma 2.4 Forall t € (0, 00) and n € N, we have
@ Ky (150) =1,

3
(b) Ky (1;7) = m +1,

(c) K,"]‘ (tz; r) i + §r + 12,

15 43 7
3 _ 2
@ K (r, ) rre R A e
31 67 87
(e) K;‘ (t4; ‘L’) = +t3T 5 2 3+t
n
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Proof Since the same method is used to prove the above inequalities, we only provide
the proof for the last two inequalities. From Lemma 2.2,

3\ 1 3\ 1
3. _ .
K;]k (l N T) = <O>WM; ;o) + ( )3 2M* (t; 1)
3 1 * (2. 3 * (3.
+<2)3_772M’7 (l 5 T) =+ (3)M') <t 5 T) .
Using Lemma 2.3, we obtain

K*(t3 ) 15 n 43 +27 2,3
T)=—+-—1+—1°+71".
" 4n3 - 2n2 2n

Secondly,
4\ 1 4\ 1 4\ 1
* 4. _ * * _ M* 2,
K; (z ,z) = (0>5 — M (1) + (1)4 M (15 r)+(2>3n2Mn (r ,r)
4\ 1
M* ;
#(3) 3500 (00) + (3o s
Using Lemma 2.3, we obtain

3167 87 , 24
Ki(the) =+ 4 i+ = 4o,
AR n

O

Now, utilizing Lemma 2.4, we give explicit formulas for the first, second, and fourth
central moments.

Lemma 2.5 Forevery t € (0, 00) and n € N, we have

3
Ay(n) =Ky ((t—1);71) = e (2.3)
By(t) = K} ((r — )2, r) 35 43 s 2.4)
1 2 |
C)(v) = K ((t—r)4;r) o z2+5— +27. 2.5)

Proof Through the property of linearity, we can compute the second-order and fourth-
order central moments as follows:

K} ((r — )2, r) — K} (ﬂ; r) — 20K} (1 1) + 2K (13 1)
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and
K; ((; S z)
= K,"; ([4; r) — 411(;7k <t3; r) + 6121(;7k <t2; r) — 4r3K,’7k 1)+ 4

31+67 +872+243+4 4<1S+43 +27 2+3>
==+ —=t+—=St"+—1"+1T —dt|——+—=Tt+—1°+7
ot n? n 4 292 2

5 6 3

+6t2 =+ —-t+72) -4 =—+1)+7*
3% 2n

1, 52 31
—T+

= T T —.
n? R

Lemma 2.6 Forevery t € (0, 00) and n € N, we have

3
R .3
(l)nli)nolonKr] (t - T T) - 25
(ii) lim nK; ((z — )2, r) =31,
n—00

(iii) lim 7’k ((z )t r) = 1172,
nN—>00

3 Local Approximation Results for K;‘l‘(w; T)

In this section, we investigate the local approximation properties of K ;7"(1//; 7). Let
C (0, 00) be the set of all continuous functions i defined on (0, o) and Cp (0, c0)
denote the space of bounded real-valued continuous, endowed with the norm ||| =
SUP;¢(0,00) ¥ (7). Further, we consider the following Peetre’s K -functional,

Ko(w.8):= inf Ay —nll+5]#]},

heCy(0,00)

where § > 0 and C2 (0, 00) = {ﬁ € Cp(0,00): 1, €Cp0, oo)} .
Taking into account [15], there exists an absolute positive constant C such that

K2(1,8) = Con (¥, V5). (3.0

where

w2 (¥, 8) ;= sup sup Y (t +2h) =2y (z + h) + ¢ (1)
0<h<+/8 T£he(0,00)
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is the second-order modulus of smoothness of ¥ € Cp (0, c0) and C > 0. Addition-
ally, the usual modulus of continuity of ¢ € Cp (0, 00) can be defined as:

w(,8) = sup sup [P (T +h)— (D).
0<h<§ te(0,00)

