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Abstract
This paper proposes a two-grid mixed finite volume element method (TGMFVE) that
uses a θ time discrete scheme to solve the Cahn–Hilliard equation. This method is
separated into two steps. In the first step, the solution of the Cahn–Hilliard equation
can be obtained by using a mixed θ scheme of the finite volume element method on a
coarse grid using an iterative algorithm. The second step involves using the linearized
mixed θ scheme finite volume element method to solve the equation on a fine grid. The
stability analysis of the θ scheme of the two-grid mixed finite volume element method
has been performed. The priori error estimation for L2 norm and H1 norm is also
analyzed. The results of theoretical analysis are confirmed by numerical experiments.
The results show that the theoretical results match the actual numerical results.

Keywords Cahn–Hilliard equation · θ scheme · A priori error estimates · Stability ·
Mixed finite volume element method · Two-grid

Mathematics Subject Classification 35Q35 · 74S10

1 Introduction

LetΩ ⊂ Rd(d = 2, 3) be a polygon-bounded domain. We think over the listed below
phase field Cahn–Hilliard equation proposed by Cahn and Hilliard (see [1–3]):
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ y

∂t
− �(−γ�y + f (y)) = g(x, t), t ∈ (0, T ], x ∈ Ω,

y(x, 0) = y0(x), x ∈ Ω,
∂ y

∂n
= ∂(−γ�y + f (y))

∂n
= 0, t ∈ (0, T ], x ∈ ∂Ω.

(1.1)

where n denotes the unit outward normal of the boundary ∂Ω . γ is a prescribed positive
constant, and g(x, t) is a source term, f (y) is a given nonlinear one, which satisfies
| f (y1) − f (y2)| ≤ C |y1 − y2| and | f (y) | ≤ M(y)|y| where M(y) is a bounded
positive function.

Commonly used in fluid interfacial motion analysis, the Cahn–Hillard equation can
be utilized to solve relative problems [4–9]. Unfortunately, the analytical method is
not always able to solve many problems related to the Cahn–Hilliard equation due
to the non-linearity and fourth-order differential operator. A numerical analysis is
often utilized in the study of the dynamics of the Cahn–Hillard equation. The two
main types of discrete methods in the field of PDE are the finite element (FE) and
the finite volume element (FVE). These two methods are very flexible and can be
used in the analysis of complex computational domain (geometric region). Therefore,
FE and FVE are considered the industry’s first choice when it comes to engineering
software. They have a wide variety of applications. In [10], Chen et al. derived opti-
mal error estimates for both the first- and second-order SAV schemes with the finite
element method that is a Galerkin method with standard Lagrange elements based
on a mixed variational formulation in space. Ju et al. [11] presented a residual-based
a posteriori error estimate for the finite volume discretization of steady convection-
diffusionCreaction equations defined on surfaces in R3. In [12], Hu et al. proposed a
finite volume solver to solve 2D steady Euler equations. In [13], Nazari and Sabze-
vari derived computational bases for finite element spaces S2Λ

0(Th) and SrΛ1(Th) in
each step of the h-adaptive method. Du et al. [14] considered the phase separation on
general surfaces by solving the nonlinear Cahn–Hilliard equation using a finite ele-
ment method. In [15], Jia et al. solved the modified Cahn–Hilliard equation via a large
time-stepping mixed finite-element method. Nabet et al. [16] proposed a numerical
scheme to solve a diphasic Cahn–Hilliard equationwith dynamic boundary conditions.
In [17], Appadu et al. constructed four finite volume methods to solve the 2D con-
vective Cahn–Hilliard equation with specified initial condition and periodic boundary
conditions. Thus, the finite volume element algorithm appears to be one of the opti-
mal numerical algorithms concerning solving the Cahn–Hilliard equation as well as
accurately capturing the dynamic information of phase transition. Besides ensuring
the stability of a complicated system used in long-running numerical simulations, it
also satisfies some unique physical properties such as mass conservation and energy
decreasing progressively. Nevertheless, the traditional FVE algorithm for calculating
the equations of Cahn–Hillard uses Newton’s method, which also handles non-linear
terms. It is very complex and causes a lot of difficulty when it comes to solving the
current complicated phase field problems. For instance, it appears to be used to solve
nonlinear equations with low speed and great difficulty. Therefore, it is a challenging
problem to reduce the difficulty level of the traditional FVE algorithm by implement-
ing a numerical solution of high-order differential terms and nonlinear terms. Doing
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so not only effectively improves the accuracy of solving problems compared with
traditional FVE algorithm but also saves CPU elapsed time.

