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Abstract

In this paper, we establish an asymptotic expansion for the Euler—Mascheroni constant.
Based on this expansion, we establish a two-sided inequality and a continued fraction
approximation for the Euler—Mascheroni constant.
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1 Introduction

Throughout this paper, N represents the set of positive integers and Ny := N U {0}.
The Euler—Mascheroni constant y = 0.577215664 ... is defined as the limit of the
sequence

n

D,,:Z%—lnn (n € N). (1.1

k=1

The Euler—Mascheroni constant is a number that appears in analysis and number
theory. It is not known yet whether the number is irrational or transcendental [20, 25].
The following two-sided inequality was presented in [24, 28]:
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1

1
—— < D, — — fi N, 1.2
2(n+1)< " y<2n or n € (1.2)

which shows that the convergence of the sequence D, to y is very slow (like n~!). By
changing the logarithmic term in (1.1), faster approximation formulas to the Euler—
Mascheroni constant were presented in [7, 10, 16, 17, 23]. For example, Chen and
Mortici [7] established the following approximation formula:

Xn:l In +1+ ! ! + 23 +O<_5) as — 00
- — n+-+———+——=]= n n
Lok 2 " 2an " a8n2 T 576003 ) T 7

(1.3)

and posed an open question as follows: For a given p € Ny, find the constants g;
(i=0,1,2,..., p), such that

Xn:l—ln<n+2p:ﬂ)
k=lk i=0nl

is the fastest sequence which would converge to y. This open problem has been
considered by Yang [27], Gavrea and Ivan [18], and Lin [21]. Recently, Chen [5]
determined the coefficients a; and b}, such that

. p P qinP=i

Sl K 1
71 L = -

=1 k n nd + 2 :‘j{:l bjanj y+0 <nP+‘1+1) (n — 00),

where p € N, g € Ng and p = g + 1. This solves an open problem of Mortici [22].
There are a lot of formulas expressing y as series, integrals, or products [4, 8§, 9, 13,
14, 20]. For more information on the Euler—Mascheroni constant y, please refer to
survey papers [15, 26] and expository book [19].

In this paper, we consider the sequence (A, ),enN defined by

n n
1
Anzzzm—l+ln2—lnn. (1.4)
i=1 j=0

Using the computer program MAPLE 13, we find, as n — oo

A Lo T 31 3, 63517
Y o T 482 T 4873 640n*  960m° | 1612876 ' 5376m7
3577 511

- - e 1.5
61440n8  15360n° * (1.5)

We here give a formula for determining these coefficients in the right-hand side of (1.5).
Then, we establish a two-sided inequality and a continued-fraction approximation for
the Euler—-Mascheroni constant.
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The numerical values given in this paper have been calculated via the computer
program MAPLE 13.

2 Lemmas and Preliminaries

The gamma function may be defined by I'(x) = fooo t*~le~'dr (x > 0). The loga-
rithmic derivative of the gamma function v (x) = I'’(x)/ " (x) is known as the psi (or
digamma) function. The derivatives of the psi function w(")(x) (n € N) are called

the polygamma functions. It is well known that the psi function has the duplication
formula [1, p. 259, Eq. (6.3.8)]:

Y (2x) = % [w(x) + <x + %)] +1n2. @.1)

The following series expansion and asymptotic formula hold (see [1, p. 260]):

o0

1
"(x) = S 2.2
v Z(x+k)2 @2
k=0
and
) 1 1 & By 11 X B
I/I(X)”";—l—ﬁ—l- W=;+g+2m (x > 00), (2.3)
k=1 j=2

where B, (n € Np) are the Bernoulli numbers defined by

It follows from the known result (see [6, Eq. (3.26)]) that:

1-2"%B 1 °°1—22’<B
1/[/<x _)N__Z( xk+l)k . Z( Bt .
k=3
(2.4)

Lemma 2.1 (see [3, Theorem 9]) Let k > 1 and n > 0 be integers. Then, for all real
numbers x > 0

Si2n; x) < (=D y® () < S 2n +1; ), (2.5)
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where

k! p k—1

) k— D! ! L 1
Sk(p; x) = - + kT + Z By; 1_[(21 +J) 2k
i=1 j=1
B,, are the Bernoulli numbers.