Theorem 3.1 Forall y € Cp (0, 00) and t € (0, 00), we have

K —v|  =2w(v:VB@). (3.2)

C(0,00)
Proof For any § > 0, we have

lu — 7|

V@) =y ()] < w IM—T|)§(1+ )w(lﬂ;é)-

Applying K;; to both ends, we can obtain

K30 = (o) = Ky @) — ()] 7)

1
< (1+§K;;(|u—r|;r>)w(w;a>.
By using the Cauchy—Schwarz inequality and taking § = ,/B,(7), we have
K* .)_ )< 1+1 K*( _ 2.) -8
S0 — v @] < (14 5Ky (= 027) Jw (@ 9)
=20 (y: VB, @)

O

Theorem 3.2 For all y € Cp (0, 00) and t € (0, 00), there exist absolute constant
C > 0 such that

K3 D) = (o) < Cun(: /8,000 + w (¥ 6,(0)

where 6,(t) = A, () and 8,(t) = By(t) + A2(7).

Proof First, we define the following auxiliary operator as
~ %
K, (Y5 1) = K (Y5 1) + ¥ (1) — ¥y (0)). (3.3)
where p,(t) = 23_77 + 7. Note that, from Lemmas 2.4 and 2.5, we have
~ * ~
Kn(l; ) = 1 and Kn((t —1);7)=0.
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For h € C% (0, 00), making use of Taylor’s expansion,

t
h(t) =h(t) + ()@t — 1) + / (t — s)R'(s)ds.

~ k

Applying K, to both sides of the above equation, we have

~ %k ~ %k ~ ¥ t
K, (h;t) — h(t) = K, ((t — O (1); 1) + K, </ (t — )R (s)ds; r)
~ % t
=W (0K, (t—-1);1)+ K, (/ (t — )R (s)ds; r)
y(T)
— / (1 (v) — 5) B (s)ds

¢ n(f)
::K;(ﬂ(t—wh%mdmf)_:l“ (10(0) — 5) H'(5)ds.

On the other hand,

t
/ (t — ) (s)ds

t
s/ |t —s| |7 ()| ds
T

t
< |#) [ e stds < | ¢ -2
T

and

y(T) i (7)
/ (1 (r) = 5) B (s)ds| < / |y (T) = s| [ (s)| ds

< |7'] (un(v) = )2

=] (k50— w:)

which implies

~ % Mr].k(f)
K, (h; ©) — () + / (un(x) —5) W' (s)ds

< ‘K: (/t(t — K (s)ds: r)

= [w [ {&@ = %0 + Ky -0 0?)
=[] 8 (o). (3.4)
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Using Lemma 2.4 and (3.3), we have

K, 0)

= Ky s | + 10 @1 + ¥y @] < 11K A1) + 219
<31l

~ %

Using (3.4) and the uniform boundedness of K, , we get

K, — 1 D)= — ()| + K, (5 7) — (D)

-v (“n(f))|
<4y =Rl + | 7] 85(0) + o (. 6,(D)) .

Ky(y; 1) — 1//(1')‘ < + ¥ (7)

Taking infimum on the right hand side over all / € C% (0, 00), we obtain following
inequality

K0 = v < 4K (158,0) + 0 (4.6,(0)

which together with (3.1) gives the proof of the theorem. O
Theorem 3.3 For all 1//, € Cp (0, 00) and T € (0, 00), we have

Kiwio =) = |v' 0] |4,@] +2/B,@w (v VB, @),

where By (t) = K ((u — )% 1).

Proof Applying M;‘ to both sides of the equality ¥ (1) = ¥ (t) + w/(t)(u - 1)+
Y(u) — () — wl(r)(u — 1), using mean value theorem and the Cauchy—Schwarz
inequality and taking § = /B, (7), we can obtain

+ K5 ([pe - v - @w-0|:7)

+K,’;(|u—r|<1+ l“;ﬂ)w(xp’;s);r)
K,’; ((u‘[)z;‘[)>

8

Kiio) v < |

= |V @[ [ay@]+w (v':) (K:;(m —tho+

<|v'@|l4o|
w (¥58) i (=070 (1+K((5_)))
< ‘W/(r)‘ |A, (O] + 2B, (0w (w’; \/m).