The results of numerous numerical tests have indicated that the two grid method
is an effective and practical tool for solving the Cahn–Hilliard equation (see, e.g.,
[18]) when dealing with the complex nonlinear terms. For the first time, the two-grid
method [19, 20] was proposed by professor Xu Jinchao as a discrete method about
solving asymmetric indeterminate and nonlinear problems. The basic idea of the two-
grid method in the calculation of the Cahn–Hilliard equation is as follows. First, a
small-scale nonlinear problem is solved discretely in the coarse grid space. At the
moment, the number of unknowns within the coarse grid space is few, which makes
the calculations scale very small and easy to calculate. Second, the solution of the
coarse grid space is projected into the fine grid space by the interpolation method. The
problem of linear approximation is to be solved in a finer grid, which makes it easier to
solve than the original problem. The use of this method can help reduce computation
time and enhance the efficiency of the solution. The computational method is able to
demonstrate its feasibility and effectiveness by accomplishing the goal of reducing
the order and the computational time.

However, there is not much research on the two-grid finite volume element method.
Therefore, we will use the two-grid mixed finite volume element method coupling θ

time discrete schemes to solve the Cahn–Hilliard equation problem in this paper.
The rest of the paper is organized as follows: Sect. 2 develops a two-grid algorithm

for solving the Cahn–Hilliard equation, as well as the corresponding time, spatial dis-
crete schemes and a two-grid numerical solution algorithm. In Sect. 3, the theoretical
analysis we provide for discrete two grid schemes includes the analysis of the stabil-
ity and error. In Sect. 4, some numerical examples are summarized to corroborate the
correctness of the result of theoretical derivation. In the end, conclusions are concisely
summarized in Sect. 5.

Throughout this paper, we put to use standard notations for Sobolev spaces on Ω

as in [21]. For examples, L2(Ω) and H1(Ω) are Hilbert spaces with norms ‖ · ‖L2(Ω)

(‖ · ‖0) and ‖ · ‖H1(Ω) (‖ · ‖1). For ∀u ∈ L2(Ω), the L2 norm for u could be defined

as ‖u‖L2(Ω) = (
∫

Ω
|u|2dx) 1

2 . For ∀u ∈ H1(Ω), the H1 semi-norm is defined as

|u|H1(Ω) = (
∫

Ω
|∇u|2dx) 1

2 and the H1 norm is defined as ‖u‖H1(Ω) = (‖u‖2
L2(Ω)

+
|u|2

H1(Ω)
)
1
2 .

2 Two-Grid Algorithm for the Cahn–Hilliard Equation

In this section, we would give the discretization of the Cahn–Hilliard equation (1.1)
for mixed finite volume element with θ scheme. Let w = −γ�y + f (y), the mixed
variational formulation of (1.1) is: find (y, w) such that

{
(
∂ y
∂t , v) + (∇w,∇v) = (g, v), for all v ∈ H1(Ω),

(w, q) − γ (∇ y,∇q) − ( f (y), q) = 0, for all q ∈ H1(Ω),
(2.1)

where (·, ·) is the inner product onΩ , i.e.∀u, v ∈ L2(Ω), (u, v) = ∫

Ω
u(x)v(x)dx, x ∈

Ω .
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2.1 Temporal Discretization

We consider the θ scheme. Let tk = k�t (k = 0, 1, 2, . . . , K ) be the nodes in the
time interval [0, T ], where tk satisfy 0 = t0 < t1 < t2 < · · · < tK = T with�t = T

K .
From [22], we give θ scheme approximation for the function value and the first order
derivative value of function φ(t) ∈ H1(Ω) at time tk−θ with θ ∈ [0, 1

2 ] as

φ(tk−θ ) = (1 − θ)φ(tk) + θφ(tk−1) + O(�t2) ≈ (1 − θ)φk + θφk−1 = φk−θ ,

(2.2)

∂tφ(tk−θ ) = (3 − 2θ)φ(tk) − (4 − 4θ)φ(tk−1) + (1 − 2θ)φ(tk−2)

2�t
+ O(�t2)

≈ (3 − 2θ)φk − (4 − 4θ)φk−1 + (1 − 2θ)φk−2

2�t
=: Dtφ

k−θ . (2.3)

Based on (2.2), (2.3), we give the semi-discrete scheme for (2.1) as follows: find