It follows from (2.5) that for x > O:

T e Je - N L S NI I Y
-4+ =+ -——-——=< <-4+—4+-—-—+—. .
x  2x%2  6x3 30x° T2 T3 T 3005 427
Using the recurrence formula
/7 /! ]
Yviix+1D=vy(x)— px 2.7
we deduce from (2.6) that for x > 0
1 1 n 1 1 W+ D) 1 1 1 1 1 2.8)
———t———= <Y (x <—-——+4+—-——=+—. (2.
x  2x%2  6x3 30x° x  2x2 0 6x3  30x5  42x7
Lemma2.2 (see [2]) For x > § and N € Ny
2N+1
— ! Bo(1/2 2k — 1)!
(n 1) Z 2% (1/2) (n + 1 ) < (—1)”+11p(”)(x)
(x — i)n P (2k)! (x — 7)11—&-2k
2N
—1)! Box(1/2 2k — 1)!
LoD S B kD
(x — §)n P (2k)! (x — 7)n—&-Zk
2.9

where By (t) are the Bernoulli polynomials defined by the following generating
function:

yel* o L
=2 B0
n=0
Noting that
1
Bi(1/2) = =\ 1= 7= ) Bc (k€ No).

we obtain from (2.9) that for x > 0

1 1 n 7 31 1,0/ n 1 1 1 n 7 2.10)
- — — < x+-—)<——— 4+ ——. )
x  12x3  240x> 134447 2 x  12x3  240x°
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Lemma 2.3 (see [11, 12]) Leta; # 0 and A(x) ~ Zfozl % (x — 00) be a given
asymptotic expansion. Then, the function B(x) := a1/ A(x) has asymptotic expansion

of the following form:
B(x)~x+2(:)x—j (x — 00),
]=

where

J
a 1 .

by = 2 bj = Ta aj42 + E ap+1bj—k G=D.

k=1

Remark 2.4 Lemma 2.3 provides a method to construct a continued-fraction approx-
imation based on a given asymptotic expansion. The details of this method are given

below.
Leta; # 0 and

A(x)NZ% (x = 00) 2.11)
=1

be a given asymptotic expansion. Then, the asymptotic expansion (2.11) can be
transformed into the continued-fraction approximation of the form

ai

A(x) ~ (x = 00), (2.12)

by

x+co+
x+do+ -

X+ by + ]

wherein the constants are given by the following recurrence relations:

aj 1 /
bo==—and bj=—g a2+ X aibjx
| -
co=-2 and c¢;=-2L b'2+ébk 1Cj—k
b j b\ T (2.13)

J
i
dy=-2 and d;=—, (Cj+2 + 2 Ck+1djk>
=1

Clearly, since aj = b; = cj = dj = -- -, the asymptotic expansion (2.11)
is transformed into the continued-fraction approximation (2.12), and the constants in
the right-hand side of (2.12) are determined by the system (2.13).
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3 Asymptotic Expansion

We provide a recurrence relation for successively determining the coefficients of n]—k
(k € N) in expansion (1.5) given by Theorem 3.1.

Theorem 3.1 The sequence (A;)nen, defined by (1.4), has the asymptotic expansion
00
An—y~];Z—];, n— 00, G.1)
with the coefficients ay given by the recurrence relation

k—1
1 1 ok
= -, = — — : —1 k_j
“a=g k{ JZZI“J( ) (k—j+ 1)

_ol—k
OS2I (A% ) e

2 4 k+1
3.2)
where B,, are the Bernoulli numbers.
Proof Denote
o0 ak
n n—y and J, Z pr:
k=1
In view of (1.5), we can let I,, ~ J,, and
Al =1y — Iy ~ Jpp1 — Jn = AJy
as n — 00, where ay, are real numbers to be determined.
We obtain by (2.2) that
- 1
=v'0Q)—v'i+n+1). 3.3
gaﬂ')z ¥ (i) — ¥'( ) 3.3)

Using (3.3) and (2.7), we have

n

ii’)lﬂ)z Zz(lﬂ)z n<1+%>

1 1
e i rEwray: _1“<1+E>
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1
=w’(n—|—2)—1//’(2n+3)+1p’(n+1)—1//’(2n+2)—1n<1+’—l)
=2y’ 2 297 (2 1 3 In(1 : 34
=20/ — = 20200+ ))—m—n< +;>. (.4)
We obtain from (2.1) that
2¢7(2 Ly Ly ! 35
I/I(x)—EI/f(x)—i-Ew(x—i-E). (3.5)
We obtain by (3.5) and (2.7) that

