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Abstract
For a nontrivial finite group G, the intersection graph �(G) of G is the simple undi-
rected graph whose vertices are the nontrivial proper subgroups of G and two vertices
are joined by an edge if and only if they have a nontrivial intersection. In a finite simple
graph �, the clique number of � is denoted by ω(�). In this paper we show that if
G is a finite group with ω(�(G)) < 13, then G is solvable. As an application, we
characterize all non-solvable groups G with ω(�(G)) = 13. Moreover, we determine
all finite groups G with ω(�(G)) ∈ {2, 3, 4}.
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1 Introduction andMain Results

Let G be a group. There are several ways to associate a graph to G (see [8] and the
references therein). In this paper, we consider the intersection graph of G which is
denoted by �(G). The intersection graph �(G) of a nontrivial group G is a simple and
undirected graph defined as follows: the vertex set is the set of all proper non-trivial
subgroups of G, and there is an edge between two distinct vertices H and K if and
only if H ∩ K �= 1, where 1 denotes the trivial subgroup of G. The graph �(G) has
been extensively studied (see, for example, [1, 10, 11, 14, 19, 21, 22, 26]), when G is
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finite. Also in [12], the subgraph �M(G) whose vertices are maximal subgroups of a
finitely generated group G is investigated. Intersection graphs of subsemigroups of a
semigroup, submodules of a module, and ideals of a ring, were investigated in [2, 7]
and [9, 15], respectively.

Let � be a simple graph. The set of vertices of every complete subgraph of � is
called a clique of �. The maximum size of a complete subgraph of � is called the
clique number of � and it is denoted by ω(�). For convenience, we write ω(�) = 0
if � has no vertices (i. e. � is the empty graph) and ω(�) = 1 if � has a non-empty
vertex set with no edges (i. e. � is null).

In group theory, it is well known that the quantitative properties of some special
subgroups play an important role in characterizing the solvability of groups (see [16,
17, 25]). In this paper we give a criterion for solvability of G by ω(�(G)).

Theorem 1.1 Let G be a finite group such that ω(�(G)) < 13. Then G is solvable.

We point out that ω(�(A5)) = 13, where A5 is the alternating group on 5 letters
(see the proof of Lemma 3.3), therefore, the bound in Theorem 1.1 is the best possible.

As a consequence of Theorem 1.1, we give a characterization of A5.

Corollary 1.2 Let G be a non-solvable group. Then ω(�(G)) = 13 if and only if
G ∼= A5.

Remark 1.3 For a finite group G, it is clear that ω(�(G)) = 0 if and only if G ∼= Cp,
where Cp is a cyclic group of order p, for some prime number p. By Lemma 2.2 of
[19], we see that ω(�(G) = 1 if and only if G is isomorphic to one of the following
groups:

Cp2 , Cpq , Cp × Cp, Cp � Cq ,

where p and q are distinct prime numbers and the last group is the semidirect product
of Cp by Cq .

In what follows, we determine groups G with 2 ≤ ω(�(G)) ≤ 4.

Theorem 1.4 Let G be a finite group. Then ω(�(G)) = 2 if and only if one of the
following cases occurs::

(a) G is a cyclic group of order p3, for a prime p.
(b) G = N � H is Frobenius whose kernel N is the minimal normal subgroup of

G such that N ∼= Cp × Cp and H ∼= Cq, where p and q are primes.

Theorem 1.5 Let G be a finite group. Then ω(�(G)) = 3 if and only if one of the
following statements holds:

(a) G is cyclic and G ∼= Cp4 , Cp2q or Cpqr , where p, q and r are distinct primes.
(b) G = N � H is Frobenius whose kernel N is the (unique) minimal normal

subgroup of G and we have either
(1) N ∼= Cp and H ∼= Cq2 or Cqr or
(2) N ∼= Cp × Cp, H ∼= Cq2 and G does not have any subgroup of order pq,

where p, q and r are distinct primes.
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Theorem 1.6 Let G be a finite group. Then ω(�(G)) = 4 if and only if one of the
following holds:

(a) G is abelian and G ∼= Cp5 , C2 ×C2 ×Cq or C4 ×C2, where p, q are primes
and q is odd..

(b) G is non-abelian and isomorphic to one of the followings:
(1) D8 or Q8 or
(2) G = N � H is Frobenius whose kernel N is the (unique) minimal normal

subgroup of G such that N ∼= Cp ×Cp, H ∼= Cqr and G does not have subgroups of
orders pr and pq, where p, q, r are distinct primes.

Now we give some examples of groups, satisfying in Theorems 1.4, 1.5 and 1.6.
Since A4 ∼= (C2 × C2) � C3 satisfies in Theorem 1.4(b),we have ω(�(A4)) = 2. In
GAP-System [23], two groups

G1 = AllSmallGroups(42, I s Abelian, f alse)[1] ∼= C7 � C6

and

G2 = AllSmallGroups(52, I s Abelian, f alse)[2] ∼= C13 � C4,

satisfy in Theorem 1.5(b)(1) and so ω(�(G1)) = ω(�(G2) = 3. Also,
for G3 = AllSmallGroups(112.4, I s Abelian, f alse)[5] ∼= (C11 × C11) �

C4, we have ω(�(G3)) = 3, by Theorem 1.5(b)(2). Finally if G4 =
AllSmallGroups(112.6, I s Abelian, f alse)[5] ∼= (C11 × C11) � C6, then
ω(�(G4)) = 4, by Theorem 1.6(b)(2).

In this paper all groups are finite and we use the usual notation, for example Cn ,
An , Sn , PSL(2, q) and Sz(q), respectively, denote the cyclic group of order n, the
alternative group on n letters, the symmetric group on n letters, the projective spe-
cial linear group of degree 2 over the finite field of size q and the Suzuki group
over the field with q elements. For a group G, x ∈ G and H ≤ G, we denote by
Z(G),CG(x), NG(H), Hx , the center of G, the centralizer of x in G, the normalizer
of H in G and the conjugate of H in G by x , respectively. Also S(G) is the set of all
subgroups of G. The rest of the notation is standard and can be found mainly in [18].