(y
1
2 , w

1
2 ) ∈ H1(Ω) × H1(Ω) such that

{
(Dt y

1
2 , v) + (∇w

1
2 ,∇v) = (g(x, t 1

2
), v), for all v ∈ H1(Ω),

(w
1
2 , q) − γ (∇ y

1
2 ,∇q) − ( f (y

1
2 ), q) = 0, for all q ∈ H1(Ω),

(2.4)

for k = 2, 3, . . . , K , find (yk−θ , wk−θ ) ∈ H1(Ω) × H1(Ω) such that

{
(Dt yk−θ , v) + (∇wk−θ ,∇v) = (g(x, tk−θ ), v), for all v ∈ H1(Ω),

(wk−θ , q) − γ (∇ yk−θ ,∇q) − ( f (yk−θ ), q) = 0, for all q ∈ H1(Ω).
(2.5)

2.2 Spatial Discretization

We use the mixed finite volume element methods in this paper. Let Th be the primal
quasi-uniform triangulation of Ω , where h represents the largest one of the set hτ

diameters in all subdivision triangles τ . Based on the primal triangulation,we construct
the trial function space Vh which is composed of linear basis function:

Vh = {v ∈ C(Ω) : v|τ is linear,∀τ ∈ Th} .

Next, we begin to establish dual subdivision T ∗
h . In the previous triangulation men-

tioned above, we make connections in each triangle τ . Let the interior angle of any
of T ∗

h be no greater than 90◦, take Zτ as the barycenter of τ , Zτ is the intersection of
the mid-lines of τ three edges, each triangle τ can be divided into three subregions
τz (See Fig. 1), where z represents a vertex, also known as node. Let Ωh be a set
of the vertices of τ . We term the new block formed of subregions τz shared vertex z
as control volume Vz (See Fig. 2), where Zh(τ ) is a set of the barycenter of τ . Let
Mh be a set of the midpoints of all interior edges l of Th . Denote by Z0

h the set of
the interior vertices. Connect the points in the sets Zh(τ ), Mh in turn, we can get a
polygon domain K ∗

z surrounded by dotted lines in Fig. 2 around z, K ∗
z is called dual
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Fig. 1 Triangular partition and its dual

Fig. 2 The control volume Vz

element. All dual elements form Ω new partition T ∗
h donated as dual partition, Zτ

is called the node of dual partition. The barycenter-type dual partition is easy to be
introduced for any triangulation Th and will lead to relatively simple calculations. It is
well known that the dual partition T ∗

h is quasi-uniform since the triangulation partition
Th is quasi-uniform. That is to say, existing positive constant C makes that

C−1h2 ≤ meas(Vz) ≤ Ch2, ∀z ∈ Ωh

holds, where Vz is a control volume and meas(Vz) represents the area of Vz .
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From [23], we introduce an interpolation operator I ∗
h : H1(Ω) → V ∗

h

I ∗
h v =

∑

z∈Z0
h

v(z)ψz, (2.6)

where

V ∗
h =

{
v ∈ L2(Ω) : v|K ∗

z
is constant, ∀K ∗

z ∈ T ∗
h

}
,

andψz is characteristic function of control volume Vz . It is known that Vh is contained
in H1(Ω), so the interpolation operator I ∗

h can also act on the function vh ∈ Vh .
Similarly from [23], it is known that

{ ‖I ∗
h v‖L2(Ω) ≤ ‖v‖L2(Ω),

‖v − I ∗
h v‖L2(Ω) ≤ ch|v|H1(Ω).

(2.7)

From [23], the definition of the bilinear form ah(·, ·) is as following:

ah
(
uh, I

∗
h vh

) = −
∑

z∈Z0
h

vh(z)
∫

∂Vz
∇uh · nds, ∀uh, vh ∈ Vh, (2.8)

From Lemma 2.2 in [24], we have

Lemma 2.1 I ∗
h is self-adjoint in regard to the L2 inner product,

(
uh, I

∗
h vh

) = (
vh, I

∗
h uh

)
, ∀uh, vh ∈ Vh . (2.9)

Define

‖|uh‖|0 := (uh, I
∗
h uh)

1
2 . (2.10)

Then ‖| · ‖|0 and ‖ · ‖0 are equivalent. Here the equivalent constants are independent
of h.