, 1, 1 l, 1 1
2¢ (2(’1‘*‘1)):51# (n)—m-f-z‘ﬂ <n+§>—m (3.6)

Substituting (3.6) into (3.4), we obtain

I 3w’() ) lw/ +1 + : > In 1+1
==¢Yv'(n)———= n+ - — — - ).
" w2 2 2 20+ 1?2 4+ 1)? n

(3.7)
Using (2.3) and (2.4), we find as n — oo
3(1 1 >, B, 3 1(1 X A-=22KB_,
AL ~=| -+ — = -= ==y =
" 2ln + 2n2 +Z ni+l1 2nz 2 (n Z nk
+i(_l)k(k_l) i(—l)ks(k—l) i(_l)k_l
= 2k—1yk = 4nk P knk

which can be written as

2—k _
AI~Z{M+( 1)k<k 1—M+%>}i (n > o0).

k—1 k
= 2 2 4 n
(3.8)
Direct computation yields
00 o0 —k o) o)
ay 1 ay —k\ 1
Sotm=ra (i) —Xax ()
k=1 (n + D =" " =" 2o N n/
00 00 . ook
ak i(k+i—1\1 k—j(k—1\ 1
=3 e ()= e F
=" 2o J oS j=1 k=j/n
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We then obtain
o [ & k=1 1
ATy =Y 3> aj(-nk (k - j> —ak{ - (3.9)

Equating coefficients of the term n—k on the right-hand sides of (3.8) and (3.9)
yields

4-22H)p,_ k=1 3k—1 1) (k=1
I = P B DT ] e B
j=1

for k > 2. For k = 2 we obtain a; = 3 and for k > 3, we have

(4—-22"MBy_, (k=1 3k-=1) 1
2 D <2’<—1 _T+%)

k=2
_ifk—1
=Y a;j(=D* f( ) — (k= Dag1,
° k—j
j=1
which gives the desired result (3.2). The proof of Theorem 3.1 is complete. O

4 A Two-Sided Inequality

Motivated by (1.5), we establish a two-sided inequality for the Euler—-Mascheroni
constant given by Theorem 4.1.

Theorem 4.1 Let the sequence (Ay),eN be defined by (1.4). Then, forn > 1

1 11 1 11 7

Ay ey 41
T asn? S T S o T T ase “.1)

Proof We consider the sequences (xy),cn and (y,),cy defined by

| Lo ) 1, on 7
Xpi=Ap—y——+-—> an =Ay -y ——+— - ——.
A AT S P T T

Clearly

lim x, =0 and lim y, =0.
n—00 n— 00

Noting that (3.7), we obtain by (2.8) and (2.10) that

1 N 11 +1 11
2m+1)  48(n+ 12  2n  48n2

Xp41 — Xp = Al —
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3, 1, 1 1 3 1

=¥t -5y ("+2>+2(n+§)2_4(n+1)2_1n<1+n)
1 11 1 11
T2t D Bat D 2n a8

3 /1 1 1 1 1
<5<r272+673‘ﬁ+w)
1 /1 1 7 31
_§<5_ 1203 T 24005 1344n7>

1 3 11 1 1
+2(n+£)2_4(n+1)2_<n_2r12+3n3_4n4)
1 11 1 11
T2t D) T a8mt D 2n asa?
_ Pr(n —2)
T 1344007 2n + D2(n + 1)2

and

= Al LU gt
LTI RT3+ ) T B+ D2 A+ 1) 2n 48a2 | 483

:Ew/(n-l-l)—lw/(n-l-l)-i— ! 3 —ln<1+l)
2 2 2 2(n + %)2 4(n +1)2 n
1 N 11 B 7 N 1 N 7
2n4+1) 48+ 12 48(m+1)3  2n  48n2  48n3

3 (1 1 n 1 1 ) 1 (l 1 n 7 )
> (- - 4 - - yY__(Z_-_- 4 _
2\n 202 6n3 30m° 2 \n 123 240m5

1 3 11 1 1 1
+2(n+;)2_4(n+1)2_<n_2r12+3n3_4114+5n5>
1 11 7 1 11 7
D 48+ 12 48+ 1)3 o T agez T g
B Ps(n —2)
T 480n5(2n + 1)2(n + 13’

where

P;(n) = 2152565 + 8661410n + 1419023712 + 12516340n°
+ 6481224n* + 19804401° + 331632n° + 2352017

and
Ps(n) = 6715 + 311351 + 367391 + 18489n° + 4268n* + 372n°.