2 Preliminary Results

We frequently use the following results and we state it here for the reader’s
convenience.

Lemma 2.1 (see 1.3.11 of [18]) Let G be a group and H and K be subgroups of G.
Then |G : H ∩ K | ≤ |G : H ||G : K |, with equality if the indices |G : H | and |G : K |
are coprime.

Theorem 2.2 (see 8.5.5 of [18]) If G is a finite group with a subgroup H such that
H ∩ Hx = 1, for all x ∈ G\H, then N = (G\(∪x∈GHx ))∪{1} is a normal subgroup
of G and G = N � H.
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A group G which has a proper nontrivial subgroup H , satisfying in the hypothesis of
Theorem 2.2 is called a Frobenius group, H is called a Frobenius complement and N
the Frobenius kernel. In this case, Z(G) = 1 and |H | divides |N | − 1, by Exercises
8.5 (2) and (6) of [18] respectively. Note that if 1 �= x ∈ N , then CG(x) ≤ N , by
Exercise 8.5 (5) of [18].

Recall that a subgroup H of a group G is supplemented in G if there is a subgroup
K of G such that G = HK . Moreover if H ∩ K = 1, then H is complemented in G
by K .

Proposition 2.3 Let G be a group and N be a properminimal normal abelian subgroup
of G. If G = HN, for some subgroups H of G and N is complemented in G by H,
then H is a maximal subgroup of G.

Proof Assume that there is a subgroup K of G such that H � K . Since G = HN , we
have K = H(K ∩N ). Therefore, K ∩N �= 1. Since N is the abelian normal subgroup
of G and G = K N , we have K ∩ N �G. Thus K ∩ N = N , by minimality of N and
so N < K . Consequently K = G, as required. �	

Recall that a finite group G is said to be primitive if it has a maximal subgroup M
with CoreG(M) := ∩g∈GMg = 1. In this situation we call M a stabilizer of G. We
need the following theorem of R. Baer on primitive groups.

Theorem 2.4 (see [3]) Let G be a finite primitive group with a stabilizer M. Then one
of the following three statements holds:

(1) G has a unique minimal normal subgroup N, this subgroup N is self-centralizing,
and N is complemented by M in G.

(2) G has a unique minimal normal subgroup N, this N is non-abelian, and N is
supplemented by M in G.

(3) G has exactly two minimal normal subgroups N and N∗, and each of them is
complemented by M in G. Also CG(N ) = N∗, CG(N∗) = N and N ∼= N∗ ∼=
NN∗ ∩ M.

The following lemma is straightforward but is useful in the sequel.

Lemma 2.5 Let G be a finite group.
(i) If 1 < H < G, then ω(�(H)) < ω(�(G)).
(ii) If 1 < N � G, then |S(GN )| − 1 + ω(�(N )) ≤ ω(�(G)).
(iii) Suppose that � is a clique in �(G), and H ∈ �. If |H | is prime, then H ≤ K,

for every K ∈ �.

Proof The proofs of (i) and (i i i) are clear. For (i i), ifω(�(N )) = k, for some positive
integer k, then there are proper subgroups N1, . . . , Nk of N such that Ni ∩ N j �= 1,
for each 1 ≤ i < j ≤ k. If T is a subgroup of G

N , then there exists a unique subgroup
K of G such that N ≤ K and T = K

N . Now assume that |S(GN )| = l, for some positive
integer l. Then there exist subgroups K1 = N , K2, . . . , Kl−1, Kl = G containing N
of G such that S(GN ) = { K1

N , K2
N , . . . ,

Kl
N }. So we have {N1, . . . , Nk, K1, . . . , Kl−1}

is a clique in �(G). It follows that ω(�(G)) ≥ k + l − 1, as required. �	
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We denote bym(G) the number of maximal subgroups of a group G. In the following,
we give m(G), for any p-group G, where p is a prime number.

Lemma 2.6 Let G be a finite p-group. Then m(G) = m( G
�(G)

) = | G
�(G)

|−1
p−1 .

Proof Since �(G) is contained in any maximal subgroup of G, it is easy to see that
M

�(G)
is a maximal subgroup of G

�(G)
whenever M is a maximal subgroup of G. On

the other hand, similar to the proof of Lemma 2.5(ii), if T is a maximal subgroup of
G

�(G)
, then there is a unique maximal subgroup M of G such that T = M

�(G)
. Thus

we conclude that there exists a one-one correspondence from the set of all maximal
subgroups ofG to the set of allmaximal subgroups of G

�(G)
and thenm(G) = m( G

�(G)
).

By the proof of 5.3.2 of [18], we have G
�(G)

is elementary abelian.Now if | G
�(G)

| = pm ,

then every maximal subgroup of G
�(G)

has order pm−1 and so by [5, Exercise 1(d), p.

81]] we have m( G
�(G)

) = 1 + p + · · · + pm−1. It follows that m( G
�(G)

) = | G
�(G)

|−1
p−1 ,

as desired. �	

3 A Criterion for Solvability by!(0(G))

In this section, we prove Theorem 1.1 and Corollary 1.2. The famous family of simple
finite groups are minimal simple groups (i.e., finite non-abelian simple groups all of
whose proper subgroups are solvable). The classification of minimal simple groups
is given by Thompson (see Corollary 1 of [24]). As Thompson’s classification of the
minimal simple groups is a very useful tool to obtain solvability criteria in the class
of finite groups. In Lemmas 3.3, 3.4, 3.5, 3.6 and 3.7, we show that if G is a minimal
simple group non-isomorphic to A5, then ω(�(G) > 13. We need these results in the
proof of Theorem 1.1 and Corollary 1.2.

In the following we give some facts about subgroups of G = A5. The proofs are
elementary (for example, one may check by software GAP [23]).

Fact 1. |S(A5)| = 59 and if nk is the number of subgroups of G of order k, then
n2 = 15, n3 = n6 = 10, n4 = n12 = 5 and n5 = n10 = 6.