Due to the interpolation operator I ∗
h , we write the full-discrete problem of (2.1) as

follows: find (y
1
2
h , w

1
2
h ) ∈ Vh × Vh such that

⎧
⎪⎪⎨

⎪⎪⎩

(

Dt y
1
2
h , I ∗

h vh

)

+ ah

(

w
1
2
h , I ∗

h vh

)

=
(
g

(
x, t 1

2

)
, I ∗

h vh

)
, for all vh ∈ Vh,

(

w
1
2
h , I ∗

h qh

)

− γ ah

(

y
1
2
h , I ∗

h qh

)

−
(

f

(

y
1
2
h

)

, I ∗
h qh

)

= 0, for all qh ∈ Vh,

(2.11)
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for k = 2, 3, . . . , K , find (yk−θ
h , wk−θ

h ) ∈ Vh × Vh such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
Dt y

k−θ
h , I ∗

h vh

)
+ ah

(
wk−θ
h , I ∗

h vh

)

= (
g (x, tk−θ ) , I ∗

h vh
)
, for all vh ∈ Vh,

(
wk−θ
h , I ∗

h qh
)

− γ ah
(
yk−θ
h , I ∗

h qh
)

−
(
f
(
yk−θ
h

)
, I ∗

h qh
)

= 0, for all qh ∈ Vh .

(2.12)

2.3 Two-Grid Algorithm

The above full-discrete scheme would be built for using the two-grid methods. TH and
Th are given as two triangulations of the domain Ω possessing different meshes size
H and h and H > h, T ∗

H and T ∗
h be the dual subdivision of TH and Th respectively.

Their associated finite volume element spaces are defined as VH , Vh , V ∗
H and V ∗

h ,
respectively. And the interpolation operators on V ∗

H and V ∗
h are denoted as I ∗

H and I ∗
h ,

respectively. The two-grid algorithm (cf. [25]) can be shown as follows: for a general
nonlinear PDE, for example of the form Lu + Nu − f = 0 where Lu and Nu are
linear and nonlinear parts, respectively. f is the source term.

Two-grid scheme 1
1. Find uH ∈ VH such that

(L(uH ), vH ) + (N (uH ), vH ) − ( f , vH ) = 0 ∀vH ∈ VH ;

2. Find uh ∈ Vh such that

(L(uh), vh) + (N (uH ), vh) + (N ′(uH )(uh − uH ), vh) − ( f , vh) = 0 ∀vh ∈ Vh;

where, an “exact” coarse solver can be used for problems on the coarse grid TH at 1, which is generally
considered to be a rough area. uH , N (uH ) and N ′(uH ) are calculated by projecting onto the fine grid Th
at 2.

Based on VH , V ∗
H and Vh , V ∗

h , the following is a two-grid algorithm that can be used
for the Cahn–Hilliard equation.

3 Numerical Analysis for Two Grid Discrete Scheme

Stability and error analysis of the two grid finite volume element with θ scheme
provided in Algorithm 1 will be shown in this section. The stability of Algorithm 1 is
the first thing we shall show.
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Algorithm 1. Two grid finite volume element with θ scheme.

I: Given y0H , which can be chosen the interpolation of y0 on the VH . For k = 1, solve the following
problem on the coarse grid TH ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

Dt y
1
2
H , I∗H vH

)

+ aH

(

w
1
2
H , I∗H vH

)

=
(

g

(

x, t 1
2

)

, I∗H vH

)

, for all vH ∈ VH ,

(

w
1
2
H , I∗HqH

)

− γ aH

(

y
1
2
H , I∗HqH

)

−
(

f

(

y
1
2
H

)

, I∗HqH

)

= 0, for all qH ∈ VH ,

(2.13)

for k = 2, . . . , K , solve the following problem on the coarse grid TH ,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
Dt y

k−θ
H , I∗H vH

)
+ aH

(
wk−θ
H , I∗H vH

)

= (
g

(
x, tk−θ

)
, I∗H vH

)
, for all vH ∈ VH ,

(
wk−θ
H , I∗HqH

)
− γ aH

(
yk−θ
H , I∗HqH

)
−

(
f
(
yk−θ
H

)
, I∗HqH

)

= 0, for all qH ∈ VH .

(2.14)

II: Solve the linearized Cahn–Hilliard equation on the fine grid Th , for k = 1: find (y1h , w1
h) ∈ Vh × Vh ,

such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

Dt y
1
2
h , I∗h vh

)

+ ah

(

w
1
2
h , I∗h vh

)

=
(

g

(

x, t 1
2

)

, I∗h vh

)

, for all vh ∈ Vh ,

(

w
1
2
h , I∗h qh

)

− γ ah

(

y
1
2
h , I∗h qh

)

−
(
T

(
y1h , y1H , y0h

)
, I∗h qh

)

= 0, for all qh ∈ Vh ,

(2.15)

for k = 2, . . . , K : find (ykh , wk
h) ∈ Vh × Vh , such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
Dt y

k−θ
h , I∗h vh

)
+ ah

(
wk−θ
h , I∗h vh

)

