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Abstract
We introduce generalizations of ∗-Lie derivable mappings (which are not necessarily
linear) on ∗-algebras and then provide characterizations of these generalizations on
standard operator algebras. Indeed, if H is an infinite dimensional complex Hilbert
space and A be a unital standard operator algebra on H which is closed under the
adjoint operation, then we characterize these mappings onA, especially we show that
these mappings are linear. Our results are various generalizations of the main result
of [W. Jing, Nonlinear ∗-Lie derivations of standard operator algebras, Quaestiones
Math. 39 (2016), 1037–1046].

Keywords �-Lie derivation · ∗-Lie derivable map · Generalized ∗-Lie 2-derivable
map · Left (right) generalized ∗-Lie derivable map · Standard operator algebra

Mathematics Subject Classification 47B47 · 47L10 · 47L30

1 Introduction

Throughout this paper, all of algebras are associative. One of the favourite problems in
mathematical is study of relationship between the additive and multiplicative structure
of algebras (or rings). In this regard, Martindel in [13] proved that every multiplicative
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bijective mapping from R to an arbitrary ring is additive, by considering suitable
sufficient condition on the ringR. Then, the question of whichmappings on an algebra
(ring)A are automatically additive or linear was considered and different results were
obtained, in this direction we refer the reader to [5, 15–17] and references therein for
more details. Among these results, there are especially results about Lie derivations
and its generalizations, some of which we mention. LetA be an algebra andM be an
A-bimodule. A mapping δ : A → M (not necessarily linear) is called a Lie derivable
map if

δ([a, b]) = [δ(a), b] + [a, δ(b)] (a, b ∈ A),

where [a, b] = ab − ba is Lie product (or commutator) of a and b. The mapping δ is
called a derivable map if

δ(ab) = aδ(b) + δ(a)b (a, b ∈ A),

A linear (additive) Lie derivable mapping δ is called linear (additive) Lie derivation. If
δ is a linear (additive) derivablemapping, then it is called a linear (additive) derivation.
Lu and Liu in [12] studied Lie derivablemaps onB(X ), whereX is a Banach space and
B(X ) is the algebra of all bounded linear operators on X . They proved that every Lie
derivable map on B(X ) can be expressed as the sum of an additive derivation of B(X )

into itself and a central mapping on B(X ) which vanishes at commutators. This result
was generalized to the case of Lie derivable maps on prime rings containing a non-
trivial idempotent in [8]. In addition, derivable Lie maps on triangular algebras and
generalized matrix algebras have been characterized (see [14, 18]). In the following,
some generalizations of derivable Lie maps were also considered and characterized.
Some of these generalizations are as follows. Let A be an algebra, M be an A-
bimodule and δ, τ : A → M be mappings. τ is called left generalized Lie derivable
map with respect to δ whenever

τ([a, b]) = τ(a)b − τ(b)a + aδ(b) − bδ(a), (a, b ∈ A).

It should be noted that the right generalized Lie derivable map with respect to δ can
be defined as follows

τ([a, b]) = aτ(b) − bτ(a) + δ(a)b − δ(b)a, (a, b ∈ A).

Since the characterization results of these two types of mapping are similar, usually
only the first definition is considered. Fei and Zhang in [6] studied generalized Lie
derivable mappings on triangular algebras. In addition, see [3, 7, 10]. Another general-
ization of Lie derivable maps are generalized Lie 2-derivable maps, which are defined
as follows. Let δ be a Lie derivable map. τ is called generalized Lie 2-derivable map
with respect to δ whenever

τ([a, b]) = [τ(a), b] + [a, δ(b)], (a, b ∈ A).
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Under certain sufficient conditions on triangular algebras and generalized matrix alge-
bras, generalizedLie 2-derivablemaps havebeen characterized in [11, 14], respectively
(note that, the results are obtained in a more general state for generalized Lie n-
derivable maps). Also, for more results in this regard, refer to [1, 2] and references
therein.

In the continuation of this study path, mappings on ∗-algebras were considered.
Among these maps, it is possible to mention the ∗-Lie derivable map, which is defined
as follows. Let B be a ∗-algebra and A is a ∗-subalgebra of B and δ : A → B be a
map. δ is a ∗-Lie derivable map if

δ([a, b]∗) = [δ(a), b]∗ + [a, δ(b)]∗, (a, b ∈ A),

where [a, b]∗ = ab − ba∗. In [19] the authors studied ∗-Lie derivable maps on
factor von Neumann algebras. They proved that every ∗-Lie derivable map from a
factor von Neumann algebra in an infinite dimensional Hilbert space into itself is an
additive ∗-derivation. Note that a mapping T between ∗-algebras is called a ∗-map if
T (a∗) = T (a)∗ for all a in the domain. In [9] Jing showed that any ∗-Lie derivable
map on standard operator algebra is automatically linear. To be more precise, Jing
proved the following theorem.