Fact 2. If M is a maximal subgroup of G, then |M | ∈ {6, 10, 12}. Also all maximal
subgroups of G of the same order are conjugate in G.

Fact 3. If M1, M2 and M3 are maximal subgroups ofG such that |M1| = 6, |M2| =
10 and |M3| = 12, then |Mx

i ∩ My
j | �= 1, for every 1 ≤ i < j ≤ 3 and x, y ∈ G.

Moreover, |M2 ∩ Ma
2 | = 2 and |M3 ∩ Mb

3 | = 3, for each a ∈ G\M2 and b ∈ G\M3.
Therefore, � = {M1, M

g
2 , Mg

3 : g ∈ G} is a clique in �(G) and so ω(�(G)) ≥
1 + n10 + n12 = 12.

Fact 4.Assume thatM1, M2 andM3 are the same as in Fact 3. IfMi , Mx
i andMy

i are
distinct conjugates of Mi inG, for some x, y ∈ G, then |Mi ∩Mx

i ∩My
i | = 1, for each

i and {M1, Mx
1 , My

1 } does not form a clique in �(G). Also we have |M1 ∩ Mg
1 | ≤ 2,

for every g ∈ G\M1 and there is z ∈ G such that |M1 ∩Mz
1 | = 2. Thus�∪{M1, M

z
1}

is a clique, by Fact 3, and so ω(�(G)) ≥ 13.
We use of above facts in the proof of the following lemma.
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Lemma 3.1 We have ω(�(A5)) = 13.

Proof Let � be a clique in �(A5) of maximum size. Then |�| ≥ 13, by Fact 4. Now,
we consider the following cases:

Case 1. In this case, we show that � does not have any member of size 2. Assume
that there is H2 ∈ � with |H2| = 2. Then other subgroups of order 2, all subgroups
of order 3 and all subgroups of order 5 of A5 do not belong to � and so |�| ≤
57− ((n2 − 1) + n3 + n5) = 27, by Fact 1. Since the intersection of any two distinct
subgroups of order 4 is trivial, there is only one subgroup H4 of order 4 containing
H2. Thus, |�| ≤ 27 − (n4 − 1) = 23. Note that if X ∈ �, then H2 ⊆ X , by Lemma
2.5(iii). By Fact 4, � has at most two subgroups of order 6. Also, by Facts 3, 4 and
Lemma 2.5 (i i i), � has at most two subgroups of order 10. Since the intersection
of any two distinct subgroups of order 12 has order 3 by Fact 3, � has at most one
subgroup of order 12. It follows that |�| ≤ 23− ((10− 2) + (6− 2) + (5− 1)) = 7,
a contradiction.

Case 2. In this case, we show that � does not have any member of size 3. Assume
that there exists H3 ∈ � with |H3| = 3. Then � does not have any subgroup of order
2, 4, 5 and 10 and so |�| ≤ 57− (n2 + n4 + n5 + n10) = 25, by Fact 1. Since � does
not have two subgroups of order 3, we have |�| ≤ 25 − 9 = 16. Also if X ∈ �, then
H3 ⊆ X , by Lemma 2.5(iii). By Fact 4, H3 is contained in only one subgroup of order
6. Therefore, |�| ≤ 16 − 9 = 7, which is impossible.

Case3. In this case,we show that�does not have anymember of size 4.Assume that
there exists H4 ∈ �with |H4| = 4. By Case 1,� does not have any subgroup of order
2. Since n2 = 15, n3 = 10, n4 = 5 and n5 = 6,we have |�| ≤ 57−(15+10+4+6) =
22. Since every clique can contain at most two subgroups of order 6 by fact 4, we have
|�| ≤ 22−(n6−2) = 14. Note that H4 is contained in at least onemaximal subgroup,
which is certainly of order 12. By Fact 3, there is only one subgroup K of order 12
such that H4 ⊂ K and hence |�| ≤ 14 − 4 = 10, which is a contradiction.

Case 4. In this case, we show that � does not have any member of size 5. Assume
that there exists H5 ∈ � with |H5| = 5. Since n2 = 15, n3 = n6 = 10, n4 = n12 = 5
and n5 = 6, we have |�| ≤ 57 − (15 + 20 + 10 + 5) = 7, a contradiction.

Case 5. In this case, we first show that � has at least one member of size 6 and
then prove that |�| = 13. Suppose, for a contradiction, that � does not have any
member of size 6. By Cases 1–4, we conclude that � does not have any subgroup
of order 2, 3, 4 and 5. By Fact 1, every member of � has size either 10 or 12 and
so |�| ≤ n10 + n12 = 11, a contradiction. It follows that there exists H6 ∈ � with
|H6| = 6. Again, by Cases 1-4, we have |�| ≤ n6 + n10 + n12 = 16. On the other
hand � has at most two members of size 6 by Fact 4. Thus |�| = 13 by Fact 4 and
this completes the proof. �	

In the proofs of Lemmas 3.3, 3.4 and 3.5, we need the following result about the
Sylow p-subgroups of PSL(2, pn), where p is a prime number and n is a positive
integer.

Proposition 3.2 Let G = PSL(2, pn). Then a Sylow p-subgroup P of G is elemen-
tary abelian of order pn and the number of Sylow p-subgroups of G is pn + 1 (or
equivalently, we have |G : NG(P)| = pn + 1).
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Proof See Satz 8.2, p. 191 of [13]. �	
Lemma 3.3 For any odd prime p, we have ω(�(PSL(2, 2p)) > 13.

Proof If p = 3, then G = PSL(2, 8) has a maximal subgroup M of index 28 in G.
Since G is simple, M is not normal in G and so NG(M) = M . It follows that M has
28 conjugates in G, say M1 = M, M2, . . . , M28. It is easily checked by GAP [23]
that |Mi ∩ Mj | = 2, for all distinct i, j and so ω(�(PSL(2, 2m)) ≥ 28, as required.

