ORIGINAL PAPER

The Clique Number of the Intersection Graph of a Finite Group

Arezoo Beheshtipour1 · Seyyed Majid Jafarian Amiri¹

Received: 18 April 2023 / Revised: 17 July 2023 / Accepted: 20 July 2023 / Published online: 5 October 2023 © The Author(s) under exclusive licence to Iranian Mathematical Society 2023

Abstract

For a nontrivial finite group G, the intersection graph $\Gamma(G)$ of G is the simple undirected graph whose vertices are the nontrivial proper subgroups of *G* and two vertices are joined by an edge if and only if they have a nontrivial intersection. In a finite simple graph Γ , the clique number of Γ is denoted by $\omega(\Gamma)$. In this paper we show that if *G* is a finite group with $\omega(\Gamma(G))$ < 13, then *G* is solvable. As an application, we characterize all non-solvable groups *G* with $\omega(\Gamma(G)) = 13$. Moreover, we determine all finite groups *G* with $\omega(\Gamma(G)) \in \{2, 3, 4\}.$

Keywords Finite group · Intersection graph · Clique number · Solvable group

Mathematics Subject Classification 20D60 · 05C25 · 20D99

1 Introduction and Main Results

Let *G* be a group. There are several ways to associate a graph to *G* (see [\[8](#page-14-0)] and the references therein). In this paper, we consider the intersection graph of *G* which is denoted by $\Gamma(G)$. The intersection graph $\Gamma(G)$ of a nontrivial group G is a simple and undirected graph defined as follows: the vertex set is the set of all proper non-trivial subgroups of *G*, and there is an edge between two distinct vertices *H* and *K* if and only if *H* ∩ *K* \neq 1, where 1 denotes the trivial subgroup of *G*. The graph Γ (*G*) has been extensively studied (see, for example, [\[1,](#page-14-1) [10,](#page-14-2) [11,](#page-14-3) [14](#page-14-4), [19](#page-14-5), [21,](#page-14-6) [22,](#page-14-7) [26\]](#page-14-8)), when *G* is

Arezoo Beheshtipour arezoo.b1010@yahoo.com

Communicated by Mohammad Zarrin.

 \boxtimes Seyyed Majid Jafarian Amiri sm_jafarian@znu.ac.ir

¹ Department of Mathematics, Faculty of Sciences, University of Zanjan, P.O.Box 45371-38791, Zanjan, Iran

finite. Also in [\[12\]](#page-14-9), the subgraph $\Gamma M(G)$ whose vertices are maximal subgroups of a finitely generated group *G* is investigated. Intersection graphs of subsemigroups of a semigroup, submodules of a module, and ideals of a ring, were investigated in $[2, 7]$ $[2, 7]$ $[2, 7]$ and [\[9,](#page-14-12) [15\]](#page-14-13), respectively.

Let Γ be a simple graph. The set of vertices of every complete subgraph of Γ is called a clique of Γ . The maximum size of a complete subgraph of Γ is called the clique number of Γ and it is denoted by $\omega(\Gamma)$. For convenience, we write $\omega(\Gamma) = 0$ if Γ has no vertices (i. e. Γ is the empty graph) and $\omega(\Gamma) = 1$ if Γ has a non-empty vertex set with no edges (i. e. Γ is null).

In group theory, it is well known that the quantitative properties of some special subgroups play an important role in characterizing the solvability of groups (see [\[16,](#page-14-14) [17,](#page-14-15) [25\]](#page-14-16)). In this paper we give a criterion for solvability of G by $\omega(\Gamma(G))$.

Theorem 1.1 Let G be a finite group such that $\omega(\Gamma(G)) < 13$. Then G is solvable.

We point out that $\omega(\Gamma(A_5)) = 13$, where A_5 is the alternating group on 5 letters (see the proof of Lemma [3.3\)](#page-6-0), therefore, the bound in Theorem [1.1](#page-1-0) is the best possible.

As a consequence of Theorem [1.1,](#page-1-0) we give a characterization of *A*5.

Corollary 1.2 Let G be a non-solvable group. Then $\omega(\Gamma(G)) = 13$ if and only if $G \cong A_5$.

Remark 1.3 For a finite group *G*, it is clear that $\omega(\Gamma(G)) = 0$ if and only if $G \cong C_p$, where C_p is a cyclic group of order p , for some prime number p . By Lemma 2.2 of [\[19](#page-14-5)], we see that $\omega(\Gamma(G)) = 1$ if and only if *G* is isomorphic to one of the following groups:

$$
C_{p^2}
$$
, C_{pq} , $C_p \times C_p$, $C_p \rtimes C_q$,

where *p* and *q* are distinct prime numbers and the last group is the semidirect product of C_p by C_q .

In what follows, we determine groups *G* with $2 \le \omega(\Gamma(G)) \le 4$.

Theorem 1.4 Let G be a finite group. Then $\omega(\Gamma(G)) = 2$ if and only if one of the *following cases occurs::*

(a) *G* is a cyclic group of order p^3 , for a prime p.

(b) $G = N \rtimes H$ is Frobenius whose kernel N is the minimal normal subgroup of *G* such that $N \cong C_p \times C_p$ and $H \cong C_q$, where p and q are primes.

Theorem 1.5 Let G be a finite group. Then $\omega(\Gamma(G)) = 3$ if and only if one of the *following statements holds:*

(a) *G* is cyclic and $G \cong C_{p^4}$, C_{p^2q} or C_{pqr} , where p, *q* and *r* are distinct primes.

(b) $G = N \rtimes H$ is Frobenius whose kernel N is the (unique) minimal normal *subgroup of G and we have either*

 (1) *N* \cong *C_p and H* \cong *C_a*₂ *or C_{ar} or*

(2) *N* \cong *C_p* × *C_p*, *H* \cong *C_q*² *and G does not have any subgroup of order pq, where p*, *q and r are distinct primes.*

Theorem 1.6 Let G be a finite group. Then $\omega(\Gamma(G)) = 4$ if and only if one of the *following holds:*

(a) *G* is abelian and *G* \cong C_{p^5} , $C_2 \times C_2 \times C_q$ or $C_4 \times C_2$, where p, *q* are primes *and q is odd..*

(b) *G is non-abelian and isomorphic to one of the followings:*

(1) *D*⁸ *or Q*⁸ *or*

(2) $G = N \times H$ is Frobenius whose kernel N is the (unique) minimal normal *subgroup of G such that* $N \cong C_p \times C_p$, $H \cong C_{ar}$ *and G does not have subgroups of orders pr and pq, where p*, *q*,*r are distinct primes.*

Now we give some examples of groups, satisfying in Theorems [1.4,](#page-1-1) [1.5](#page-1-2) and [1.6.](#page-1-3) Since $A_4 \cong (C_2 \times C_2) \rtimes C_3$ satisfies in Theorem [1.4\(](#page-1-1)b), we have $\omega(\Gamma(A_4)) = 2$. In GAP-System [\[23](#page-14-17)], two groups

 $G_1 = All Small Groups(42, Is Abelian, false)[1] \cong C_7 \rtimes C_6$

and

$$
G_2 = All Small Groups (52, IsAbelian, false)[2] \cong C_{13} \rtimes C_4,
$$

satisfy in Theorem [1.5\(](#page-1-2)b)(1) and so $\omega(\Gamma(G_1)) = \omega(\Gamma(G_2)) = 3$. Also, $f_{\text{or}} G_3 = All SmallGroups(11^2.4, Is Abelian, false)[5] \cong (C_{11} \times C_{11}) \rtimes$ C_4 , we have $\omega(\Gamma(G_3)) = 3$, by Theorem [1.5\(](#page-1-2)b)(2). Finally if $G_4 =$ *All Small Groups*(11².6, *Is Abelian*, *f alse*)[5] \cong $(C_{11} \times C_{11}) \rtimes C_6$, then $\omega(\Gamma(G_4)) = 4$, by Theorem [1.6\(](#page-1-3)b)(2).

In this paper all groups are finite and we use the usual notation, for example C_n , A_n , S_n , $PSL(2, q)$ and $Sz(q)$, respectively, denote the cyclic group of order *n*, the alternative group on n letters, the symmetric group on n letters, the projective special linear group of degree 2 over the finite field of size *q* and the Suzuki group over the field with *q* elements. For a group $G, x \in G$ and $H \leq G$, we denote by $Z(G)$, $C_G(x)$, $N_G(H)$, H^x , the center of *G*, the centralizer of *x* in *G*, the normalizer of *H* in *G* and the conjugate of *H* in *G* by *x*, respectively. Also $S(G)$ is the set of all subgroups of *G*. The rest of the notation is standard and can be found mainly in [\[18](#page-14-18)].