O
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Corollary 3.4 For each yy € Cp (0, 00), the sequence of the operators K (yr; T) con-
vergence to uniformly on (0, A].

4 Rate of Convergence

In this section, we determine the rate of convergence by utilizing the standard modulus
of continuity and functions within the Lipschitz class. Let’s consider the Lipschitz class
as follows

Lipy (5, S)
={heCp(0,00): |it) —AT) <Mt —1|°, t€(0,00),5C(0,00),0<¢ =<1},

where M is a positive constant depending only on ¢ and /.
Let

B, (0, 0) :={w:|¢(t)|§M¢<l+r2), r€(0,00), >0,

Y is continuous, My, > O} ,

Cu(0,00) i={¥: ¥ € B (0,00 N C (0, 00), /], = 28 < o],

C;i 0, 00) := {w e Cu(0,00), lim ‘;/’(—T;‘ < oo}. On C* (0, 00), the norm
T—>o00 147 H

and usual modulus of continuity of 1 on the closed interval (0, A] are given respec-

tively as follows:

¥ (o)l

re(0,00) 1 T T#

il ==

and

wa(Y,8) = sup  sup |Y (1) =P (D)].

[t—7|<6 1t,t€(0,A]

Theorem 4.1 Let € C, (0, o0). Then, we have

[ -yl =omy (1+47) [3_”2+

3
C(0,A n
5 3
20411 (¥, =5 +24),
3n7
where w441 is the modulus of continuity on the interval (0, A 4 1].
Proof Fort € (0, A]andt > A + 1, we can get (see [20, eqn. 3.3])

[t — 7|

W0 =¥ @) < 6My (14+4%) 1 =% + (1 + ) war1 (¥.8). (4.1)
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Thus, applying the operators K;'(.; 7) to both sides of (4.1), we have

Ki:0) = v (@] = K () = (@) 7)

< 6M, (1 + Az) K: ((z — )2 r)

[d I, 2. V)"
(14— oan ) 1+3K,7<(t—t),r) .

Using the Cauchy—Schwarz’s inequality and Lemma 2.5, we have

K t) — w(r)] < 6M, (1 + A2> [357 + %f]

1/5 3 172
S+ (=42 .
onn >( +8(3n2+nf))

So,
‘K*(w‘ 7) — w(r)) < 6My (1+42) > 3
Y - 32
1/5 3 172
N T+ (zz+-4 :
+wat1 (¥ )( + 5 (37}2 + ; ))
By taking § = <357+%A),W6 get the desired result. O

Theorem 4.2 Let S be any subset of the interval (0, 00), if W € Lipy (g, T') , then, for
any t € (0, 00) , we have

Kiwin —wo| <M (Bng () +245(z, T)) ,

where B, (1) = K; ((t —1)?; r), M is a constant depending on ¢, ¥ and d(t, T) =
inf {|t — 7| : t € T} denotes the distance between t and T.

Proof Let T be the closure of T in (0, co) . Then, there exists a point g € % such that
|t — 19| = d(z, T). By the triangle inequality, we have

V(@) =y (@) < ¥ @) =¥ (o)l + [¥(r) — ¥ ().

Applying the operators K ;7“(.; 7) to both sides of above inequality, we have

Ki: 1) — v (@] = K (90 — v @)l 0) + K (9 (@) = v (@) 1)

< M{K;]k (It =7l 1)+t —ro|§}

@ Springer



75 Page12of24 Bulletin of the Iranian Mathematical Society (2024) 50:75

= MKy (1t =71+ 17 =l 7) + It = 70l

< M{K; (it —7l¥:7) + 210 — ol

Finally, applying the Holder inequality with p = % and g = ﬁ we get

Ki(:) — w(z)’ <M {[K;; (1t — 7I<; r)]% [K;; (14; t)]é 245 (x, T)}

- M {[K;; (|t — r)]% +23d(, T))?}
=M {(B,,(r))% 1245 (x, T)}

and the proof is completed. O

5 Weighted Approximation by K;l"

Weighted approximation involving positive operators is a topic of interest in mathemat-
ical analysis. In this section, we investigate approximation properties of the operators
M;; within the weighted space of continuous functions on (0, 00). Firstly, to obtain
some results, we need to following lemma which can be found in [12].