If p ≥ 5, then q = 2p ≥ 32. By Proposition 3.2, we have |G : NG(P)| = q + 1,
where P ∈ Syl2(G). Since NG(NG(P)) = NG(P), the number of conjugates of
NG(P) is q+1. It follows that NG(P) has q+1 conjugates inG. If NG(P) �= NG(P)g ,
for some g ∈ G, then |G : NG(P) ∩ NG(P)g| ≤ (q + 1)2, by lemma 2.1. Since

|G| = q(q2−1)
2 , we have |NG(P) ∩ NG(P)g| �= 1. Therefore, {NG(P)x : x ∈ G} is a

clique in the �(G) and so ω(�(G)) ≥ q + 1 > 13, as claimed. �	
Lemma 3.4 ω(�(PSL(2, 3p)) > 13, for any odd prime p.

Proof By Proposition 3.2, we have |G : NG(P)| = 3p + 1, where P ∈ Syl3(G).
Similar to the proof of Lemma 3.3, {NG(P)x : x ∈ G} is a clique in the �(G) and so
ω(�(G)) ≥ 3p + 1 > 13 and this completes the proof. �	
Lemma 3.5 ω(�(PSL(2, p)) > 13, where p > 3 is a prime with p2 + 1 divisible by
5.

Proof If G = PSL(2, 7), then G has 14 (maximal) subgroups of index 7 ( one can
check it by GAP [23]), say M1, M2, . . . , M14. Since |G| = 168 and |G : Mi ∩Mj | ≤
49, for every 1 ≤ i �= j ≤ 14, we have |Mi ∩ Mj | �= 1, by Lemma 2.1 and so
{M1, . . . , M14} is a clique in the �(G) and so ω(�(G)) ≥ 14, as wanted.

Now if p ≥ 13, then by the similar argument in the proof of Lemmas 3.3 and 3.4,
we see that ω(�(G)) ≥ p + 1 > 13 and the proof is complete. �	
Lemma 3.6 We have ω(�(PSL(3, 3)) > 13.

Proof ByGAP [23],G has 26 maximal subgroups of index 13, say M1, M2, . . . , M26.
Since |G| = 5616 and |G : Mi ∩ Mj | ≤ 169, for every 1 ≤ i �= j ≤ 26, we have
|Mi ∩ Mj | �= 1 and so ω(�(G)) ≥ 26, as required. �	
Lemma 3.7 We have ω(�(Sz(2m))) > 13, where m is an odd prime.

Proof Suppose that q = 2m , G = Sz(q) and F ∈ Syl2(G). Then it is well-known
that |F | = q2 and Z(F) is elementary abelian of order q. It follows from Lemma
5.9 in Chapter X I of [13] that |CF (g) : Z(F)| = 2, for all g ∈ F\Z(F) and so
CF (g) is abelian. Assume that {CF (x1),CF (x2), . . . ,CF (xn)} is the set of all proper
centralizers of elements in F . Then F = ∪n

i=1CF (xi ) and CF (xi ) ∩CF (x j ) = Z(F),
for each i �= j . Since |F | = q2, |Z(F)| = q and |CF (xi )| = 2q, we have n = q − 1.
Also Z(F) has q − 1 maximal subgroups, by Lemma 2.6 and the intersection of any
pair of these maximal subgroups are non-trivial, by Lemma 2.1. If Z1, . . . , Zq−1 are
maximal subgroups of Z(F), then {Z1, . . . , Zq−1,CF (x1), . . . ,CF (xq−1)} is a clique
in �(G). Since q ≥ 8, we have ω(�(Sz(2m))) ≥ 2(q − 1) ≥ 14. This completes the
proof. �	
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Now we are ready to prove the first main result:

Proof of Theorem 1.1 Suppose, on the contrary, that there exists a non-solvable finite
group G of the least possible order with ω(�(G)) < 13. If there exists a non-trivial
proper normal subgroup N of G, then ω(�(N )) < 13 and ω(�(GN )) < 13, by Lemma
2.5(i-ii). By minimality of |G|, we have G

N and N are solvable, which implies that G
is solvable, a contradiction. Thus G is simple and so by Theorem 1 of [4] and Lemma
2.5(i), G is a minimal simple group. By Thompson’s classification of minimal simple
groups [24], G is isomorphic to one of the following simple groups: A5, PSL(2, 2m),
where m is an odd prime; PSL(2, 3m), where m is an odd prime; PSL(2, p), where
p > 3 is a prime with p2 + 1 divisible by 5; PSL(3, 3); or Sz(2m), where m is an
odd prime. By Lemmas 3.1, 3.3, 3.4, 3.5, 3.6 and 3.7, we have ω(�(G)) ≥ 13, which
is impossible. �	
Proof of Corollary 1.2 If G ∼= A5, then ω(�(G)) = 13, by Lemma 3.1. Conversely,
assume that G is non-solvable with ω(�(G)) = 13. If M is a maximal subgroup of
G, then ω(�(M)) < 13, by Lemma 2.5(i). So M is solvable by Theorem 1.1. Thus
every maximal subgroup of G is solvable and so G is a minimal non-solvable group.
Therefore, G is a minimal simple group. By the proof of Theorem 1.1 and Lemmas
3.1, 3.3, 3.4, 3.5, 3.6 and 3.7, we conclude that G ∼= A5, as desired. �	

4 GroupsGwith 2 ≤ !(0(G)) ≤ 4

In this section, we prove Theorems 1.4, 1.5 and 1.6. First, we obtain ω(�(G)), for
some groups which are needed later.

Lemma 4.1 For any distinct primes p, q and r and positive integer n, we have

(1) ω(�(Cpn )) = n − 1.
(2) ω(�(Cp × Cp × Cp)) = p2 + p + 1.
(3) ω(�(Cpqr )) = ω(�(Cp2q)) = 3.
(4) ω(�(Cp2 × Cp)) = ω(�(Cpq × Cp)) = p + 2.
(5) If G is a non-abelian group of order p3, then ω(�(G)) = p + 2.

Proof (1) If G = Cpn , then G has a unique subgroup Hi of order pi , for each
0 ≤ i ≤ n and so Hi < Hi+1, for every i . Therefore, {H1, H2, . . . , Hn−1} is the
unique clique in �(G) with maximum size, as required.