2 Preliminary Results

We frequently use the following results and we state it here for the reader's convenience.

Lemma 2.1 (see 1.3.11 of [\[18](#page-14-18)]) *Let G be a group and H and K be subgroups of G. Then* $|G : H \cap K| \leq |G : H||G : K|$, with equality if the indices $|G : H|$ and $|G : K|$ *are coprime.*

Theorem 2.2 (see 8.5.5 of [\[18\]](#page-14-18)) *If G is a finite group with a subgroup H such that H* ∩ *H*^{*x*} = 1*, for all x* ∈ *G* *H, then* $N = (G \setminus (\cup_{x \in G} H^x)) \cup \{1\}$ *is a normal subgroup of G* and $G = N \rtimes H$.

A group *G* which has a proper nontrivial subgroup *H*, satisfying in the hypothesis of Theorem [2.2](#page-2-0) is called a *Frobenius group*, *H* is called a Frobenius complement and *N* the Frobenius kernel. In this case, $Z(G) = 1$ and $|H|$ divides $|N| - 1$, by Exercises 8.5 (2) and (6) of [\[18](#page-14-18)] respectively. Note that if $1 \neq x \in N$, then $C_G(x) \leq N$, by Exercise 8.5 (5) of [\[18](#page-14-18)].

Recall that a subgroup *H* of a group *G* is *supplemented* in *G* if there is a subgroup *K* of *G* such that $G = HK$. Moreover if $H \cap K = 1$, then *H* is *complemented* in *G* by K .

Proposition 2.3 *Let G be a group and N be a proper minimal normal abelian subgroup of G. If* $G = HN$ *, for some subgroups H of G and N is complemented in G by H. then H is a maximal subgroup of G.*

Proof Assume that there is a subgroup *K* of *G* such that $H \leq K$. Since $G = HN$, we have $K = H(K \cap N)$. Therefore, $K \cap N \neq 1$. Since *N* is the abelian normal subgroup of *G* and $G = KN$, we have $K \cap N \triangleleft G$. Thus $K \cap N = N$, by minimality of *N* and so $N \lt K$. Consequently $K = G$, as required.

Recall that a finite group *G* is said to be *primitive* if it has a maximal subgroup *M* with $Core_G(M):=\bigcap_{g\in G}M^g=1$. In this situation we call M a stabilizer of G. We need the following theorem of R. Baer on primitive groups.

Theorem 2.4 (see [\[3](#page-14-19)]) *Let G be a finite primitive group with a stabilizer M. Then one of the following three statements holds:*

- (1) *G has a unique minimal normal subgroup N, this subgroup N is self-centralizing, and N is complemented by M in G.*
- (2) *G has a unique minimal normal subgroup N, this N is non-abelian, and N is supplemented by M in G.*
- (3) *G has exactly two minimal normal subgroups N and N*∗*, and each of them is complemented by M in G. Also* $C_G(N) = N^*$, $C_G(N^*) = N$ and $N \cong N^* \cong$ $NN^* \cap M$.

The following lemma is straightforward but is useful in the sequel.

Lemma 2.5 *Let G be a finite group.*

(i) If $1 < H < G$, then $\omega(\Gamma(H)) < \omega(\Gamma(G))$.

(ii) If $1 < N < G$, then $|S(\frac{G}{N})| - 1 + \omega(\Gamma(N)) \leq \omega(\Gamma(G))$.

(iii) *Suppose that* Ω *is a clique in* $\Gamma(G)$ *, and* $H \in \Omega$ *. If* $|H|$ *is prime, then* $H \leq K$ *, for every* $K \in \Omega$.

Proof The proofs of (*i*) and (*iii*) are clear. For (*ii*), if $\omega(\Gamma(N)) = k$, for some positive integer *k*, then there are proper subgroups N_1, \ldots, N_k of *N* such that $N_i \cap N_j \neq 1$, for each $1 \leq i < j \leq k$. If *T* is a subgroup of $\frac{G}{N}$, then there exists a unique subgroup *K* of *G* such that $N \le K$ and $T = \frac{K}{N}$. Now assume that $|\mathcal{S}(\frac{G}{N})| = l$, for some positive integer *l*. Then there exist subgroups $K_1 = N$, K_2, \ldots, K_{l-1} , $K_l = G$ containing N of *G* such that $S(\frac{G}{N}) = {\frac{K_1}{N}, \frac{K_2}{N}, \dots, \frac{K_l}{N}}$. So we have $\{N_1, \dots, N_k, K_1, \dots, K_{l-1}\}$ is a clique in $\Gamma(G)$. It follows that $\omega(\Gamma(G)) \geq k + l - 1$, as required. We denote by $m(G)$ the number of maximal subgroups of a group G. In the following, we give $m(G)$, for any *p*-group *G*, where *p* is a prime number.

Lemma 2.6 *Let G be a finite p-group. Then* $m(G) = m(\frac{G}{\Phi(G)}) = \frac{|\frac{G}{\Phi(G)}| - 1}{p - 1}$.

Proof Since $\Phi(G)$ is contained in any maximal subgroup of *G*, it is easy to see that $\frac{M}{\Phi(G)}$ is a maximal subgroup of $\frac{G}{\Phi(G)}$ whenever *M* is a maximal subgroup of *G*. On the other hand, similar to the proof of Lemma [2.5\(](#page-3-0)ii), if T is a maximal subgroup of $\frac{G}{\Phi(G)}$, then there is a unique maximal subgroup *M* of *G* such that $T = \frac{M}{\Phi(G)}$. Thus we conclude that there exists a one-one correspondence from the set of all maximal subgroups of *G* to the set of all maximal subgroups of $\frac{G}{\Phi(G)}$ and then $m(G) = m(\frac{G}{\Phi(G)})$. By the proof of 5.3.2 of [\[18](#page-14-18)], we have $\frac{G}{\Phi(G)}$ is elementary abelian. Now if $|\frac{G}{\Phi(G)}| = p^m$, then every maximal subgroup of $\frac{G}{\Phi(G)}$ has order p^{m-1} and so by [\[5,](#page-14-20) Exercise 1(d), p. 81]] we have $m(\frac{G}{\Phi(G)}) = 1 + p + \cdots + p^{m-1}$. It follows that $m(\frac{G}{\Phi(G)}) = \frac{|\frac{G}{\Phi(G)}| - 1}{p - 1}$, as desired. \Box

3 A Criterion for Solvability by $\omega(\Gamma(G))$

In this section, we prove Theorem [1.1](#page-1-0) and Corollary [1.2.](#page-1-4) The famous family of simple finite groups are minimal simple groups (i.e., finite non-abelian simple groups all of whose proper subgroups are solvable). The classification of minimal simple groups is given by Thompson (see Corollary 1 of $[24]$ $[24]$). As Thompson's classification of the minimal simple groups is a very useful tool to obtain solvability criteria in the class of finite groups. In Lemmas [3.3,](#page-6-0) [3.4,](#page-6-1) [3.5,](#page-6-2) [3.6](#page-6-3) and [3.7,](#page-6-4) we show that if *G* is a minimal simple group non-isomorphic to A_5 , then $\omega(\Gamma(G) > 13$. We need these results in the proof of Theorem [1.1](#page-1-0) and Corollary [1.2.](#page-1-4)

In the following we give some facts about subgroups of $G = A_5$. The proofs are elementary (for example, one may check by software GAP [\[23\]](#page-14-17)).

Fact 1. $|\mathcal{S}(A_5)| = 59$ and if n_k is the number of subgroups of *G* of order *k*, then $n_2 = 15$, $n_3 = n_6 = 10$, $n_4 = n_{12} = 5$ and $n_5 = n_{10} = 6$.

Fact 2. If *M* is a maximal subgroup of *G*, then $|M| \in \{6, 10, 12\}$. Also all maximal subgroups of *G* of the same order are conjugate in *G*.