Lemma 5.1 [25] For all T € (0, 00) and @ € N, we have

My (i) = 28, (% ) =208, (¢ e) ey (7). )

k. k
where $,(0; T) = 77 332w (&) T
Lemma 5.2 [12]For all u € N, we have

H i

Sy (1) Y nz*" (5.2a)
i=0

where

aprrk =kaygr+agr—1, w>0k>1,
ap,0 = 1, a0 = 0 M > 0,
auk =0, <k

Lemma 5.3 For the operators K*, we have

0 I " 1 p+2 ‘L'k
Ky (7)== ( ) Aps2k—5—
p (%5) f;:; p (u—p+l)n“"’;p npr2k
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p+1 k

1 T
_ZWZ( >(//« p+ 1) k- p; SR
1 k
T .
I Z()(M p+ 1= ”Zpknp"‘

Proof From Lemma 2.2, we have

m
(. L\ K ! (.
Ky (1 ’T)_Z<p>(u—p+l)n#—PM”(t’r)'

p=0
Then, using recurrence formula (5.1), we obtain

W
. 1
K, (i 7) = Z (,'Z) (w—p+1)nt—>p {gS" (t/Hz; T)

p=0
—2nS, (t““; r) + 0TSy (1% ‘L’)} )

The proof is easily concluded by using formula 5.2a given in Lemma 5.2. O

Lemma5.4 Let ¢ € C; (0, 00). Then there exists a positive constant C such that
HK;; (141 1:)” <Cu, neN. (5.3)
Moreover;, for every € C}, (0, 00), we have

[Kswso)| = Culwlly, e (5:4)

Thus M;‘ is a linear positive operator from CZ (0, ) in to CZ (0, 00).

Proof Inequality (5.3) is obvious for & = 0. Let & > 1. Then, by Lemma 5.3, we have

1 *
W”.
1+1;/1K’7 (1+t ,‘c)

1 1 1 p+2 ‘L'k_]

B 1‘”“ 2(:)( )(u p+1)n“*pfl;;ap+2’knp“*"
p= =
" p+1 k
nw 1 T

22 (p) G D 2

k+1

o
nw 1 T
(p) (w—p+ 1)pi=r=t 2o ne =k

k=1

P
W
+2

p=0
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Thus

1
14 #

Ky(1+1" 1) <1+ K, <Cp,
the positive constant C,, is contingent on the parameter . On the other hand,

T |

for every ¢ € C}; (0, 00). Using (5.3), we get (5.4). O

Theorem 5.5 For all € C3 (0, 00) and T € (0, 00), we have
lim HK;; W 7) — w(r)H —0.
17— 00 2

Proof In accordance with Korovkin’s theorem, as presented by [19], it is adequate to
confirm the fulfillment of the subsequent three conditions:

lim HK;; (" 7) —t“H2 =0, =012 (5.5)

n—00

By Lemma 2.4-(a), it is clear that
.[[[ * N — =
nh ‘Kn (L; o) 1”2 0.

For u =1 and u = 2, we have

‘K; t1)—1

K*(t;t)—rH sup
H n 2 7€(0,00) 1 + 'L'2
3 1

— sup

21 re(0,00) | + 72

2

n

A

and

‘K* (1) — 12‘

n
K* (tz; ‘L') — 12H sup ———————
H n 2 7€(0,00) 1 =+ 'L'2

W‘F;T-‘FT -7

sup —
re(O,oo)1 + 12
> +
=-—— sup —— +— sup
3n? re(0,00) 1 + 2 re(0,00) 1 + 2

@ Springer



Bulletin of the Iranian Mathematical Society (2024) 50:75 Page150f24 75

2
n2

< .