(2) Suppose that G = Cp × Cp × Cp and � is a clique in �(G). If H ∈ �, with
|H | = p, then, by Lemma 2.5 (iii), H < K , for every K ∈ �\{H} and so
|K | = p2. Since G

H
∼= Cp × Cp and the number of subgroups of Cp × Cp of

order p is p+1, by the proof of Lemma 2.5(ii),the number of proper subgroups of
G containing H is p+2 and so |�| ≤ p+2. Now suppose that� does not contain
any subgroup of G of order p. Then |K | = p2, for every K ∈ � and so K is a
maximal subgroup of G. Since �(G) = 1, the number of maximal subgroups of

G is
| G
�(G)

|−1
p−1 = p2+ p+1, by Lemma 2.6. Therefore |�| ≤ p2+ p+1. It follows

from Lemma 2.1 that the intersection of any two distinct maximal subgroups of
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G are non-trivial. This implies that all maximal subgroups of G forms a clique
with maximum size in �(G), as wanted.

(3) The proof is clear.
(4) Suppose that G = Cp2 × Cp and � is a clique in �(G). If H ∈ � such that

|H | = p, then H < K , for every K ∈ � \ {H}, by Lemma 2.5 (iii) and so
|K | = p2. Since the number of proper subgroups of G containing H is at most
p + 2 and so |�| ≤ p + 2. On the other hand |�(G)| = p and so the number
of maximal subgroups of G is p + 1. It follows that these maximal subgroups
of G together with �(G) forms a clique with maximum size in �(G) and so
ω(�(G)) = p + 2, as desired.

Suppose that G = Cpq × Cp and � is a clique in �(G). If � does not contain any
subgroup ofG of prime order, then� = {T } such that |T | = p2. If there is a subgroup
H of G such that H ∈ � and |H | = p, then G

H
∼= Cpq and so |�| ≤ 3. Finally assume

that Q ∈ � such that |Q| = q. Then Q ≤ K , for every K ∈ � by Lemma 2.5 (iii).
On the other hand the number of proper subgroups of G containing Q is p+ 2 and so
|�| ≤ p + 2. Hence ω(�(G)) = p + 2, as required.

(5) The proof is similar to the first case of (4).

�	
Lemma 4.2 Let G = N � H be a Frobenius group such that N is a minimal normal
subgroup of G and H is a Frobenius complement. Also assume that p, q and r are
distinct primes.

(1) If N ∼= Cp and H ∼= Cq2 or Cqr , then ω(�(G)) = 3.
(2) If N ∼= Cp × Cp and H ∼= Cq, then ω(�(G)) = 2.
(3) If N ∼= Cp × Cp and H ∼= Cq2 such that q � p − 1, then ω(�(G)) = 3.
(4) If N ∼= Cp×Cp and H ∼= Cqr such that q � p−1 and r � p−1, thenω(�(G)) = 4.

Proof (1) Suppose that N ∼= Cp and H ∼= Cq2 and 1 < H1 < H . Since G = N � H
is a Frobenius group, H ∩ Hx = 1 and so H1 ∩ Hx

1 = 1, for every 1 �= x ∈ N .
Therefore, G has p subgroups of order q and so all of them are contained in the non-
abelian subgroups K = NH1. It follows that K = NH1 is the unique subgroup of G
of order pq. It is clear that K ∩ T �= 1, for every non-trivial proper subgroup T of
G. Thus K belongs to any clique with maximum size. Note that every clique contains
at most one subgroup of order q2 and also at most one subgroup of order q. If N
belongs to a clique �, then Hx

1 and Hx do not belong to �, for every x ∈ N . Thus
{Hx

1 , Hx , K } is a clique with maximum size in �(G), for every x ∈ N , as required.
Now suppose that H ∼= Cqr . Then H contains (unique) subgroups Q and R of order

q and r respectively. Since G = N � H is a Frobenius group, we have H ∩ Hx = 1,
Q ∩ Qx = 1 and R ∩ Rx = 1, for every 1 �= x ∈ N . Therefore |Sylq(G)| =
|Sylr (G)| = |G : NG(H)| = |G : H | = p. Since G is Frobenius, Z(G) = 1 and so
NQ and N R are non-abelian. Therefore NQ and N R are the only subgroups of G of
orders pq and pr , respectively. Note that the only proper subgroups of G containing
properly Qx , for some x ∈ N are Hx and NQ, the only proper subgroups of G
containing properly Rx , for some x ∈ N are Hx and N R and also the only proper
subgroups of G containing properly N are NQ and N R. Now suppose that � is a
clique in �(G) with maximum size.
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If Qx ∈ �, for some x ∈ N , then {Qx , Hx , NQ} = �. If Rx ∈ �, for some
x ∈ N , then {Rx , Hx , N R} = �. If N ∈ �, then {N , NQ, N R} = �. If none of the
three cases does not occur, for �, then � = {Hx , NQ, N R}, for some x ∈ N . So we
conclude that � has 3 members, as wanted.

(2) Since N is a minimal normal abelian subgroup of G, we conclude that Hx is a
maximal subgroup of G, for all x ∈ N by Proposition 2.3 and so G does not have any
subgroup of order pq. Therefore,

S(G) = {1,G, N , N1, . . . , Np+1, H
x : x ∈ N },

where |Ni | = p, for each i . Since G = N � H is Frobenius, {Ni , N } is a clique with
maximum size in �(G), for each i , as wanted.