Fact 3. If M_1 , M_2 and M_3 are maximal subgroups of G such that $|M_1| = 6$, $|M_2| = 6$ 10 and $|M_3| = 12$, then $|M_i^x \cap M_j^y| \neq 1$, for every $1 \leq i < j \leq 3$ and $x, y \in G$. Moreover, $|M_2 \cap M_2^a| = 2$ and $|M_3 \cap M_3^b| = 3$, for each $a \in G\backslash M_2$ and $b \in G\backslash M_3$. Therefore, $\Lambda = \{M_1, M_2^g, M_3^g : g \in G\}$ is a clique in $\Gamma(G)$ and so $\omega(\Gamma(G)) \ge$ $1 + n_{10} + n_{12} = 12.$

Fact 4. Assume that M_1 , M_2 and M_3 are the same as in Fact 3. If M_i , M_i^x and M_i^y are distinct conjugates of M_i in G , for some $x, y \in G$, then $|M_i \cap M_i^x \cap M_i^y| = 1$, for each *i* and $\{M_1, M_1^x, M_1^y\}$ does not form a clique in $\Gamma(G)$. Also we have $|M_1 \cap M_1^g| \leq 2$, for every $g \in G \setminus M_1$ and there is $z \in G$ such that $|M_1 \cap M_1^z| = 2$. Thus $\Lambda \cup \{M_1, M_1^z\}$ is a clique, by Fact 3, and so $\omega(\Gamma(G)) \ge 13$.

We use of above facts in the proof of the following lemma.

Lemma 3.1 *We have* $\omega(\Gamma(A_5)) = 13$ *.*

Proof Let Ω be a clique in $\Gamma(A_5)$ of maximum size. Then $|\Omega| \ge 13$, by Fact 4. Now, we consider the following cases:

Case 1. In this case, we show that Ω does not have any member of size 2. Assume that there is $H_2 \in \Omega$ with $|H_2| = 2$. Then other subgroups of order 2, all subgroups of order 3 and all subgroups of order 5 of A_5 do not belong to Ω and so $|\Omega| \le$ $57 - ((n_2 - 1) + n_3 + n_5) = 27$, by Fact 1. Since the intersection of any two distinct subgroups of order 4 is trivial, there is only one subgroup H_4 of order 4 containing *H*₂. Thus, $|\Omega| \le 27 - (n_4 - 1) = 23$. Note that if $X \in \Omega$, then $H_2 \subseteq X$, by Lemma [2.5\(](#page-3-0)iii). By Fact 4, Ω has at most two subgroups of order 6. Also, by Facts 3, 4 and Lemma [2.5](#page-3-0) (*iii*), Ω has at most two subgroups of order 10. Since the intersection of any two distinct subgroups of order 12 has order 3 by Fact 3, Ω has at most one subgroup of order 12. It follows that $|\Omega|$ < 23 – $((10-2)+(6-2)+(5-1)) = 7$, a contradiction.

Case 2. In this case, we show that Ω does not have any member of size 3. Assume that there exists $H_3 \in \Omega$ with $|H_3| = 3$. Then Ω does not have any subgroup of order 2, 4, 5 and 10 and so $|\Omega|$ ≤ 57 – $(n_2 + n_4 + n_5 + n_{10}) = 25$, by Fact 1. Since Ω does not have two subgroups of order 3, we have $|\Omega|$ ≤ 25 − 9 = 16. Also if *X* ∈ Ω , then $H_3 \subseteq X$, by Lemma [2.5\(](#page-3-0)iii). By Fact 4, H_3 is contained in only one subgroup of order 6. Therefore, $|\Omega| \le 16 - 9 = 7$, which is impossible.

Case 3. In this case, we show that Ω does not have any member of size 4. Assume that there exists $H_4 \in \Omega$ with $|H_4| = 4$. By Case 1, Ω does not have any subgroup of order 2. Since $n_2 = 15$, $n_3 = 10$, $n_4 = 5$ and $n_5 = 6$, we have $|\Omega| \le 57-(15+10+4+6) =$ 22. Since every clique can contain at most two subgroups of order 6 by fact 4, we have $|\Omega| \leq 22-(n_6-2) = 14$. Note that *H*₄ is contained in at least one maximal subgroup, which is certainly of order 12. By Fact 3, there is only one subgroup K of order 12 such that $H_4 \subset K$ and hence $|\Omega| \leq 14 - 4 = 10$, which is a contradiction.

Case 4. In this case, we show that Ω does not have any member of size 5. Assume that there exists $H_5 \in \Omega$ with $|H_5| = 5$. Since $n_2 = 15$, $n_3 = n_6 = 10$, $n_4 = n_{12} = 5$ and $n_5 = 6$, we have $|\Omega| \le 57 - (15 + 20 + 10 + 5) = 7$, a contradiction.

Case 5. In this case, we first show that Ω has at least one member of size 6 and then prove that $|\Omega| = 13$. Suppose, for a contradiction, that Ω does not have any member of size 6. By Cases 1–4, we conclude that Ω does not have any subgroup of order 2, 3, 4 and 5. By Fact 1, every member of Ω has size either 10 or 12 and so $|\Omega| \le n_{10} + n_{12} = 11$, a contradiction. It follows that there exists $H_6 \in \Omega$ with $|H_6| = 6$. Again, by Cases 1-4, we have $|\Omega| \le n_6 + n_{10} + n_{12} = 16$. On the other hand Ω has at most two members of size 6 by Fact 4. Thus $|\Omega| = 13$ by Fact 4 and this completes the proof. this completes the proof.

In the proofs of Lemmas [3.3,](#page-6-0) [3.4](#page-6-1) and [3.5,](#page-6-2) we need the following result about the Sylow *p*-subgroups of $PSL(2, p^n)$, where *p* is a prime number and *n* is a positive integer.

Proposition 3.2 *Let* $G = PSL(2, p^n)$ *. Then a Sylow p-subgroup P of G is elementary abelian of order p^{<i>n*} and the number of Sylow p-subgroups of G is $p^n + 1$ (or *equivalently, we have* $|G : N_G(P)| = p^n + 1$ *).*

Lemma 3.3 *For any odd prime p, we have* $\omega(\Gamma(PSL(2, 2^p)) > 13$ *.*

Proof If $p = 3$, then $G = PSL(2, 8)$ has a maximal subgroup *M* of index 28 in *G*. Since *G* is simple, *M* is not normal in *G* and so $N_G(M) = M$. It follows that *M* has 28 conjugates in *G*, say $M_1 = M, M_2, \ldots, M_{28}$. It is easily checked by *GAP* [\[23\]](#page-14-17) that $|M_i \cap M_j| = 2$, for all distinct *i*, *j* and so $\omega(\Gamma(PSL(2, 2^m)) \ge 28$, as required.

If $p \ge 5$, then $q = 2^p \ge 32$. By Proposition [3.2,](#page-5-0) we have $|G : N_G(P)| = q + 1$, where $P \in Syl_2(G)$. Since $N_G(N_G(P)) = N_G(P)$, the number of conjugates of $N_G(P)$ is $q+1$. It follows that $N_G(P)$ has $q+1$ conjugates in *G*. If $N_G(P) \neq N_G(P)^g$, for some $g \in G$, then $|G : N_G(P) \cap N_G(P)^g| \leq (q+1)^2$, by lemma [2.1.](#page-2-1) Since $|G| = \frac{q(q^2-1)}{2}$, we have $|N_G(P) \cap N_G(P)^g| ≠ 1$. Therefore, $\{N_G(P)^x : x \in G\}$ is a clique in the $\Gamma(G)$ and so $\omega(\Gamma(G)) \ge q + 1 > 13$, as claimed.

Lemma 3.4 $\omega(\Gamma(PSL(2, 3^p)) > 13$ *, for any odd prime p.*

Proof By Proposition [3.2,](#page-5-0) we have $|G : N_G(P)| = 3^p + 1$, where $P \in Syl_3(G)$. Similar to the proof of Lemma [3.3,](#page-6-0) $\{N_G(P)^x : x \in G\}$ is a clique in the $\Gamma(G)$ and so $\omega(\Gamma(G)) \geq 3^p + 1 > 13$ and this completes the proof.