+

S|

Hence

lim ‘K,’;‘ (t: 7) —sz —0and lim HKn (ﬁ; z) —r2H2 —0.

n—00 n— 00
which ends the proof.

For ¢ € CZ [0, 00) , the weighted modulus of continuity is defined as

[ (t+h) — (o)
>0, 0<h<§ 14+ (zt +h)* :

Q4 8) =

Lemma 5.6 [27]If ¢ € CZ [0,00), u €N, then

(1) O, 8)is a monotone increasing function of 8,
(i) lim ,(,8) =0,
§—00
(iii) forany p € [0, 00), 2, (Y, pd) < (1 4+ p), (¥, §).

Theorem 5.7 If ¢ € Clj [0, 00) ,then

[ —v| | <ken <w, %)

where k is a constant independent of W and 1.

Proof From the definition of (¢, §) and Lemma 5.6, we may write

It — 7|
V() — v @ < (1+ @+t —h") <T + 1) Qu (Y, )
< (1+ @t +nH) ('t;—r' + 1) Q. 8).

Then, we have

Ki:0) = (0| = K3 100 = p(@)]57)

< QL OKy (1+Qr+0M 1)+ K ((1+Qr+0k);1)

= Q. HK, (1+Qr+0"7)+ 1.

Applying the Cauchy—Schwarz inequality to /1, we get

=P\
115K;‘((1+(2r+t)")2;r))‘/2(K;"< 82’ ;r>> :
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Therefore,

|Kp@im) = v(0)| < 2. K1+ QT+ 1)
i 172
K ((1+ Qu+0#) o)l (K;; ( 5 z)) :

From Lemma 5.4, we have

Kr(l+Qr+0k 1) <Cu(1+14),

I 1,2
Ki((1+ Q4+ 0*) 5 on'2 (K:; ('t 5;' ;r)) <C,(1+14).

Also, from Lemma 2.4, we have

1/2
P\ Y
n §2 ) 3,72 n

2+437)
<.
5

So if we combine all these results, we get

0
Ky(¥; 1) = ¥ (0)| < Qu(¥, 8) (Cu (1+TM)+C;11(1+T )(2+3r))

5

1+ ¢it!
=Qu(¥,8) (cﬂ (1+7") + C}Lcl(s—ﬁ)>

where

2 427 4 37 4 3t
C1 =sup
>0 14 utl

In the above inequality, if we substitute %ﬁ instead of §, we obtain the desired result.
O

6 Voronovskaja Theorem for K,"z=

Voronovskaja’s theorem is a significant result in approximation theory, focusing on
the convergence properties of certain approximation operators. The theorem offers an
estimate for the rate of convergence of a sequence of approximation operators to a given
function. Named after the Soviet mathematician Tamara Voronovskaja, the theorem
often involves expressing the difference between the function being approximated
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and its approximation in terms of a remainder term. This theorem is foundational in
understanding the behavior and efficiency of approximation methods in mathematical
analysis.In this section, we give Voronovskaja type theorem for K ;‘

Theorem 6.1 For any y € C; (0, 0o) such that vy e C; (0, 00), we get
. * 3. 5 ”
lim 0 (Ky (0 =¥ (@) =S¢’ @+ (5 +37) v (@)
n— 00 2 3n
uniformly on the interval (0, A].