(3) Since G = N � H ∼= (Cp × Cp) � Cq2 is Frobenius with complement H , the
group G has p + 1 subgroups of order p (contained in N ), say N1, . . . , Np+1 and
p2 subgroups Hx

1 of order q, for each x ∈ N , where 1 < H1 < H . Note that H is
a maximal subgroup of G by Proposition 2.3. Therefore, G does have any subgroup
of order pq2. Clearly, Hx

1 ≤ NH1, for every x ∈ N and so NH1 is the unique non-
abelian subgroup of G of order p2q. If G has a subgroup K of order pq, then K is
not abelian since CG(x) = N , for 1 �= x ∈ N by Exercise 8.5 (5) of [18]. It follows
that q|p − 1, which is contrary to our assumption in this part. Hence the order of a
non-trivial proper subgroup of G belongs to {p, p2, q, p2q, q2} and so we have

S(G) = {1,G, N , N1, . . . , Np+1, H
x , Hx

1 , NH1 : x ∈ N }.
Since N ∩ Hy = H ∩ Hx = H1 ∩ Hx

1 = Ni ∩ N j = 1, for every y ∈ N , x ∈ N\{1}
and i �= j , we have {Ni , N , NH1} is a clique with maximum size in �(G), for each
i . Also {Hx

1 , Hx , NH1} is a clique with maximum, for every x ∈ N . This completes
the proof.

(4) The proof is similar to the part (3).
�	

Proof of Theorem 1.4: Since ω(G) = 2, G contains two proper subgroups H1 and H2
such that H1 ∩ H2 �= 1 and so {H1, H2, H1 ∩ H2} is a clique in �(G), which implies
that either H1 < H2 or H2 < H1. Without loss of generality, assume that H1 < H2.
Since ω(G) = 2, we have |H1| = p is prime, H1 is a maximal subgroup of H2 and H2
is a maximal subgroup of G. Now we claim that |H2 : H1| and |G : H2| are primes.

If H1 � H2 and H2 � G, then the claim is valid. If H1 is not normal in H2, then
NH2(H1) = H1 and since |H1| is prime, we have H1 ∩ Hx

1 = 1, for all x ∈ H2\H1.
It follows from Theorem 2.2 that H2 is Frobenius and so there is a normal subgroup
N such that H2 = N � H1. If |N | is not prime, then N has a proper non-trivial
subgroup N1 and so {N1, N , H2} is a clique in�(G) of size 3, which is a contradiction.
Therefore, |N | = |H2 : H1| is prime. Now if H2 � G, then |G : H2| is prime by
maximlity of H2 in G. So assume that H2 is not normal in G. Then, by a similar
argument to H1 � H2, we conclude that G is Frobenius and |G : H2| is prime. Thus
|G| = |H1||H2 : H1||G : H2| = pqr , for some primes p, q and r .

First suppose that G is abelian. If p, q and r are distinct, then G ∼= Cpqr and so by
Lemma 4.1(3) we have ω(�(G)) = 3, a contradiction. If p = r �= q, then G ∼= Cp2q
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orCp×Cp×Cq , which implies thatω(�(G)) �= 2 by Lemma 4.1(3-4). If p = q = r ,
then G ∼= Cp3 ,Cp2 × Cp or Cp × Cp × Cp. Since ω(G) = 2, we have G ∼= Cp3 by
Lemma 4.1.

Now suppose that G is not abelian. If p = q = r , then |G| = p3 and we have a
contradiction by Lemma 4.1(5). If p, q and r are distinct, then at least one of Sylow
subgroups of G is normal, which implies that ω(�(G)) ≥ 3, a contradiction. Finally
suppose that p = r �= q. If Sylq(G) = {Q} and P ∈ Sylp(G), then {P1, P, P1Q} is a
clique in �(G), where P1 is a proper non-trivial subgroup of P , again a contradiction.
Hence we have Sylp(G) = {P}. If Q ∈ Sylq(G), thenG = P�Q. Sinceω(�(G)) =
2, we see that P must be a minimal normal subgroup of G and so P ∼= Cp × Cp,
which implies that Q is a maximal subgroup of G Proposition 2.3. Since Q is not
normal in G, we have NG(Q) = Q. It follows Q ∩ Qg = 1, for every g ∈ G\Q and
so G is a Frobenius group. This completes the proof.

The converse follows from Lemmas 4.1(1) and 4.2(2). �	
Proposition 4.3 Let G be a finite abelian group. Then ω(�(G)) = 3 if and only if G
is isomorphic to one of the following groups:

Cp4 , Cp2q , Cpqr ,

where p, q, r are distinct primes.

Proof Assume that ω(�(G)) = 3. We consider two cases:

(i) Suppose that G is a p-group, for some prime p. Since ω(�(G)) = 3, we have
|G| ≥ p3. If �(G) = 1, then G is elementary abelian and so G has a subgroup
isomorphic to E = Cp ×Cp ×Cp. It follows from Lemma 4.1(2) that ω(�(E)) =
p2 + p + 1 > 3, a contradiction. Hence �(G) �= 1. Moreover, the number of

maximal subgroups of G is t = | G
�(G)

|−1
p−1 , by Lemma 2.6. Therefore, either t = 1,

which follows that G ∼= Cp4 , by Lemma 4.1(1) or G has at least p + 1 maximal
subgroups, say M1, M2, . . . , Mp+1. By Lemma 2.1, {M1, M2, . . . , Mp+1,�(G)}
is a clique and so ω(�(G)) ≥ p + 2, which is impossible.

(ii) Now suppose that |G| has at least two distinct prime divisors, p and q. Then G has
two maximal subgroups M1 and M2 such that |G : M1| = p and |G : M2| = q.
Since ω(�(G)) = 3, we have M1∩M2 �= 1 and so {M1, M2, M1∩M2} is a clique
in �(G). Note that G has a maximal subgroup different from M1 and M2, say M3
since G �= M1 ∪ M2. We conclude that {M1, M2, M3} is a clique in �(G). Since
ω(�(G)) = 3, we have ∩3

i=1Mi = 1, which follows that G ↪→ G
M1

× G
M2

× G
M3

.
Consequently |G| = pqr , where r is prime. By Lemma 4.1(3-4), we have G ∼=
Cpqr or Cp2q , as wanted.

The converse of the lemma follows from Lemma 4.1. �	
Proposition 4.4 Let G be a finite non-abelian group. Then ω(�(G)) = 3 if and only
if G = N � H is Frobenius whose kernel N is the unique minimal normal subgroup
of G and we have either

(1) N ∼= Cp and H ∼= Cq2 or Cqr or
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(2) N ∼= Cp × Cp, H ∼= Cq2 and G does not have any subgroup of order pq, where
p, q, r are distinct primes.