We then obtain x,+1 < x, and y,4+1 > y, for n > 2. Direct computations give

1 341
4 In2—y =0.095098.... x»= o 1y =0014798. ...
=g tiney 2= 5767
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661

1
42—y =—0050735. ... yy= > _
N=-gtinaoy 2= 1152

y = —0.003430. . ..

We see that the sequence (x,) is strictly decreasing and (y,) is strictly increasing for
n > 1, and we have

x":A"_y_$+48n2>mleooxm:0 (neN)
and
1 11 .
ynzAn—y—Z+%7—M<m1meym=O (n € N).
The proof of Theorem 4.1 is complete. O

5 Continued-Fraction Approximation

We convert the asymptotic expansion (3.1) into a continued-fraction approximation
given by Theorem 5.1.

Theorem 5.1 It is asserted that

B —

A, —y & 77 (n — 00). 5.1

11 576
n++ 112521

55225

2058785551 | -.
"+ 1480776360

Proof By Remark 2.4, we can convert (3.1) into a continued-fraction approximation
of the form
ai
An—y ™ b (n — 00),
n—+ by +

C1
n—+co+

n+do+ -

where the constants in the right-hand side can be determined by using the system
(2.13). We see from (1.5) that

1 11 7 31 31 635
al==, @a=——, B=-—, A4 =———, A5=——, A= ———,....
Ty BT P YT e T o600 0T 16128
We obtain from the first recurrence relation in (2.13) that

11
bo=—2 =,
aq 24
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b — a3z + apbg . 47
' a 576’
by — a4 + arby + azbg _ 5129
> ar ~ 691200
e — as + arby + azby + agbg _ 163853
3T ar ~ 1658880
by — ae + axb3 +azby +asby +asby 2749273
‘T al T 278691840°
We obtain from the second recurrence relation in (2.13) that
by 5129
cn = —— = _——,
7 b T 5640
b3z + baco 112521
Cl = — = .
! by 55225
_ by + byc1 + bsco _ 2058785551
2= by = T 726761000 T
Continuing the above process, we get
g = c2 2058785551
0T T T 1480776360
The proof of Theorem 5.1 is thus completed. O
Remark 5.2 Based on (5.1), we find the following two-sided inequality:
1 1
2 a7 <Ap-—y < Z_ﬂ (n € N).
11 576 11 576
n+y+ 112521 nt ot S
_ 8129 55225 = 5640
5640 2058785551
" + 1180776360
(5.2)

Following the same method as was used in the proof of Theorem 4.1, we can prove

(5.2). We here omit the proof. Elementary calculations show that

3 11
_4 2n  48n?
n4 4 376
24 112521
5129 55225
n— 50+ 2058785551

"+ 1480776360
176432928012 + 10711865921 + 667905887

- 48n2(252047040n3 4 236742280n2 + 2298578001 + 60718717) g

O(n>1)

@ Springer



76

Page 12 of 13 Bulletin of the Iranian Mathematical Society (2023) 49:76

and

! L L B
R _% 2n  48n2 = 48n3
n+ﬂ+—_w
= 5640

4371n — 6559 “0 =2
= — n .
4873 (1880n2 — 8481 — 937) =

Hence, for n > 2, the two-sided inequality (5.2) is more accurate than the two-sided
inequality (4.1).

Acknowledgements This work was the Fundamental Research Funds for the Universities of Henan
Province (NSFRF210446).

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

References

w

11.

12.

13.
14.

15.