Theorem 1.1 [9, Theorem 2.14] Let H be an infinite dimensional complex Hilbert
space, andA be a standard operator algebra onH containing the identity operator I .
IfA is closed under the adjoint operation and δ : A → B(H) is a ∗-Lie derivable map,
then δ is linear ∗-derivation. Moreover, there exists an operator T ∈ B(H) satisfying
T + T ∗ = 0 such that δ(A) = AT − T A for all A ∈ A.

Continuing the natural process of these studies and with the idea of the mentioned
generalizations of the Lie derivable mapping, we present the following definitions as
generalizations of the ∗-Lie derivable mapping.

Definition 1.2 LetB be a ∗-algebra andA be a ∗-subalgebra ofB, and let δ, τ : A → B
be mappings.

(i) Let δ be a ∗-Lie derivablemap. Then τ is called generalized ∗-Lie 2-derivable
map with respect to δ if

τ([a, b]∗) = [τ(a), b]∗ + [a, δ(b)]∗, (a, b ∈ A).

(ii) τ is called left generalized ∗-Lie derivable map with respect to δ whenever

τ([a, b]∗) = τ(a)b − τ(b)a∗ + aδ(b) − bδ(a)∗, (a, b ∈ A).

(iii) τ is called right generalized ∗-Lie derivable map with respect to δ if

τ([a, b]∗) = aτ(b) − bτ(a)∗ + δ(a)b − δ(b)a∗, (a, b ∈ A).

It is clear each of the definedmapping is a ∗-Lie derivable map if δ = τ . In addition,
note that Definitions 1.2-(ii) and 1.2-(iii) are not symmetrical.
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In this paper, we consider the mappings defined in 1.2 on the standard operator
algebras in infinite dimensional complex Hilbert spaces, and we determine their struc-
ture, especially the result is that these maps are linear. More precisely, we prove the
following theorems.

Theorem 1.3 LetH be an infinite dimensional complex Hilbert space,A be a standard
operator algebra onH containing the identity operator I , andA be closed under the
adjoint operation. If τ : A → B(H) is generalized ∗-Lie 2-derivable mapwith respect
to the ∗-Lie derivable map δ : A → B(H), then there exist operators T , S ∈ B(H)

satisfying T +T ∗ = 0, T −S ∈ RI such that δ(A) = AT −T A and τ(A) = AT −SA
for all A ∈ A. Especially, τ, δ are linear maps.

Theorem 1.4 LetH be an infinite dimensional complex Hilbert space,A be a standard
operator algebra on H containing the identity operator I , and A be closed under
the adjoint operation. If τ : A → B(H) is left generalized ∗-Lie derivable map
with respect to the ∗-Lie derivable map δ : A → B(H), then there exist operators
T , S ∈ B(H) satisfying T+T ∗ = 0 such that δ(A) = AT−T A and τ(A) = AT−SA
for all A ∈ A. Especially, τ, δ are linear maps.

Theorem 1.5 LetH be an infinite dimensional complex Hilbert space,A be a standard
operator algebra on H containing the identity operator I , and A be closed under
the adjoint operation. If τ : A → B(H) is right generalized ∗-Lie derivable map
with respect to the ∗-Lie derivable map δ : A → B(H), then there exist operators
T , S ∈ B(H) satisfying T +T ∗ = 0, (S−T ) = (S−T )∗ such that δ(A) = AT −T A
and τ(A) = AS − T A for all A ∈ A. Especially, τ, δ are linear maps.

Each of above theorems are generalizations of Theorem 1.1. To prove these the-
orems, it is necessary to consider the maps on standard operator algebras that apply
to certain multiplicative properties and determine their structure, especially, we prove
that these maps are automatically linear (see, Lemmas 2.1 and 3.1). These results can
be interesting in themselves.

Let H be a Hilbert space. We denote by B(H) the algebra of all bounded linear
operators on Hilbert spaceH, andF(H) denotes the algebra of all finite rank operators
in B(H). Recall that a standard operator algebra is any subalgebraA of B(H) which
contains F(H). We shall denote the identity operator of B(H) by I . It should be
remarked that a standard operator algebra is not necessarily closed in the sense of
weak operator topology. Every standard operator algebra is prime and its center isCI .
For more information on standard operator algebras, we refer to [4].

2 Proof of Theorem 1.3

The following lemma is a key element in proving Theorem 1.3.

Lemma 2.1 LetH be a complex Hilbert space, andA be a standard operator algebra
on H containing the identity operator I . If A is closed under the adjoint operation
and φ : A → B(H) is a map satisfying φ([A, B]∗) = [φ(A), B]∗ for any A, B ∈ A,
then φ(A) = φ(I )A for all A ∈ A, where φ(I ) ∈ RI . Especially, φ is linear.
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Proof The proof of Lemma will be organized in a several steps.
Step 1. φ(0) = 0.

Proof

φ(0) = φ([0, 0]∗) = [φ(0), 0]∗ = 0.

��
Step 2. φ(λI ) ∈ RI , for any λ ∈ R.