Proof Suppose that ω(�(G)) = 3. Since G is not cyclic, G has at least three maximal
subgroups M1, M2 and M3. By hypothesis, ∩3

i=1Mi = 1. If Mi � G, for each i ,
then |G : Mi | is prime, for each i and so G is abelian, a contradiction. Without
loss of generality, assume that M := M1 is not normal in G. Then NG(M) = M
and |G : M | ≥ 3. Thus M has at least three conjugates M, Mx , My , for some
x, y ∈ G. If CoreG(M) �= 1, then ω(�(G)) ≥ 4, which is a contradiction. So
CoreG(M) = 1, which implies that G is a primitive group. It follows from Theorem
1.1 that G is solvable and by Theorem 2.4, G has a unique minimal normal subgroup
N such that CG(N ) = N and G = N � M . Since N is a principal factor of G, we
have N is elementary abelian of order pn , for some prime p, by 5.4.3 of [18]. Since
ω(�(G)) = 3, we have n = 1 or 2, by Lemmas 4.1(2) and 2.5. Also note that if
M ∩ Mg �= 1, for some g ∈ G\M , then {M, Mg, M ∩ Mg, N (M ∩ Mg)} is a clique
in �(G), a contradiction. Thus G is a Frobenius group.

Subcase 1. If n = 1, then G = N � M , where N ∼= Cp. Since Aut(Cp) is cyclic
of order p − 1, we have M is cyclic of order divisor of p − 1. It follows from Lemma
2.5(i) that ω(�(M)) < ω(�(G)) = 3. If ω(M) = 2, then by Theorem 1.4, we have
M ∼= Cq3 , for some prime q. Therefore, M has two subgroups H and K of orders q
and q2 respectively and so {H , K , M, NH} is a clique, which is impossible. Hence
ω(�(M)) = 1, which follows that M ∼= Cqr or Cq2 , by Remark 1.3, as required.

Subcase 2. If n = 2, then G = N � M , where N ∼= Cp × Cp. Therefore, |M |
is not prime, by hypothesis and Theorem 1.4. We conclude that |S(M)| ≥ 3. Since
ω(�(G)) = 3 and ω(�(N )) = 1, we have |S(M)| ≤ 3, by Lemma 2.5(ii). Therefore,
M ∼= Cq2 , as wanted. It remains to show that G does not have any (non-abelian)
subgroup of order pq.

Suppose, for a contradiction, that G has a subgroup K of order pq. Since CG(x) =
N , for every 1 �= x ∈ N , by Exercise 8.5 (5) of [18], we have K is non-abelian and
so there are subgroups 1 < N1 < N and 1 < M1 < M such that K = N1 � M1.
It follows that {N1, N , K , NM1} is a clique in �(G) with four elements, which is
impossible.

The converse follows from Lemmas 4.2(1) and 4.2(3). �	
Proof of Theorem 1.5 The proof follows from Propositions 4.3 and 4.4. �	
Proposition 4.5 Let G be a finite abelian group. Then ω(�(G)) = 4 if and only if G
is isomorphic to one of the follwing groups:

Cp5 , C2 × C2 × Cq , C2 × C4,

where p and q are primes and q is odd.

Proof Assume that ω(�(G)) = 4. Then, by Remark 1.3 and Lemma 4.1, |G| has
at least three prime divisors (not necessarily distinct), say p, q and r . Note that the
number of maximal subgroups ofG is either one or at least three. So we consider three
cases in terms of the number of maximal subgroups of G in the following:
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Case 1. If G has at least four maximal subgroups, Mi , for 1 ≤ i ≤ 4, then
Mi ∩ Mj �= 1 and since ω(�(G)) = 4, we have ∩4

i=1Mi = 1 and so |G| has at most
four prime divisors (not necessarily distinct). Therefore, |G| divides pqrs, for some
prime s.

First suppose that |G| = pqrs. If all prime divisors of |G| are distinct, then G
is cyclic of order pqrs and so ω(�(G)) > 4, a contradiction. If |G| = p2qr such
that p, q, r are distinct, then {H , P, HQ, HR, PQ, PR} is a clique in �(G), where
|H | = p, P ∈ Sylp(G), Q ∈ Sylq(G) and R ∈ Sylr (G), again a contradiction. By a
similar argument, we see that |G| �= p2q2, p3q, p4, where p, q are distinct. So such
group G does not exist.

Now suppose that |G| = pqr . By the number of maximal subgroups of G, we have
G is not cyclic. Also G � Cp ×Cp ×Cp, by Lemma 4.1(2). Hence G ∼= Cp2 ×Cp or
Cp ×Cp ×Cq . It follows from Lemma 4.1(4) that p = 2 and q is odd. But the number
of maximal subgroups C4 × C2 is 3, a contradiction. Thus G ∼= C2 × C2 × Cq , as
wanted.

Case 2. Suppose that G has exactly three maximal subgroups. If G is cyclic, then
|G| has three distinct prime divisors and so G ∼= Cpqr . So we have a contradiction,
by Lemma 4.1(3) since ω(�(G)) = 4. Thus G is not cyclic and then G has a Sylow
t-subgroup, which is not cyclic, for some prime t . Without loss of generality, assume
t = p and P ∈ Sylp(G). Therefore, P (or equivalently G) has at least p+ 1 maximal
subgroups. By hypothesis in this case, we have p = 2 and G must be a 2-group.
On the other hand, the number of maximal subgroups of G is | G

�((G)
| − 1, which

implies that G
�((G)

∼= C2 × C2. Since |S(C2 × C2)| = 5 and ω(�(G)) = 4, we
have ω(�(�(G))) = 0, by Lemma 2.5(ii). Thus |�(G)| = 2 and so |G| = 8. Hence
G ∼= C4 × C2, as desired.

Case 3.Suppose that G has exactly one maximal subgroup. Then G is cyclic of
order the power of a prime p and so G ∼= Cp5 , by Lemma 4.1(1). This completes the
proof.