= (
g

(
x, tk−θ

)
, I∗h vh

)
, for all vh ∈ Vh ,

(
wk−θ
h , I∗h qh

)
− γ ah

(
yk−θ
h , I∗h qh

)
−

(
T

(
ykh , ykH , yk−1

h

)
, I∗h qh

)

= 0, for all qh ∈ Vh ,

(2.16)

where T(ykh , ykH , yk−1
h ) = (1 − θ)s(ykh , ykH ) + θ f (yk−1

h ), s(ykh , ykH ) = f (ykH ) + f ′(ykH )(ykh − ykH );

k ≥ 1, 0 ≤ θ ≤ 1
2 , when k = 1, θ = 1

2 .
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3.1 Stability

The following are the various lemmas we will be introducing.

Lemma 3.1 For series {ukh ∈ Vh} (k ≥ 2) and θ ∈ [0, 1
2 ], the following inequality

holds

(
Dtu

k−θ
h , I ∗

hu
k−θ
h

)
≥ 1

4�t

(
H [ukh] − H [uk−1

h ]
)

, (3.1)
(
Dt∇uk−θ

h ,∇uk−θ
h

)
≥ 1

4�t

(
Ĥ [ukh] − Ĥ [uk−1

h ]
)

, (3.2)
(
Dtu

k−θ
h , uk−θ

h

)
≥ 1

4�t

(
H̃ [ukh] − H̃ [uk−1

h ]
)

. (3.3)

where

H [ukh] = (3 − 2θ)‖|ukh‖|20 − (1 − 2θ)‖|uk−1
h ‖|20 + (2 − θ)(1 − 2θ)‖|ukh − uk−1

h ‖|20, k ≥ 1,

Ĥ [ukh] = (3 − 2θ)|ukh|21 − (1 − 2θ)|uk−1
h |21 + (2 − θ)(1 − 2θ)|ukh − uk−1

h |21, k ≥ 1,

H̃ [ukh] = (3 − 2θ)‖ukh‖20 − (1 − 2θ)‖uk−1
h ‖20 + (2 − θ)(1 − 2θ)‖ukh − uk−1

h ‖20, k ≥ 1.

and

H [ukh] ≥ 1

1 − θ
‖|ukh‖|20, 0 ≤ θ ≤ 1

2
, (3.4)

Ĥ [ukh] ≥ 1

1 − θ
|ukh|21, 0 ≤ θ ≤ 1

2
, (3.5)

H̃ [ukh] ≥ 1

1 − θ
‖ukh‖20, 0 ≤ θ ≤ 1

2
. (3.6)

where h = h or H.

Proof From (2.3) we have

Dtu
k−θ
h = (3 − 2θ)ukh − (4 − 4θ)uk−1

h + (1 − 2θ)uk−2
h

2�t
, k ≥ 2.

The operator Dtu
k−θ
h can be rewritten as

⎧
⎨

⎩

Dtu
k−θ
h = (2 − 2θ)

ukh−uk−1
h

�t − (1 − 2θ)
ukh−uk−2

h

2�t ,

Dtu
k−θ
h = ( 3

2 − θ
) ukh−uk−1

h

�t − ( 1
2 − θ

) uk−1
h −uk−2

h

�t .

Then we have
(
Dtu

k−θ
h , I ∗

hu
k−θ
h

)
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= (1 − θ)

[

(2 − 2θ)

(
ukh − uk−1

h

�t
, I ∗

hu
k
h

)

− (1 − 2θ)

(
ukh − uk−2

h

2�t
, I ∗

hu
k
h

)]

+θ

[(
3

2
− θ

)(
ukh − uk−1

h

�t
, I ∗

hu
k−1
h

)

−
(
1

2
− θ

)(
uk−1
h − uk−2

h

�t
, I ∗

hu
k−1
h

)]

.

From Lemma 2.1, we have

(
ukh − uk−1

h , I ∗
hu

k
h

)
= 1

2

[
‖|ukh‖|20 − ‖|uk−1

h ‖|20 + ‖|ukh − uk−1
h ‖|20

]
,

(
ukh − uk−2

h , I ∗
hu

k
h

)
= 1

2

[
‖|ukh‖|20 − ‖|uk−2

h ‖|20 + ‖|ukh − uk−2
h ‖|20

]
,

(
ukh − uk−1

h , I ∗
hu

k−1
h

)
= 1

2

[
‖|ukh‖|20 − ‖|uk−1

h ‖|20 − ‖|ukh − uk−1
h ‖|20

]
,

(
uk−1
h − uk−2

h , I ∗
hu

k−1
h

)
= 1

2

[
‖|uk−1

h ‖|20 − ‖|uk−2
h ‖|20 + ‖|uk−1

h − uk−2
h ‖|20

]
.