Lemma 3.5 $\omega(\Gamma(PSL(2, p)) > 13$ *, where p* > 3 *is a prime with* $p^2 + 1$ *divisible by 5.*

Proof If $G = PSL(2, 7)$, then *G* has 14 (maximal) subgroups of index 7 (one can check it by *GAP* [\[23\]](#page-14-17)), say $M_1, M_2, ..., M_{14}$. Since $|G| = 168$ and $|G : M_i \cap M_j| \le$ 49, for every $1 \le i \ne j \le 14$, we have $|M_i \cap M_j| \ne 1$, by Lemma [2.1](#page-2-1) and so $\{M_1, \ldots, M_{14}\}\$ is a clique in the $\Gamma(G)$ and so $\omega(\Gamma(G)) \geq 14$, as wanted.

Now if $p \ge 13$, then by the similar argument in the proof of Lemmas [3.3](#page-6-0) and [3.4,](#page-6-1)
e see that $\omega(\Gamma(G)) > p + 1 > 13$ and the proof is complete. we see that $\omega(\Gamma(G)) \ge p + 1 > 13$ and the proof is complete.

Lemma 3.6 *We have* $\omega(\Gamma(PSL(3, 3)) > 13$ *.*

Proof By GAP [\[23](#page-14-17)], *G* has 26 maximal subgroups of index 13, say M_1 , M_2 , ..., M_{26} . Since $|G| = 5616$ and $|G : M_i \cap M_j| \le 169$, for every $1 \le i \ne j \le 26$, we have $|M_i \cap M_j| \ne 1$ and so $\omega(\Gamma(G)) > 26$, as required. □ $|M_i \cap M_j|$ ≠ 1 and so $\omega(\Gamma(G)) \ge 26$, as required.

Lemma 3.7 *We have* $\omega(\Gamma(S_{Z}(2^m))) > 13$ *, where m is an odd prime.*

Proof Suppose that $q = 2^m$, $G = Sz(q)$ and $F \in Syl_2(G)$. Then it is well-known that $|F| = q^2$ and $Z(F)$ is elementary abelian of order q. It follows from Lemma 5.9 in Chapter *XI* of [\[13\]](#page-14-22) that $|C_F(g) : Z(F)| = 2$, for all $g \in F \setminus Z(F)$ and so $C_F(g)$ is abelian. Assume that $\{C_F(x_1), C_F(x_2), \ldots, C_F(x_n)\}$ is the set of all proper centralizers of elements in *F*. Then $F = \bigcup_{i=1}^{n} C_F(x_i)$ and $C_F(x_i) \cap C_F(x_j) = Z(F)$, for each $i \neq j$. Since $|F| = q^2$, $|Z(F)| = q$ and $|C_F(x_i)| = 2q$, we have $n = q - 1$. Also $Z(F)$ has $q-1$ maximal subgroups, by Lemma [2.6](#page-4-0) and the intersection of any pair of these maximal subgroups are non-trivial, by Lemma [2.1.](#page-2-1) If Z_1, \ldots, Z_{q-1} are maximal subgroups of *Z*(*F*), then {*Z*₁, ..., *Z*_{*q*−1}, *C_F*(*x*₁), ..., *C_F*(*x*_{*q*−1})} is a clique in $\Gamma(G)$. Since $q \ge 8$, we have $\omega(\Gamma(S_{z}(2^{m}))) \ge 2(q - 1) \ge 14$. This completes the \Box

Now we are ready to prove the first main result:

Proof of Theorem **[1.1](#page-1-0)** Suppose, on the contrary, that there exists a non-solvable finite group G of the least possible order with $\omega(\Gamma(G)) < 13$. If there exists a non-trivial proper normal subgroup *N* of G, then $\omega(\Gamma(N)) < 13$ and $\omega(\Gamma(\frac{G}{N})) < 13$, by Lemma [2.5\(](#page-3-0)i-ii). By minimality of $|G|$, we have $\frac{G}{N}$ and *N* are solvable, which implies that *G* is solvable, a contradiction. Thus *G* is simple and so by Theorem 1 of [\[4](#page-14-23)] and Lemma [2.5\(](#page-3-0)i), *G* is a minimal simple group. By Thompson's classification of minimal simple groups [\[24](#page-14-21)], *G* is isomorphic to one of the following simple groups: *A*5, *PSL*(2, 2*m*), where *m* is an odd prime; $PSL(2, 3^m)$, where *m* is an odd prime; $PSL(2, p)$, where $p > 3$ is a prime with $p^2 + 1$ divisible by 5; *PSL*(3, 3); or $S_z(2^m)$, where *m* is an odd prime. By Lemmas [3.1,](#page-4-1) [3.3,](#page-6-0) [3.4,](#page-6-1) [3.5,](#page-6-2) [3.6](#page-6-3) and [3.7,](#page-6-4) we have $\omega(\Gamma(G)) \ge 13$, which is impossible. \Box

Proof of Corollary [1.2](#page-1-4) If $G \cong A_5$, then $\omega(\Gamma(G)) = 13$, by Lemma [3.1.](#page-4-1) Conversely, assume that *G* is non-solvable with $\omega(\Gamma(G)) = 13$. If *M* is a maximal subgroup of *G*, then $\omega(\Gamma(M))$ < 13, by Lemma [2.5\(](#page-3-0)i). So *M* is solvable by Theorem [1.1.](#page-1-0) Thus every maximal subgroup of *G* is solvable and so *G* is a minimal non-solvable group. Therefore, *G* is a minimal simple group. By the proof of Theorem [1.1](#page-1-0) and Lemmas [3.1,](#page-4-1) [3.3,](#page-6-0) [3.4,](#page-6-1) [3.5,](#page-6-2) [3.6](#page-6-3) and [3.7,](#page-6-4) we conclude that *G* \cong *A*₅, as desired. □

4 Groups G with 2 $\leq \omega(\Gamma(G)) \leq 4$

In this section, we prove Theorems [1.4,](#page-1-1) [1.5](#page-1-2) and [1.6.](#page-1-3) First, we obtain $\omega(\Gamma(G))$, for some groups which are needed later.

Lemma 4.1 *For any distinct primes p*, *q and r and positive integer n, we have*

- (1) $\omega(\Gamma(C_{p^n})) = n 1.$
- (2) $\omega(\Gamma(\overrightarrow{C_p} \times \overrightarrow{C_p} \times \overrightarrow{C_p})) = p^2 + p + 1.$
- (3) $\omega(\Gamma(C_{pqr})) = \omega(\Gamma(C_{p^2q})) = 3.$
- (4) $\omega(\Gamma(C_{p^2} \times C_p)) = \omega(\Gamma(C_{pq} \times C_p)) = p + 2.$
- (5) If G is a non-abelian group of order p^3 , then $\omega(\Gamma(G)) = p + 2$.
- *Proof* (1) If $G = C_{p^n}$, then *G* has a unique subgroup H_i of order p^i , for each $0 \le i \le n$ and so $H_i < H_{i+1}$, for every *i*. Therefore, $\{H_1, H_2, \ldots, H_{n-1}\}$ is the unique clique in $\Gamma(G)$ with maximum size, as required.
- (2) Suppose that $G = C_p \times C_p \times C_p$ and Ω is a clique in $\Gamma(G)$. If $H \in \Omega$, with $|H| = p$, then, by Lemma [2.5](#page-3-0) (iii), $H \leq K$, for every $K \in \Omega \setminus \{H\}$ and so $|K| = p^2$. Since $\frac{G}{H} \cong C_p \times C_p$ and the number of subgroups of $C_p \times C_p$ of order *p* is $p+1$, by the proof of Lemma [2.5\(](#page-3-0)ii), the number of proper subgroups of *G* containing *H* is $p+2$ and so $|\Omega| \leq p+2$. Now suppose that Ω does not contain any subgroup of *G* of order *p*. Then $|K| = p^2$, for every $K \in \Omega$ and so *K* is a maximal subgroup of *G*. Since $\Phi(G) = 1$, the number of maximal subgroups of G is $\frac{|\frac{G}{\Phi(G)}| - 1}{p-1} = p^2 + p + 1$, by Lemma [2.6.](#page-4-0) Therefore $|\Omega| \le p^2 + p + 1$. It follows from Lemma [2.1](#page-2-1) that the intersection of any two distinct maximal subgroups of

G are non-trivial. This implies that all maximal subgroups of *G* forms a clique with maximum size in $\Gamma(G)$, as wanted.