The converse is clear, by Lemma 4.1.
�	

Proposition 4.6 Let G be a finite non-abelian group. Then ω(�(G)) = 4 if and only
if G is one of the follwing groups:

(i) G ∼= D8, Q8. or
(ii) G = N�H is Frobenius whose kernel N is the (unique) minimal normal subgroup

of G such that N ∼= Cp ×Cp, H ∼= Cqr and G does not have subgroups of orders
pr and pq

Proof Assume that ω(�(G)) = 4. Suppose first that every maximal subgroup is
normal inG. ThenG is nilpotent. SinceG is non-abelian, there is a Sylow p-subgroup
P of G such that P is non-abelian, for some prime p. Therefore, �(P) �= 1 and so
ω(�(P)) ≥ m(P)+1 ≥ p+1+1, wherem(P) is the number of maximal subgroups
of P . Thus, by Lemma 2.5(i), we see that 4 = ω(�(G)) ≥ ω(�(P)) ≥ 4, which
implies that G = P and then we have p = 2 and m(P) = p + 1 = 3. Now if
M1, M2 and M3 are maximal subgroups of G, then {�(G), M1, M2, M3} is a clique
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with maximum size and so |�(G)| = 2 and Mi ∩ Mj = �(G), for every i �= j ≤ 3.
Since |G : Mi | = 2, for each i , we have |G| = 8. Thus G ∼= D8 or Q8, as wanted.

Now assume that G has a maximal subgroup M , which is not normal in G. Then
NG(M) = M and |G : M | ≥ 3. We claim that CoreG(M) = 1.

Suppose, for a contradiction, that MG := CoreG(M) �= 1. If M has at least
four conjugates, say M, Mx , My, Mz , for some x, y, z ∈ G, then ω(�(G)) ≥ 5, a
contradiction. So we have |G : M | = 3. It follows that G

MG
↪→ S3. If G

MG
∼= S3, then

by Lemma 2.5(ii), ω(�(G)) ≥ |S(S3)| − 1 = 5, which is a contradiction. Since 3
divides |G : MG |, we have MG = M and so M � G, a contradiction. This implies
that MG = 1, as claimed. Thus G is primitive. By Theorems 1.1, G is solvable and
by Theorem 2.4, G has a unique minimal normal subgroup N such that CG(N ) = N
and G = N � M . It follows that N is elementary abelian p-group, for some prime p.
If |N | ≥ p3, then N contains a subgroup E ∼= Cp × Cp × Cp and so ω(�(E)) > 4,
by Lemma 4.1(2), which is impossible, by Lemma 2.5(i). Thus |N | = p or p2.

If |N | = p, then, by Normalizer-Centralizer Theorem we have G
CG (N )

= G
N ↪→

Aut(Cp) ∼= Cp−1 and soM is cyclic. It follows fromLemma2.5(i) thatω(�(M)) < 4.
If ω(�(M)) = 2 or 3, then by Theorems 1.4 and 4.3, we have M ∼= Cq3, Cq2r , Cq4

or Cqrs . Thus M has at least two proper subgroups of different orders, which are
divisible by q, say M1, M2 and so {M1, M2, NM1, NM2, M} is a clique in �(G), a
contradiction. Also if ω(�(M)) = 1, then M ∼= Cq2 or Cqr , where q, r are distinct
primes. SinceM is cyclic andmaximal subgroup ofG, we haveM∩Mx �〈M, Mx 〉 =
G, for any x ∈ G\M . Now since G has a unique minimal subgroup N , we see that
M ∩ Mx = 1, for every x ∈ G\M and then G is Frobenius. Therefore, G = N � M ,
where N ∼= Cp and M ∼= Cq2 or Cqr , which follows ω(�(G)) = 3 by Theorem
4.4, another contradiction. Finally if ω(�(M)) = 0, then |M | = q is prime and so
G ∼= Cp � Cq . It follows that ω(�(G)) = 1, by Remark 1.3, our final contradiction.

Now suppose that N ∼= Cp × Cp. Then ω(�(M)) < ω(�(G)) = 4, by Lemma
2.5(i). Also by Remark 1.3 and Theorem 1.4, ω(�(M)) �= 0. If ω(�(M)) = 1,
then M ∼= Cq2 ,Cqr ,Cq × Cq or Cq � Cr , where q and r are distinct primes. In

two last cases, M (or equivalently G
N ) has q + 1 non-trivial proper subgroups and

so {H , N , K1, K2, . . . , Kq+1} is a clique in �(G), where 1 < H < N and Ki is a
proper subgroup of G containing N , for each i . It follows that ω(�(G)) ≥ q + 3, a
contradiction. If M ∼= Cq2 , then M ∩ Mx � 〈M, Mx 〉 = G, for any 1 �= x ∈ N , we
have M ∩ Mx = 1, for every 1 �= x ∈ N and then G is Frobenius. By Theorem 4.4,
we have ω(�(G)) = 3. Hence M ∼= Cqr and similarly G is Frobenius, as wanted.

If ω(�(M)) = 2 and {H1, H2} is a clique in �(M) such that H1 < H2, then
{H1, H2, M, NH1, NH2} is a clique in �(G)), which is impossible.

If ω(�(M)) = 3 and {M1, M2, M3} is a clique in �(M)), then
{M1, M2, M3, M, NM1} is a clique in �(G)), a contradiction. It remains to prove

that G does not have subgroups of orders pq and pr .
Suppose, for a contradiction, that G has a subgroup K of order pq. Then there

are subgroups N1 < N and Q ∈ Sylq(G) such that K = N1 � Q. It follows that
{N1, N , K , NQ, N R} is a clique in �(G), where R is a Sylow r -subgroup of G. This
is a contradiction with our assumption. Similarly G does not have any subgroup of
order pr .

123



Bulletin of the Iranian Mathematical Society (2023) 49 :74 Page 15 of 16 74

The converse of the lemma follows from Lemmas 4.1(5) and 4.2(4). �	
Proof of Theorem 1.6 The proof follows from Propositions 4.5 and 4.6. �	
Acknowledgements The authors are indebted to the referees for their careful reading and valuable
comments.
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