From the above formula, we can obtain that

(
Dtu

k−θ
h , I ∗

hu
k−θ
h

)
≥ 3 − 2θ

4�t

(
‖|ukh‖|20 − ‖|uk−1

h ‖|20
)

− 1 − 2θ

4�t

(
‖|uk−1

h ‖|20 − ‖|uk−2
h ‖|20

)

+2θ2 − 5θ + 2

4�t

(
‖|ukh − uk−1

h ‖|20 − ‖|uk−1
h − uk−2

h ‖|20
)

= 1

4�t

(
H [ukh] − H [uk−1

h ]
)

.

Further, when θ = 1
2 , we can obviously get

H [ukh] = 2‖|ukh‖|20 = 1

1 − 1
2

‖|ukh‖|20.

When θ ∈ [0, 1
2 ), from Cauchy–Schwarz inequality, we can get that

H [ukh] = (3 − 2θ)‖|ukh‖|20 − (1 − 2θ)‖|uk−1
h ‖|20 + (2 − θ)(1 − 2θ)‖|ukh − uk−1

h ‖|20
≥ (2θ2 − 7θ + 5)‖|ukh‖|20 + (2θ2 − 3θ + 1)‖|uk−1

h ‖|20
−[(2θ2 − 3θ + 1)‖|uk−1

h ‖|20 + (2θ2 − 5θ + 2)2

2θ2 − 3θ + 1
‖|uk−1

h ‖|20]

= 1 − 2θ

2θ2 − 3θ + 1
‖|ukh‖|20 = 1

1 − θ
‖|ukh‖|20.

Similarly we can obtain (3.2), (3.3), (3.5) and (3.6). This completes the proof. ��
From Lemma 2 in [26], we have
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Lemma 3.2 Let uh, vh ∈ Vh, I ∗
h be defined in (2.6), for ah(·, ·) given in (2.8), we have

ah
(
uh, I ∗

hvh

)
= (∇uh,∇vh

)
,

ah
(
uh, I ∗

hvh

)
= ah

(
vh, I ∗

huh
)

,

where h = h or H.

Then we consider the following stable inequality.

Theorem 3.3 For the coarse solution pair {ykH , wk
H } ∈ VH × VH , the stability for the

coupled system (2.13)–(2.14) holds:

‖ykH‖20 + �t
K∑

k=2

‖|wk−θ
H ‖|20 ≤ C‖y0H‖20 + C�t

K∑

k=0

‖gk‖20. (3.7)

For the two-grid solution pair {ykh , wk
h} ∈ Vh ×Vh, the stability for the system (2.15)–

(2.16) holds:

‖ykh‖20 + �t
K∑

k=2

‖|wk−θ
h ‖|20 ≤ C‖y0h‖20 + C‖y0H‖20 + C�t

K∑

k=0

‖gk‖20, (3.8)

‖ykh‖21 + �t
K∑

k=2

‖wk−θ
h ‖21 + ‖ykH‖20 ≤ C‖y0h‖20 + C‖y0H‖20 + C�t

K∑

k=0

‖gk‖20.

(3.9)

Proof (I) In the coupled system, we take vH = yk−θ
H and qH = wk−θ

H in (2.14) to get

⎧
⎨

⎩

(
Dt y

k−θ
H , I ∗

H yk−θ
H

)
+ aH

(
wk−θ

H , I ∗
H yk−θ

H

)
=

(
g (x, tk−θ ) , I ∗

H yk−θ
H

)
,

(
wk−θ

H , I ∗
Hwk−θ

H

)
− γ aH

(
yk−θ
H , I ∗

Hwk−θ
H

)
−

(
f
(
yk−θ
H

)
, I ∗

Hwk−θ
H

)
= 0.

Further, we can easily get

aH
(
yk−θ
H , I ∗

Hwk−θ
H

)
= 1

γ

(
wk−θ

H , I ∗
Hwk−θ

H

)
− 1

γ

(
f
(
yk−θ
H

)
, I ∗

Hwk−θ
H

)
.