Proof Since

0 = φ(0) = φ([λI , A]∗) = [φ(λI ), A]∗ = φ(λI )A − Aφ(λI )∗,

for all λ ∈ R and A ∈ A, we have φ(λI )A = Aφ(λI )∗. Letting A = I , we see that
φ(λI ) = φ(λI )∗. Thus condition φ(λI )A = Aφ(λI )∗ becomes φ(λI )A = Aφ(λI ).
It follows that φ(λI ) ∈ CI , the center ofA. Since φ(λI ) is self-adjoint, φ(λI ) ∈ RI ,
for any λ ∈ R. ��
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By Eqs. (2.2) and (2.3), we get
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��
Step 4. φ(i A) = iφ(I )A, for any A ∈ A.

Proof Let A ∈ A. Since [ 12 i I , A]∗ = i A, by using Step 2 and Step 3, we see that
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So by Eq. (2.6) we have,

φ(I ) = φ(i(−i I )) = −2iφ

(
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I

)
(−i I )

= −2φ

(
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2
I

)
. (2.7)

By composition (2.6) and (2.7) we see that

φ(i A) = iφ(I )A.

��
Now, by Step 4, we get

φ(A) = φ(i(−i A)) = φ(I )A.

for all A ∈ A. From Step 2 it follows that φ(I ) ∈ RI . The proof is complete. ��
Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3 According to Theorem 1.1, there exists an operator T ∈ B(H)

satisfying T +T ∗ = 0 such that δ(A) = AT −T A for all A ∈ A. Define the mapping
φ : A → B(H) by φ = τ − δ. From the assumption it follows that φ is a map
satisfying

φ([A, B]∗) = [φ(A), B]∗ (A, B ∈ A).

So by Lemma 2.1, φ(A) = φ(I )A for all A ∈ A, where φ(I ) ∈ RI . By the definition
of φ we have τ(A) = δ(A) + φ(A) = AT − T A + φ(I )A for any A ∈ A. Set
S = T − φ(I ) ∈ B(H). So T − S ∈ RI , and τ(A) = AT − SA for all A ∈ A. It is
clear that τ, δ are linear maps. The proof is completed. ��

3 Proofs of Theorems 1.4 and 1.5

First, we prove the following lemma.

Lemma 3.1 LetH be a complex Hilbert space, andA be a standard operator algebra
on H containing the identity operator I . Suppose that A is closed under the adjoint
operation, and φ : A → B(H) is a map.

(i) If φ satisfies φ([A, B]∗) = φ(A)B − φ(B)A∗ for all A, B ∈ A, then φ(A) =
φ(I )A for all A ∈ A.

(ii) If φ satisfies φ([A, B]∗) = Aφ(B) − Bφ(A)∗ for all A, B ∈ A, then φ(A) =
Aφ(I ) for all A ∈ A, where φ(I ) = φ(I )∗.

Especially, φ is linear in both cases.

Proof We have φ(0) = 0, by letting A = B = 0 in both cases.
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(i) By letting A = I , we get

0 = φ(0) = φ(I )B − φ(B),

for all B ∈ A. Hence φ(A) = φ(I )A for all A ∈ A.
(ii) Let A = I , we see that

0 = φ(0) = φ(B) − Bφ(I )∗

for all B ∈ A. Set B = I , therefore φ(I ) = φ(I )∗. Thus φ(A) = Aφ(I ) for all
A ∈ A, where φ(I ) = φ(I )∗.

��
In the following, we present the proof of Theorems 1.4 and 1.5.

Proof of Theorem 1.4 From Theorem 1.1 it follows that there exists an operator T ∈
B(H) satisfying T + T ∗ = 0 such that δ(A) = AT − T A for all A ∈ A. Define the
mapping φ : A → B(H) by φ = τ − δ. From the assumption it follows that φ is a
map satisfying

φ([A, B]∗) = φ(A)B − φ(B)A∗ (A, B ∈ A).

So by Lemma 3.1-(i), φ(A) = φ(I )A for all A ∈ A. From the definition of φ we get
τ(A) = δ(A)+φ(A) = AT−T A+φ(I )A for any A ∈ A. Set S = T−φ(I ) ∈ B(H).
So τ(A) = AT − SA for all A ∈ A. It is clear that τ, δ are linear maps. The proof is
completed. ��
Proof of Theorem 1.5 From Theorem 1.1 it follows that there exists an operator T ∈
B(H) satisfying T + T ∗ = 0 such that δ(A) = AT − T A for all A ∈ A. Define the
mapping φ : A → B(H) by φ = τ − δ. From the assumption it follows that φ is a
map satisfying

φ([A, B]∗) = Aφ(B) − Bφ(A)∗ (A, B ∈ A).

So by Lemma 3.1-(ii), φ(A) = Aφ(I ) for all A ∈ A, where φ(I ) = φ(I )∗. From
the definition of φ it follows that τ(A) = δ(A) + φ(A) = AT − T A + Aφ(I ) for
any A ∈ A. Set S = T + φ(I ) ∈ B(H). So S − T is a self adjoint operator, and
τ(A) = AS − T A for all A ∈ A. It is clear that τ, δ are linear maps. The proof is
completed. ��
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