- (3) The proof is clear.
- (4) Suppose that $G = C_{p^2} \times C_p$ and Ω is a clique in $\Gamma(G)$. If $H \in \Omega$ such that $|H| = p$, then $H < K$, for every $K \in \Omega \setminus \{H\}$, by Lemma [2.5](#page-3-0) (iii) and so $|K| = p^2$. Since the number of proper subgroups of *G* containing *H* is at most $p + 2$ and so $|\Omega| \leq p + 2$. On the other hand $|\Phi(G)| = p$ and so the number of maximal subgroups of *G* is $p + 1$. It follows that these maximal subgroups of *G* together with $\Phi(G)$ forms a clique with maximum size in $\Gamma(G)$ and so $\omega(\Gamma(G)) = p + 2$, as desired.

Suppose that $G = C_{pq} \times C_p$ and Ω is a clique in $\Gamma(G)$. If Ω does not contain any subgroup of *G* of prime order, then $\Omega = \{T\}$ such that $|T| = p^2$. If there is a subgroup *H* of *G* such that $H \in \Omega$ and $|H| = p$, then $\frac{G}{H} \cong C_{pq}$ and so $|\Omega| \leq 3$. Finally assume that $Q \in \Omega$ such that $|Q| = q$. Then $Q \leq K$, for every $K \in \Omega$ by Lemma [2.5](#page-3-0) (iii). On the other hand the number of proper subgroups of *G* containing *Q* is $p + 2$ and so $|\Omega| \leq p + 2$. Hence $\omega(\Gamma(G)) = p + 2$, as required.

(5) The proof is similar to the first case of (4).

 \Box

Lemma 4.2 *Let* $G = N \times H$ *be a Frobenius group such that* N *is a minimal normal subgroup of G and H is a Frobenius complement. Also assume that p*, *q and r are distinct primes.*

- (1) *If* $N \cong C_p$ *and* $H \cong C_{q^2}$ *or* C_{qr} *, then* $\omega(\Gamma(G)) = 3$ *.*
- (2) *If* $N \cong C_p \times C_p$ *and* $H \cong C_q$ *, then* $\omega(\Gamma(G)) = 2$.
- (3) *If* $N \cong C_p \times C_p$ *and* $H \cong C_q^2$ *such that* $q \nmid p-1$ *, then* $\omega(\Gamma(G)) = 3$.
- (4) *If* $N \cong C_p \times C_p$ *and* $H \cong C_q$ *such that* $q \nmid p-1$ *and* $r \nmid p-1$ *, then* $\omega(\Gamma(G)) = 4$ *.*

Proof (1) Suppose that $N \cong C_p$ and $H \cong C_{q^2}$ and $1 < H_1 < H$. Since $G = N \rtimes H$ is a Frobenius group, $H \cap H^x = 1$ and so $H_1 \cap H_1^x = 1$, for every $1 \neq x \in N$. Therefore, *G* has *p* subgroups of order *q* and so all of them are contained in the nonabelian subgroups $K = NH_1$. It follows that $K = NH_1$ is the unique subgroup of G of order *pq*. It is clear that $K \cap T \neq 1$, for every non-trivial proper subgroup *T* of *G*. Thus *K* belongs to any clique with maximum size. Note that every clique contains at most one subgroup of order q^2 and also at most one subgroup of order q . If N belongs to a clique Ω , then H_1^x and H^x do not belong to Ω , for every $x \in N$. Thus $\{H_1^x, H^x, K\}$ is a clique with maximum size in $\Gamma(G)$, for every $x \in N$, as required.

Now suppose that $H \cong C_{qr}$. Then *H* contains (unique) subgroups Q and R of order *q* and *r* respectively. Since $\hat{G} = N \times H$ is a Frobenius group, we have $H \cap H^x = 1$, $Q \cap Q^x = 1$ and $R \cap R^x = 1$, for every $1 \neq x \in N$. Therefore $|Syl_q(G)| =$ $|Syl_r(G)|=|G:N_G(H)|=|G:H|=p$. Since *G* is Frobenius, $Z(G)=1$ and so *N Q* and *N R* are non-abelian. Therefore *N Q* and *N R* are the only subgroups of *G* of orders *pq* and *pr*, respectively. Note that the only proper subgroups of *G* containing properly Q^x , for some $x \in N$ are H^x and NQ , the only proper subgroups of G containing properly R^x , for some $x \in N$ are H^x and NR and also the only proper subgroups of *G* containing properly *N* are NQ and *NR*. Now suppose that Ω is a clique in $\Gamma(G)$ with maximum size.

If $Q^x \in \Omega$, for some $x \in N$, then $\{Q^x, H^x, NQ\} = \Omega$. If $R^x \in \Omega$, for some $x \in N$, then $\{R^x, H^x, NR\} = \Omega$. If $N \in \Omega$, then $\{N, NQ, NR\} = \Omega$. If none of the three cases does not occur, for Ω , then $\Omega = \{H^x, NQ, NR\}$, for some $x \in N$. So we conclude that Ω has 3 members, as wanted.

(2) Since *N* is a minimal normal abelian subgroup of *G*, we conclude that H^x is a maximal subgroup of *G*, for all $x \in N$ by Proposition [2.3](#page-3-1) and so *G* does not have any subgroup of order *pq*. Therefore,

$$
\mathcal{S}(G) = \{1, G, N, N_1, \dots, N_{p+1}, H^x : x \in N\},\
$$

where $|N_i| = p$, for each *i*. Since $G = N \times H$ is Frobenius, $\{N_i, N\}$ is a clique with maximum size in $\Gamma(G)$, for each *i*, as wanted.

(3) Since $G = N \rtimes H \cong (C_p \times C_p) \rtimes C_{q^2}$ is Frobenius with complement *H*, the group *G* has $p + 1$ subgroups of order *p* (contained in *N*), say N_1, \ldots, N_{p+1} and p^2 subgroups H_1^x of order *q*, for each $x \in N$, where $1 < H_1 < H$. Note that *H* is a maximal subgroup of *G* by Proposition [2.3.](#page-3-1) Therefore, *G* does have any subgroup of order pq^2 . Clearly, $H_1^x \leq NH_1$, for every $x \in N$ and so NH_1 is the unique nonabelian subgroup of *G* of order p^2q . If *G* has a subgroup *K* of order pq, then *K* is not abelian since $C_G(x) = N$, for $1 \neq x \in N$ by Exercise 8.5 (5) of [\[18](#page-14-18)]. It follows that $q|p-1$, which is contrary to our assumption in this part. Hence the order of a non-trivial proper subgroup of *G* belongs to $\{p, p^2, q, p^2q, q^2\}$ and so we have

$$
\mathcal{S}(G) = \{1, G, N, N_1, \dots, N_{p+1}, H^x, H_1^x, NH_1 : x \in N\}.
$$

Since $N \cap H^y = H \cap H^x = H_1 \cap H_1^x = N_i \cap N_j = 1$, for every $y \in N, x \in N \setminus \{1\}$ and $i \neq j$, we have $\{N_i, N, NH_1\}$ is a clique with maximum size in $\Gamma(G)$, for each *i*. Also $\{H_1^x, H^x, NH_1\}$ is a clique with maximum, for every $x \in N$. This completes the proof.

(4) The proof is similar to the part (3).

Proof of Theorem [1.4:](#page-1-1) Since $\omega(G) = 2$, *G* contains two proper subgroups H_1 and H_2 such that $H_1 \cap H_2 \neq 1$ and so $\{H_1, H_2, H_1 \cap H_2\}$ is a clique in $\Gamma(G)$, which implies that either $H_1 < H_2$ or $H_2 < H_1$. Without loss of generality, assume that $H_1 < H_2$. Since $\omega(G) = 2$, we have $|H_1| = p$ is prime, H_1 is a maximal subgroup of H_2 and H_2 is a maximal subgroup of *G*. Now we claim that $|H_2 : H_1|$ and $|G : H_2|$ are primes.

If $H_1 \triangleleft H_2$ and $H_2 \triangleleft G$, then the claim is valid. If H_1 is not normal in H_2 , then $N_{H_2}(H_1) = H_1$ and since $|H_1|$ is prime, we have $H_1 \cap H_1^x = 1$, for all $x \in H_2 \setminus H_1$. It follows from Theorem 2.2 that H_2 is Frobenius and so there is a normal subgroup *N* such that $H_2 = N \times H_1$. If |*N*| is not prime, then *N* has a proper non-trivial subgroup N_1 and so $\{N_1, N, H_2\}$ is a clique in $\Gamma(G)$ of size 3, which is a contradiction. Therefore, $|N| = |H_2 : H_1|$ is prime. Now if $H_2 \triangleleft G$, then $|G : H_2|$ is prime by maximlity of H_2 in *G*. So assume that H_2 is not normal in *G*. Then, by a similar argument to $H_1 \ntriangleleft H_2$, we conclude that *G* is Frobenius and $|G : H_2|$ is prime. Thus $|G| = |H_1||H_2 : H_1||G : H_2| = pqr$, for some primes p, q and r.