(3.10)

Based on Lemma 3.2, f (y) satisfy Lipschitz continuity and we use Cauchy–
Schwarz inequality as well as Young’s inequality to get

(
Dt y

k−θ
H , I ∗

H yk−θ
H

)
+ 1

γ

(
wk−θ

H , I ∗
Hwk−θ

H

)

= 1

γ

(
f
(
yk−θ
H

)
, I ∗

Hwk−θ
H

)
+

(
g (x, tk−θ ) , I ∗

H yk−θ
H

)
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≤ 1

γ
‖ f

(
yk−θ
H

)
‖0‖I ∗

Hwk−θ
H ‖0 + ‖g (x, tk−θ ) ‖0‖I ∗

H yk−θ
H ‖0

≤ C‖ykH‖20 + C‖yk−1
H ‖20 + Cδ‖wk−θ

H ‖20 + ‖gk‖20 + ‖gk−1‖20. (3.11)

Combine Lemmas 2.1, 3.1 with the inequality (3.11), let δ = 1
2Cγ

, we have

1

4�t

(
H [ykH ] − H [yk−1

H ]
)

+ 1

2γ
‖|wk−θ

H ‖|20
≤ C‖ykH‖20 + C‖yk−1

H ‖20 + ‖gk‖20 + ‖gk−1‖20. (3.12)

Sum (3.12) with respect to k from 2 to K to get

H [yKH ] + 2�t

γ

K∑

k=2

‖|wk−θ
H ‖|20 ≤ H [y1H ] + 8�t

K∑

k=1

‖gk‖20 + C�t
K∑

k=1

‖ykH‖20.

(3.13)

In the next step, we need to estimate H [y1H ]. We take vH = y
1
2
H and qH = w

1
2
H in

(2.13) to get

⎧
⎪⎪⎨

⎪⎪⎩

(

Dt y
1
2
H , I ∗

H y
1
2
H

)

+ aH

(

w
1
2
H , I ∗

H y
1
2
H

)

=
(

g
(
x, t 1

2

)
, I ∗

H y
1
2
H

)

,

(

w
1
2
H , I ∗

Hw
1
2
H

)

− γ aH

(

y
1
2
H , I ∗

Hw
1
2
H

)

−
(

f

(

y
1
2
H

)

, I ∗
Hw

1
2
H

)

= 0.

Further, we can easily get

aH

(

y
1
2
H , I ∗

Hw
1
2
H

)

= 1

γ

(

w
1
2
H , I ∗

Hw
1
2
H

)

− 1

γ

(

f

(

y
1
2
H

)

, I ∗
Hw

1
2
H

)

.

and on the basis of Lemma 3.2, f (y) satisfy Lipschitz continuity and we use
Cauchy–Schwarz inequality as well as Young’s inequality to get

(

Dt y
1
2
H , I ∗

H y
1
2
H

)

+ 1

γ

(

w
1
2
H , I ∗

Hw
1
2
H

)

= 1

γ

(

f

(

y
1
2
H

)

, I ∗
Hw

1
2
H

)

+
(

g
(
x, t 1

2

)
, I ∗

H y
1
2
H

)

≤ C‖y1H‖20 + C‖y0H‖20 + Cδ‖w
1
2
H‖20 + 1

2
‖g1‖20 + 1

2
‖g0‖20. (3.14)

Combine (2.2), (2.3) with the inequality (3.14), let δ = 1
2Cγ

, we have

1

2�t
‖|y1H‖|20 + 1

2γ
‖|w

1
2
H‖|20
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≤ C‖y1H‖20 + C‖y0H‖20 + 1

2
‖g1‖20 + 1

2
‖g0‖20.

In the light of (3.13), we further get

H [yKH ] + 2�t

γ

K∑

k=2

‖|ωk−θ
H ‖|20

≤ H [y1H ] + 8�t
K∑

k=1

‖gk‖20 + C�t
K∑

k=1

‖ykH‖20

≤ C‖y0H‖20 + C�t
K∑

k=0

‖gk‖20 + C�t
K∑

k=1

‖ykH‖20.

Using Gronwall lemma for the above inequality, we complete the proof of the
inequality (3.7).

(II) For the fine grid system (2.16), we take vh = yk−θ
h and qh = wk−θ

h to get

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
Dt y

k−θ
h , I ∗

h y
k−θ
h

)
+ ah

(
wk−θ
h , I ∗

h y
k−θ
h

)

=
(
g (x, tk−θ ) , I ∗

h y
k−θ
h

)
,

(
wk−θ
h , I ∗

h wk−θ
h

)
− γ ah

(
yk−θ
h , I ∗

h wk−θ
h

)
−

(
(1 − θ) s

(
ykh , y

k
H

) + θ f
(
yk−1
h

)
, I ∗

h wk−θ
h

)

= 0.