Proof Let 7 € (0, co) be fixed. By the Taylor formula we may write

1
VO =v@O+Y @OC-1+ 9" (@) - D2+t -1, (6.1

where r (t; T) is the Peano form of the remainder, r (;t) € Cp(0,00) and
lim;—.- r (t; ) = 0. Applying K} to (6.1), then we get

* / * 1 " * 2
1 (K wim) = @) =ny' @ K; ¢ =0+ 510" (0 K; (=0 7)

+ K (r (t:7) (t — 7)°: r) . (6.2)

Utilizing the Cauchy—Schwarz inequality to last part of (6.2), we get

nk, (r (t:7) (t — )% ‘L') < \/K;/“ (r2 @) r)\/nzK:" ((r— %, 7). (6.3)

We observe that 2 (7; 7) = 0 and 72 (., 7) € Cp (0, 00).
Then, from Theorem 5.5,

lim Kf; <r2 (t;r);r) =r’(t;1)=0 (6.4)
n—00

uniformly for T € (0, A] .
Hence, from (6.3), (6.4) and Lemma 2.6 we get immediately

, . 3, 5 ,
tim 0 (K5 (:0) = v () = 590+ (5 +3r) ¥ ().

O
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7 New Generalization of Bivariate Szasz—Mirakjan Operator

In this section, we present the bivariate extension of the operators as referenced in
(2.1). The bivariate extension of the K ;)" (¥; T) can be defined by

k k
K: o (T, y) = Z Zsm ;q(r)snzkz(y)ffw( L 2;t2)dt1dt2

=0kr=

where 7, y € 1? = (0, 00) x (0,00).
The new generalization of Bivariate Szdsz—Mirakjan operators can be rewritten as

* . _ . * .
Km,r/z,kl,kz Gt,y)= n.ki G1) Kﬂz,kz Gy).

Lemma7.1 Lete;, (t,y) = t'y?,0 <i+p < 2.For(z,y) € I*> = (0, 00) x (0, 00),
we have

Ky, (€00 T, 7) = 1,

Ky (05T y = T
Ky o (eors T, y) = =a +v,
’ 2m
Ky (€205 7, y) = %+%r—l—r
Ko (e T,y) = — + i
’ 3 m

Remark 7.2 According to above Lemma 7.1, we get

Ky o —tity)=5—,
Ko m (et —vit.y) = 5

3
Kr (=171, y) ==+ T 8y, (T),

317%

5 3
2. — =
Ky oy (eor =y)" it y) = 30 1 772y Snp(¥)

In the next theorem, we obtain the uniform convergence of new generalization
of bivariate Bernstein—Kantorovich operators to the bivariate functions defined on
= (0, 00) x (0, ).
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Theorem 7.3 Let C(I/%’B) be the space of continuous bivariate function on 1/21,3 =
(0, A] x (0, B] € I%. Then for any { € C(I3 p), we have

lim Ky v —v| =0

n,N2—>00

Proof Using Lemma 7.2, we get

—el()H — 0

*
HKm €00 — €00 Ky, mp€10

H Ky e 601) Ky, (€20 +e02) — (e20 + €02) H — 0asnp,n — 00

Hence, by Volkov’s theorem [39], we deduce

tim Kz v —v| =0

pim |y =¥ =0
For bivariate real functions, we use the following continuity module:

w (85, 8) =sup (1Y (1,9) =Y (@ )] (1,9), (r.y) € It =T < 8y ls — y| < 8}

Theorem 7.4 Let € C(I?). Then for all (,y) € I?, the inequality
(Ko T y) = (1 )| = 4w (58, (0), 8,,0)

holds, where 6, (1), 8y, (y) are as in Remark 7.2.

Proof By the linearity and positivity properties of the K* we can write

n.n2’

Koo 30 7) =¥ (@) < K5y (065) = 0 (2052, 9)

IA

1
w (; 81, 82) [K,}kl (L) + EK;‘ (It —zl; r)}
1
X[ (1; y)+ K , (s =vls y)}

Applying Cauchy—Schwarz inequality, we obtain

D=

K (r—tli0) < Kjy (0= 7)

and

D=

. 2.
K (s =71y = K (6= 7)
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35 7
fx)=2x* +145°-20x% +8x-1 ///
— = = Koyl ,/
3 = 7
) )0
. Y
—  ~Kaso¥) /