First suppose that *G* is abelian. If *p*, *q* and *r* are distinct, then $G \cong C_{par}$ and so by Lemma [4.1\(](#page-7-0)3) we have $\omega(\Gamma(G)) = 3$, a contradiction. If $p = r \neq q$, then $G \cong C_{p^2q}$

$$
\Box
$$

or $C_p \times C_p \times C_q$, which implies that $\omega(\Gamma(G)) \neq 2$ by Lemma [4.1\(](#page-7-0)3-4). If $p = q = r$, then $G \cong C_{p^3}$, $C_{p^2} \times C_p$ or $C_p \times C_p \times C_p$. Since $\omega(G) = 2$, we have $G \cong C_{p^3}$ by Lemma [4.1.](#page-7-0)

Now suppose that *G* is not abelian. If $p = q = r$, then $|G| = p^3$ and we have a contradiction by Lemma [4.1\(](#page-7-0)5). If p , q and r are distinct, then at least one of Sylow subgroups of *G* is normal, which implies that $\omega(\Gamma(G)) \geq 3$, a contradiction. Finally suppose that $p = r \neq q$. If $Syl_q(G) = \{Q\}$ and $P \in Syl_p(G)$, then $\{P_1, P, P_1Q\}$ is a clique in $\Gamma(G)$, where P_1 is a proper non-trivial subgroup of P , again a contradiction. Hence we have $Syl_p(G) = \{P\}$. If $Q \in Syl_q(G)$, then $G = P \rtimes Q$. Since $\omega(\Gamma(G)) =$ 2, we see that *P* must be a minimal normal subgroup of *G* and so $P \cong C_p \times C_p$, which implies that *Q* is a maximal subgroup of *G* Proposition [2.3.](#page-3-1) Since *Q* is not normal in *G*, we have $N_G(Q) = Q$. It follows $Q \cap Q^g = 1$, for every $g \in G \backslash Q$ and so *G* is a Frobenius group. This completes the proof.

The converse follows from Lemmas $4.1(1)$ $4.1(1)$ and $4.2(2)$ $4.2(2)$.

Proposition 4.3 Let G be a finite abelian group. Then $\omega(\Gamma(G)) = 3$ if and only if G *is isomorphic to one of the following groups:*

$$
C_{p^4}, \quad C_{p^2q}, \quad C_{pqr},
$$

where p, *q*,*r are distinct primes.*

Proof Assume that $\omega(\Gamma(G)) = 3$. We consider two cases:

- (i) Suppose that *G* is a *p*-group, for some prime *p*. Since $\omega(\Gamma(G)) = 3$, we have $|G| \ge p^3$. If $\Phi(G) = 1$, then *G* is elementary abelian and so *G* has a subgroup isomorphic to $E = C_p \times C_p \times C_p$. It follows from Lemma [4.1\(](#page-7-0)2) that $\omega(\Gamma(E)) =$ $p^2 + p + 1 > 3$, a contradiction. Hence $\Phi(G) \neq 1$. Moreover, the number of maximal subgroups of *G* is $t = \frac{|\frac{G}{\Phi(G)}| - 1}{p - 1}$, by Lemma [2.6.](#page-4-0) Therefore, either $t = 1$, which follows that $G \cong C_{p^4}$, by Lemma [4.1\(](#page-7-0)1) or *G* has at least *p* + 1 maximal subgroups, say $M_1, M_2, \ldots, M_{p+1}$. By Lemma [2.1,](#page-2-1) $\{M_1, M_2, \ldots, M_{p+1}, \Phi(G)\}$ is a clique and so $\omega(\Gamma(G)) \geq p + 2$, which is impossible.
- (ii) Now suppose that $|G|$ has at least two distinct prime divisors, p and q. Then G has two maximal subgroups M_1 and M_2 such that $|G : M_1| = p$ and $|G : M_2| = q$. Since $\omega(\Gamma(G)) = 3$, we have $M_1 \cap M_2 \neq 1$ and so $\{M_1, M_2, M_1 \cap M_2\}$ is a clique in $\Gamma(G)$. Note that *G* has a maximal subgroup different from M_1 and M_2 , say M_3 since $G \neq M_1 \cup M_2$. We conclude that $\{M_1, M_2, M_3\}$ is a clique in $\Gamma(G)$. Since $\omega(\Gamma(G)) = 3$, we have $\bigcap_{i=1}^{3} M_i = 1$, which follows that $G \hookrightarrow \frac{G}{M_1} \times \frac{G}{M_2} \times \frac{G}{M_3}$ Consequently $|G| = pqr$, where *r* is prime. By Lemma [4.1\(](#page-7-0)3-4), we have $G \cong$ C_{pqr} or C_{p^2q} , as wanted.

The converse of the lemma follows from Lemma 4.1 .

Proposition 4.4 Let G be a finite non-abelian group. Then $\omega(\Gamma(G)) = 3$ if and only *if* $G = N \rtimes H$ is Frobenius whose kernel N is the unique minimal normal subgroup *of G and we have either*

(1) *N* \cong *C_p and H* \cong *C_q*₂ *or C_{qr} or*

(2) *N* \cong *C_p* × *C_p*, *H* \cong *C_a*2 *and G does not have any subgroup of order pq, where p*, *q*,*r are distinct primes.*

Proof Suppose that $\omega(\Gamma(G)) = 3$. Since *G* is not cyclic, *G* has at least three maximal subgroups M_1 , M_2 and M_3 . By hypothesis, $\bigcap_{i=1}^3 M_i = 1$. If $M_i \triangleleft G$, for each *i*, then $\bigcup_{i=1}^3 M_i$ is a subgroup of the subgr then $|G : M_i|$ is prime, for each *i* and so G is abelian, a contradiction. Without loss of generality, assume that $M := M_1$ is not normal in G. Then $N_G(M) = M$ and $|G : M| \geq 3$. Thus *M* has at least three conjugates *M*, M^x , M^y , for some $x, y \in G$. If $Core_G(M) \neq 1$, then $\omega(\Gamma(G)) \geq 4$, which is a contradiction. So $Core_G(M) = 1$, which implies that *G* is a primitive group. It follows from Theorem [1.1](#page-1-0) that *G* is solvable and by Theorem [2.4,](#page-3-2) *G* has a unique minimal normal subgroup *N* such that $C_G(N) = N$ and $G = N \rtimes M$. Since *N* is a principal factor of *G*, we have *N* is elementary abelian of order p^n , for some prime p, by 5.4.3 of [\[18](#page-14-18)]. Since $\omega(\Gamma(G)) = 3$, we have $n = 1$ or 2, by Lemmas [4.1\(](#page-7-0)2) and [2.5.](#page-3-0) Also note that if *M* ∩ *M*^{*g*} \neq 1, for some *g* ∈ *G**M*, then {*M*, *M^g*, *M* ∩ *M^g*, *N*(*M* ∩ *M^g*)} is a clique in $\Gamma(G)$, a contradiction. Thus G is a Frobenius group.

Subcase 1. If $n = 1$, then $G = N \rtimes M$, where $N \cong C_p$. Since $Aut(C_p)$ is cyclic of order *p* − 1, we have *M* is cyclic of order divisor of *p* − 1. It follows from Lemma $2.5(i)$ $2.5(i)$ that $\omega(\Gamma(M)) < \omega(\Gamma(G)) = 3$. If $\omega(M) = 2$, then by Theorem [1.4,](#page-1-1) we have *M* \cong *C*_{*a*}3, for some prime *q*. Therefore, *M* has two subgroups *H* and *K* of orders *q* and q^2 respectively and so $\{H, K, M, NH\}$ is a clique, which is impossible. Hence $\omega(\Gamma(M)) = 1$, which follows that $M \cong C_{qr}$ or C_{q^2} , by Remark [1.3,](#page-1-5) as required.