. Abramowitz, M., Stegun, L. A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, Applied Mathematics Series 55. Ninth Printing, National Bureau of Standards,
Washington, D.C. (1972)

. Allasia, G., Giordano, C., Pecari¢, J.: Inequalities for the gamma function relating to asymptotic

expansions. Math. Inequal. Appl. 5(3), 543-555 (2002)

. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373-389 (1997)
. Chen, C.-P.: Inequalities for the Lugo and Euler-Mascheroni constants. Appl. Math. Lett. 25(4), 787—

792 (2012)

. Chen, C.-P.: Approximation formulas and inequalities for the Euler-Mascheroni constant, Revista de

la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 115(2), Article 56
(2021). https://doi.org/10.1007/s13398-021-00999-4

. Chen, C.-P., Choi, J.: Inequalities and asymptotic expansions for the constants of Landau and Lebesgue.

Appl. Math. Comput. 248, 610-624 (2014)

. Chen, C.-P., Mortici, C.: New sequence converging towards the Euler-Mascheroni constant. Comput.

Math. Appl. 64, 391-398 (2012)

. Chen, C.-P, Srivastava, H.M.: New representations for the Lugo and Euler-Mascheroni constants.

Appl. Math. Lett. 24(7), 1239-1244 (2011)

. Chen, C.-P, Srivastava, H.M.: New representations for the Lugo and Euler-Mascheroni constants, II.

Appl. Math. Lett. 25(3), 333-338 (2012)

. Chen, C.-P, Srivastava, H.M., Li, L., Manyama, S.: Inequalities and monotonicity properties for the

psi (or digamma) function and estimates for the Euler-Mascheroni constant. Integral Transforms Spec.
Funct. 22, 681-693 (2011)

Chen, C.-P, Srivastava, H.M., Wang, Q.: A method to construct continued fraction approximations
and its applications, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A.
Matematicas, 115(3), Article 97 (2021)

Chen, C.-P., Wang, Q.: Asymptotic expansions and continued fraction approximations for the harmonic
numbers. Appl. Anal. Discrete Math. 13(2), 569-582 (2019)

Choi, J.: Some mathematical constants. Appl. Math. Comput. 187, 122—140 (2007)

Choi, J., Srivastava, H.M.: Integral representations for the Euler-Mascheroni constant y. Integral
Transforms Spec. Funct. 21(9), 675-690 (2010)

Dence, T.P,, Dence, J.B.: A survey of Euler’s constant. Math. Mag. 82, 255-265 (2009)

@ Springer


https://doi.org/10.1007/s13398-021-00999-4

Bulletin of the Iranian Mathematical Society (2023) 49:76 Page130f13 76

16. DeTemple, D.W.: The non-integer property of sums of reciprocals of consecutive integers. Math. Gaz.
75, 193-194 (1991)

17. DeTemple, D.W.: A quicker convergence to Euler’s constant. Am. Math. Mon. 100, 468-470 (1993)

18. Gavrea, L., Ivan, M.: Optimal rate of convergence for sequences of a prescribed form. J. Math. Anal.
Appl. 402, 35-43 (2013)

19. Havil, J.: Gamma: exploring Euler’s constant. Princeton University Press, Princeton (2003)

20. Lagarias, J.C.: Euler’s constant: Euler’s work and modern developments. Bull. Am. Math. Soc. 50(4),
527-628 (2013)

21. Lin, L.: Asymptotic formulas associated with psi function with applications. J. Math. Anal. Appl. 405,
52-56 (2013)

22. Mortici, C.: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math.
Appl. 59, 2610-2614 (2010)

23. Negoi, T.: A faster convergence to the constant of Euler. Gazeta Matematicd, seria A 15, 111-113
(1997). ((in Romanian))

24. Rippon, PJ.: Convergence with pictures. Am. Math. Mon. 93, 476478 (1986)

25. Sondow, J.: Criteria for irrationality of Euler’s constant. Proc. Am. Math. Soc. 131(11), 3335-3345
(2003)

26. Srivastava, H.M.: A survey of some recent developments on higher transcendental functions of analytic
number theory and applied mathematics. Symmetry 13 2294, 1-22 (2021)

27. Yang, S.: On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant. J. Math.
Anal. Appl. 396, 689-693 (2012)

28. Young, R.M.: Euler’s constant. Math. Gaz. 75, 187-190 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	Approximations to the Euler–Mascheroni Constant
	Abstract
	1 Introduction
	2 Lemmas and Preliminaries
	3 Asymptotic Expansion 
	4 A Two-Sided Inequality
	5 Continued-Fraction Approximation
	Acknowledgements
	References