Fig. 1 Approximationto f by K;¥(f; x) forn € {250, 350, 850} and f (x) = 2x% +14x3 = 20x2 +8x — 1

0.6 T T T
0.5 == = Epglt) //_
= Bl /
> /
— = g™ /
/
/
0.4 - ; -
/
/ ’
/ ’
; 7
, ’
L s i
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, ’
s
7 s
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s
02f , e ]
s 7z
s -
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. - -
e e -7
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e -7
e -
-~ -
_____ P -
——=======o P
0 =t == == I I I 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig.2 Absolute error function E,, (f; x) forn € {250, 350, 850} and f(x) = 2x* + 14x3 —20x2 +8x — 1

Choosing 81 = §;, (7) and 82 = §,,(y), we have desired result. m]

8 Graphical Simulations

Example 8.1 Let f(x) = 2x* + 14x3 — 20x2 + 8x — 1 with x € [0.1, 1]. Here
we take the value of n € {250, 350, 850}. Figure | illustrates the convergence of
operators to f(x) as the values of n increase. Secondly, The absolute error function
E, (Y x) = |K;}(f:x) — f(x)] is illustrated in Fig.2. Finally, we give the absolute
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Table 1 E, (f; x) with f(x) = 2x* + 14x3 — 20x2 + 8x — 1 for some values of x in [0.1, 0.5] and
n € {250, 350, 850}

x | K350 (f: ) — £ (0] |Kiso(f: ) — £ Ko (f: ) — f()]
0.1 0.00773234 0.005526494 0.002278041

0.2 0.015677682 0.011310582 0.004724817

0.3 0.021608025 0.015673534 0.006598151

0.4 0.008906687 0.006739508 0.00300314

0.5 0.023578331 0.016314356 0.006399041

- fix, y)=x3+ y
[ 1Kz00,200(%)
[ 1K 400,400(7%)

0.2 0o 1
08 -
06 06 07
05
0.8 w01 02 03 04

Fig.3 Approximation to f by K, (f;x,y) forny,ny € {200,400} and f(x, y) = x4 y.

1n2

error between K7 (f; x) and f (x) for varying n values, considering specific x entries
outlined in Table 1.

Example8.2 Let f(x) = x> + y with (x,y) € [0.1,1] x [0.1, 1]. Here we take
the value of ny, ny € {200, 400}. The Fig. 3 illustrates the convergence of operators
to f(x, y) as the values of increase n and n,. Secondly, The absolute error function
Epn (fix,y)= |K:1,n2(f§ x,y) — f(x, y)| is illustrated in Fig. 4. Finally, we give

the absolute error between K :mz (f;x,y)and f(x, y) for varying n; and n; values,

considering specific (x, y) entries outlined in Tables 1 and 2.

9 Conclusion

This paper introduced a novel generalization of Szdsz—Mirakjan operators. Sub-
sequently, we scrutinized the local approximation properties of these operators
employing Peetre’s K-function. Additionally, we delved into the analysis of the con-
vergence rate, utilizing both the ordinary modulus of continuity and Lipschitz-type
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Fig.4 Absolute error function Ey; n, (f; X, y) forny,ny € {200,400} and f(x, y) = o+ y.

Table 2 Ej| n, (f;x,y) with f(x,y) = 3+ y for some values of (x, y) in [0.1, 0.5] x [0.1, 0.5] and
ni,np € {200, 400}

(x,y) |K200,200(f5 %, ¥) — f(x, )] | K400,400(f5 x, ¥) — f(x, )]
(0.1,0.1) 0.008229219 0.004100996
(0.2,0.2) 0.010307969 0.005126934
(0.3,0.3) 0.013736719 0.006827871
0.4,0.4) 0.018515469 0.009203809
(0.5,0.5) 0.024644219 0.012254746

maximal functions. Following this, we formally prove theorems related to weighted
approximation and Voronoskaja-type specific to these innovative operators. Finally,
we supplemented our findings with several numerical illustrative examples.
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