Subcase 2. If $n = 2$, then $G = N \rtimes M$, where $N \cong C_p \times C_p$. Therefore, |*M*| is not prime, by hypothesis and Theorem [1.4.](#page-1-1) We conclude that $|S(M)| > 3$. Since $\omega(\Gamma(G)) = 3$ and $\omega(\Gamma(N)) = 1$, we have $|\mathcal{S}(M)| \le 3$, by Lemma [2.5\(](#page-3-0)ii). Therefore, $M \cong C_{a^2}$, as wanted. It remains to show that *G* does not have any (non-abelian) subgroup of order *pq*.

Suppose, for a contradiction, that *G* has a subgroup *K* of order pq . Since $C_G(x)$ = *N*, for every $1 \neq x \in N$, by Exercise 8.5 (5) of [\[18\]](#page-14-18), we have *K* is non-abelian and so there are subgroups $1 < N_1 < N$ and $1 < M_1 < M$ such that $K = N_1 \rtimes M_1$. It follows that $\{N_1, N, K, NM_1\}$ is a clique in $\Gamma(G)$ with four elements, which is impossible.

The converse follows from Lemmas $4.2(1)$ $4.2(1)$ and $4.2(3)$.

Proof of Theorem [1.5](#page-1-2) The proof follows from Propositions [4.3](#page-10-0) and [4.4.](#page-10-1)

Proposition 4.5 Let G be a finite abelian group. Then $\omega(\Gamma(G)) = 4$ if and only if G *is isomorphic to one of the follwing groups:*

$$
C_p, \quad C_2 \times C_2 \times C_q, \quad C_2 \times C_4,
$$

where p and q are primes and q is odd.

Proof Assume that $\omega(\Gamma(G)) = 4$. Then, by Remark [1.3](#page-1-5) and Lemma [4.1,](#page-7-0) |*G*| has at least three prime divisors (not necessarily distinct), say *p*, *q* and *r*. Note that the number of maximal subgroups of *G* is either one or at least three. So we consider three cases in terms of the number of maximal subgroups of *G* in the following:

Case 1. If *G* has at least four maximal subgroups, M_i , for $1 \leq i \leq 4$, then $M_i \cap M_j \neq 1$ and since $\omega(\Gamma(G)) = 4$, we have $\bigcap_{i=1}^4 M_i = 1$ and so |*G*| has at most four prime divisors (not necessarily distinct). Therefore, |*G*| divides *pqrs*, for some prime *s*.

First suppose that $|G| = pqrs$. If all prime divisors of $|G|$ are distinct, then G is cyclic of order *pqrs* and so $\omega(\Gamma(G)) > 4$, a contradiction. If $|G| = p^2qr$ such that p, q, r are distinct, then $\{H, P, HQ, HR, PQ, PR\}$ is a clique in $\Gamma(G)$, where $|H| = p$, $P \in Syl_p(G)$, $Q \in Syl_q(G)$ and $R \in Syl_q(G)$, again a contradiction. By a similar argument, we see that $|G| \neq p^2q^2$, p^3q , p^4 , where p, q are distinct. So such group *G* does not exist.

Now suppose that $|G| = pqr$. By the number of maximal subgroups of G, we have *G* is not cyclic. Also $G \not\cong C_p \times C_p \times C_p$, by Lemma [4.1\(](#page-7-0)2). Hence $G \cong C_{p^2} \times C_p$ or $C_p \times C_p \times C_q$. It follows from Lemma [4.1\(](#page-7-0)4) that $p = 2$ and *q* is odd. But the number of maximal subgroups $C_4 \times C_2$ is 3, a contradiction. Thus $G \cong C_2 \times C_2 \times C_q$, as wanted.

Case 2. Suppose that *G* has exactly three maximal subgroups. If *G* is cyclic, then |*G*| has three distinct prime divisors and so $G \cong C_{par}$. So we have a contradiction, by Lemma [4.1\(](#page-7-0)3) since $\omega(\Gamma(G)) = 4$. Thus *G* is not cyclic and then *G* has a Sylow *t*-subgroup, which is not cyclic, for some prime *t*. Without loss of generality, assume *t* = *p* and *P* ∈ $Syl_p(G)$. Therefore, *P* (or equivalently *G*) has at least *p* + 1 maximal subgroups. By hypothesis in this case, we have $p = 2$ and *G* must be a 2-group. On the other hand, the number of maximal subgroups of *G* is $|\frac{G}{\Phi(G)}| - 1$, which implies that $\frac{G}{\Phi(G)} \cong C_2 \times C_2$. Since $|\mathcal{S}(C_2 \times C_2)| = 5$ and $\omega(\Gamma(G)) = 4$, we have $\omega(\Gamma(\Phi(G))) = 0$, by Lemma [2.5\(](#page-3-0)ii). Thus $|\Phi(G)| = 2$ and so $|G| = 8$. Hence $G \cong C_4 \times C_2$, as desired.

Case 3.Suppose that *G* has exactly one maximal subgroup. Then *G* is cyclic of order the power of a prime *p* and so $G \cong C_{p^5}$, by Lemma [4.1\(](#page-7-0)1). This completes the proof.

The converse is clear, by Lemma [4.1.](#page-7-0)

 \Box

Proposition 4.6 Let G be a finite non-abelian group. Then $\omega(\Gamma(G)) = 4$ if and only *if G is one of the follwing groups:*

- (i) *G* \cong *D*₈, *O*₈, *or*
- (ii) $G = N \rtimes H$ is Frobenius whose kernel N is the (unique) minimal normal subgroup *of G such that N* \cong *C_p* × *C_p*, *H* \cong *C_{qr} and G does not have subgroups of orders pr and pq*

Proof Assume that $\omega(\Gamma(G)) = 4$. Suppose first that every maximal subgroup is normal in *G*. Then *G* is nilpotent. Since *G* is non-abelian, there is a Sylow *p*-subgroup *P* of *G* such that *P* is non-abelian, for some prime *p*. Therefore, $\Phi(P) \neq 1$ and so $\omega(\Gamma(P)) \ge m(P) + 1 \ge p + 1 + 1$, where $m(P)$ is the number of maximal subgroups of *P*. Thus, by Lemma [2.5\(](#page-3-0)i), we see that $4 = \omega(\Gamma(G)) \ge \omega(\Gamma(P)) \ge 4$, which implies that $G = P$ and then we have $p = 2$ and $m(P) = p + 1 = 3$. Now if M_1 , M_2 and M_3 are maximal subgroups of *G*, then { Φ (*G*), M_1 , M_2 , M_3 } is a clique

with maximum size and so $|\Phi(G)| = 2$ and $M_i \cap M_j = \Phi(G)$, for every $i \neq j \leq 3$. Since $|G : M_i| = 2$, for each *i*, we have $|G| = 8$. Thus $G \cong D_8$ or Q_8 , as wanted.

Now assume that *G* has a maximal subgroup *M*, which is not normal in *G*. Then $N_G(M) = M$ and $|G : M| > 3$. We claim that $Core_G(M) = 1$.

Suppose, for a contradiction, that $M_G := Core_G(M) \neq 1$. If *M* has at least four conjugates, say *M*, M^x , M^y , M^z , for some *x*, *y*, *z* \in *G*, then $\omega(\Gamma(G)) \ge 5$, a contradiction. So we have $|G : M| = 3$. It follows that $\frac{G}{M_G} \hookrightarrow S_3$. If $\frac{G}{M_G} \cong S_3$, then by Lemma [2.5\(](#page-3-0)ii), $\omega(\Gamma(G)) \ge |\mathcal{S}(S_3)| - 1 = 5$, which is a contradiction. Since 3 divides $|G : M_G|$, we have $M_G = M$ and so $M \lhd G$, a contradiction. This implies that $M_G = 1$, as claimed. Thus *G* is primitive. By Theorems [1.1,](#page-1-0) *G* is solvable and by Theorem [2.4,](#page-3-2) *G* has a unique minimal normal subgroup *N* such that $C_G(N) = N$ and $G = N \rtimes M$. It follows that *N* is elementary abelian *p*-group, for some prime *p*. If $|N| \ge p^3$, then *N* contains a subgroup $E \cong C_p \times C_p \times C_p$ and so $\omega(\Gamma(E)) > 4$, by Lemma [4.1\(](#page-7-0)2), which is impossible, by Lemma [2.5\(](#page-3-0)i). Thus $|N| = p$ or p^2 .

If $|N| = p$, then, by Normalizer-Centralizer Theorem we have $\frac{G}{C_G(N)} = \frac{G}{N} \hookrightarrow$ $Aut(C_p) \cong C_{p-1}$ and so *M* is cyclic. It follows from Lemma [2.5\(](#page-3-0)i) that $\omega(\Gamma(M)) < 4$. If $\omega(\Gamma(M)) = 2$ or 3, then by Theorems [1.4](#page-1-1) and [4.3,](#page-10-0) we have $M \cong C_{q^3}$, C_{q^2r} , C_{q^4} or *Cqrs*. Thus *M* has at least two proper subgroups of different orders, which are divisible by q, say M_1 , M_2 and so $\{M_1, M_2, NM_1, NM_2, M\}$ is a clique in $\Gamma(G)$, a contradiction. Also if $\omega(\Gamma(M)) = 1$, then $M \cong C_{q^2}$ or C_{qr} , where *q*, *r* are distinct primes. Since *M* is cyclic and maximal subgroup of \hat{G} , we have $M \cap M^x \lhd \langle M, M^x \rangle =$ *G*, for any $x \in G \backslash M$. Now since *G* has a unique minimal subgroup *N*, we see that $M \cap M^x = 1$, for every $x \in G \backslash M$ and then *G* is Frobenius. Therefore, $G = N \rtimes M$, where $N \cong C_p$ and $M \cong C_{q^2}$ or C_{qr} , which follows $\omega(\Gamma(G)) = 3$ by Theorem [4.4,](#page-10-1) another contradiction. Finally if $\omega(\Gamma(M)) = 0$, then $|M| = q$ is prime and so $G \cong C_p \rtimes C_q$. It follows that $\omega(\Gamma(G)) = 1$, by Remark [1.3,](#page-1-5) our final contradiction.

Now suppose that $N \cong C_p \times C_p$. Then $\omega(\Gamma(M)) < \omega(\Gamma(G)) = 4$, by Lemma [2.5\(](#page-3-0)i). Also by Remark [1.3](#page-1-5) and Theorem [1.4,](#page-1-1) $\omega(\Gamma(M)) \neq 0$. If $\omega(\Gamma(M)) = 1$, then $M \cong C_{q^2}$, C_{qr} , $C_q \times C_q$ or $C_q \rtimes C_r$, where *q* and *r* are distinct primes. In two last cases, *M* (or equivalently $\frac{G}{N}$) has $q + 1$ non-trivial proper subgroups and so $\{H, N, K_1, K_2, \ldots, K_{q+1}\}$ is a clique in $\Gamma(G)$, where $1 < H < N$ and K_i is a proper subgroup of *G* containing *N*, for each *i*. It follows that $\omega(\Gamma(G)) \geq q + 3$, a contradiction. If $M \cong C_{q^2}$, then $M \cap M^x \triangleleft \langle M, M^x \rangle = G$, for any $1 \neq x \in N$, we have $M \cap M^x = 1$, for every $1 \neq x \in N$ and then *G* is Frobenius. By Theorem [4.4,](#page-10-1) we have $\omega(\Gamma(G)) = 3$. Hence $M \cong C_{qr}$ and similarly *G* is Frobenius, as wanted.

If $\omega(\Gamma(M)) = 2$ and $\{H_1, H_2\}$ is a clique in $\Gamma(M)$ such that $H_1 < H_2$, then $\{H_1, H_2, M, NH_1, NH_2\}$ is a clique in $\Gamma(G)$), which is impossible.

If $\omega(\Gamma(M)) = 3$ and $\{M_1, M_2, M_3\}$ is a clique in $\Gamma(M)$, then

 ${M_1, M_2, M_3, M, NM_1}$ is a clique in $\Gamma(G)$, a contradiction. It remains to prove that *G* does not have subgroups of orders *pq* and *pr*.

Suppose, for a contradiction, that G has a subgroup K of order pq . Then there are subgroups $N_1 < N$ and $Q \in Syl_q(G)$ such that $K = N_1 \rtimes Q$. It follows that $\{N_1, N, K, NQ, NR\}$ is a clique in $\Gamma(G)$, where *R* is a Sylow *r*-subgroup of *G*. This is a contradiction with our assumption. Similarly *G* does not have any subgroup of order *pr*.

The converse of the lemma follows from Lemmas $4.1(5)$ $4.1(5)$ and $4.2(4)$ $4.2(4)$.

Proof of Theorem [1.6](#page-1-3) The proof follows from Propositions [4.5](#page-11-0) and [4.6.](#page-12-0)

Acknowledgements The authors are indebted to the referees for their careful reading and valuable comments.

References

- 1. Ahmadi, H., Taeri, B.: Planarity of the intersection graph of subgroups of a finite groups. J. Algebra Appl. **15**(3), 1650040 (2016)
- 2. Akbari, S., Tavallayee and Khalashi Ghezelahmad, S.: Intersection graph of submodules of a module. J. Algebra Appl. **1**, 1250019 (2012)
- 3. Baer, R.: Classes of finite groups and their properties. Illinois J. Math. **1**, 115–187 (1957)
- 4. Bary, M.J., Ward, M.B.: Simple groups contain minimal simple groups. Publ. Math. **41**, 411–415 (1997)
- 5. Berkovich, Y., Janko, Z.: Groups of Prime Power Order Volume 1, Berlin, New York: De Gruyter Expositions in Mathematics (2008)
- 6. Bien, M. H., Viet, D. H.: Intersection graphs of general linear groups. J. Algebra Appl. **20**(3), 14 (2021)
- 7. Bosak, J.: The graphs of semigroups, in Theory of Graphs and Applications, pp. 119–125. Academic Press, New York (1964)
- 8. Cameron, P.J.: Graphs defined on groups. Int. J. Group Theory **11**, 53–107 (2022)
- 9. Chakrabarty, I., Ghosh, S., Mukherjee, T.K., Sen, M.K.: Intersection graphs of ideals of rings. Discrete Math. **309**, 5381–5392 (2009)
- 10. Csákány, B., Pollák, G.: The graph of subgroups of a finite group. Czech. Math. J. **19**, 241–247 (1969)
- 11. Freedman, Saul, D.: The intersection graph of a finite simple group has diameter at most 5. Arch. Math. (Basel) **117**(1), 1–7 (2021)
- 12. Herzog, M., Longobardi, P., Maj, M.: On a graph related to maximal subgroups of a group. Bull. Austral. Math. Soc. **81**, 317–328 (2010)
- 13. Huppert, B., Blackburn, N.: Finite groups. Springer-Verlag, Berlin, III (1982)
- 14. Kayacan, S.: Connectivity of intersection graphs of finite groups. Comm. Algebra **46**(4), 1492–1505 (2018)
- 15. Moh'd, F., Ahmed, M.: Simple-intersection graphs of rings. AIMS Math. **8**(1), 1040–1054 (2023)
- 16. Miraali, B., Mahmood Robati, S.: A solvability criterion for finite groups related to character degrees. Czechoslovak Math. J. **70**(145), 1205–1209 (2020)
- 17. Pazdeerski, G.: *U*¨ br maximale Untergruppen endliicher Gruppen. Math. Nachr **26**, 307–319 (1963/1964)
- 18. Robinson, D.J.S.: A course in the theory of groups. Springer-Verlag, New York (1996)
- 19. Shahsavari, H., Khosravi, B.: On the intersection graph of a finite group. Czech. Math. J. **67**(142), 1145–1153 (2017)
- 20. Shahsavari, H., Khosravi, B.: Characterization of some families of simple groups by their intersection graphs. Comm. Algebra **48**, 1266–1280 (2020)
- 21. Shen, R.: Intersection graphs of subgroups of finite groups. Czech. Math. J. **60**, 945–950 (2010)
- 22. Su, H., Zhu, L.: Thickness of the subgroup intersection graph of a finite group. AIMS Math. **6**(3), 2590–2606 (2021)
- 23. The GAP Group, GAP-Groups, Algorithms, and Programming, version 4.4.10, (2007). [http://www.](http://www.gap-system.org) [gap-system.org](http://www.gap-system.org)
- 24. Thompson, J.G.: Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Am. Math. Soc. **74**, 383–437 (1968)
- 25. Zarrin, M.: On noncommuting sets and centralisers in infinite groups. Bull. Aust. Math. Soc. **93**(1), 42–46 (2016)
- 26. Zelinka, B.: Intersection graphs of finite abelian groups. Czech. Math. J. **25**, 171–174 (1975)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.