Further, we can easily get

ah
(
yk−θ
h , I ∗

h wk−θ
h

)
= 1

γ

(
wk−θ
h , I ∗

h wk−θ
h

)

− 1

γ

(
(1 − θ) s

(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
, I ∗

h wk−θ
h

)
.

(3.15)

Based on Lemma 3.2, f (y) satisfy Lipschitz continuity and we use Cauchy–
Schwarz inequality as well as Young’s inequality to get

(
Dt y

k−θ
h , I ∗

h y
k−θ
h

)
+ 1

γ

(
wk−θ
h , I ∗

h wk−θ
h

)

= 1

γ

(
(1 − θ) s

(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
, I ∗

h wk−θ
h

)
+

(
g (x, tk−θ ) , I ∗

h y
k−θ
h

)

≤ C‖ykH‖20 + C‖ykh‖20 + C‖yk−1
h ‖20 + Cδ‖wk−θ

h ‖20 + ‖gk‖20 + ‖gk−1‖20.
(3.16)
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Combine Lemmas 2.1, 3.1, take and the inequality (3.16), let δ = 1
2Cγ

, we have

1

4�t

(
H [ykh ] − H [yk−1

h ]
)

+ 1

2γ
‖|wk−θ

h ‖|20
≤ C‖ykH‖20 + C‖ykh‖20 + C‖yk−1

h ‖20 + ‖gk‖20 + ‖gk−1‖20. (3.17)

Sum (3.17) with respect to k from 2 to K to get

H [yKh ] + 2�t

γ

K∑

k=2

‖|wk−θ
h ‖|20

≤ H [y1h ] + 8�t
K∑

k=1

‖gk‖20 + C�t
K∑

k=2

‖ykH‖20 + C�t
K∑

k=1

‖ykh‖20. (3.18)

For H [y1h ], using the similar process to that as above, and applying Lemma 3.1,
we have

1

1 − θ
‖|yKh ‖|20 + 2�t

γ

K∑

k=2

‖|wk−θ
h ‖|20

≤ C‖y0h‖20 + C�t
K∑

k=0

‖gk‖20 + C�t
K∑

k=1

‖ykH‖20 + C�t
K∑

k=1

‖ykh‖20. (3.19)

Using Gronwall lemma and the conclusion of (3.7) for the above inequality, we
complete the proof of the inequality (3.8).

(III) Now we give the estimate of inequality (3.9). Take vh = wk−θ
h and qh = Dt y

k−θ
h

in (2.16) to get

⎧
⎨

⎩

(
Dt y

k−θ
h , I ∗

h wk−θ
h

)
+ ah

(
wk−θ
h , I ∗

h wk−θ
h

)
=

(
g (x, tk−θ ) , I ∗

h wk−θ
h

)
,

(
wk−θ
h , I ∗

h Dt y
k−θ
h

)
− γ ah

(
yk−θ
h , I ∗

h Dt y
k−θ
h

)
−

(
T

(
ykh , y

k
H , yk−1

h

)
, I ∗

h Dt y
k−θ
h

)
= 0.

Subtract the above formula, from (2.9) we have

ah
(
wk−θ
h , I ∗

h wk−θ
h

)
+ γ ah

(
yk−θ
h , I ∗

h Dt y
k−θ
h

)

=
(
g (x, tk−θ ) , I ∗

h wk−θ
h

)
−

(
(1 − θ) s

(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
, I ∗

h Dt y
k−θ
h

)
.

(3.20)

We use Cauchy–Schwarz inequality as well as Young’s inequality for the above
equation, and f (y) satisfy Lipschitz continuity

ah
(
wk−θ
h , I ∗

h wk−θ
h

)
+ γ ah

(
yk−θ
h , I ∗

h Dt y
k−θ
h

)

≤ ‖g (x, tk−θ ) ‖0‖I ∗
h wk−θ

h ‖0 + ‖ (1 − θ) s
(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
‖0‖I ∗

h Dt y
k−θ
h ‖0

123



Bulletin of the Iranian Mathematical Society (2023) 49 :28 Page 15 of 34 28

≤ C‖gk‖20 + C‖gk−1‖20 + Cδ‖wk−θ
h ‖20 + C‖ykH‖20 + C‖ykh‖20 + C‖yk−1

h ‖20
+C‖Dt y

k−θ
h ‖20. (3.21)

CombineLemmas 3.1, 3.2with the inequality (3.21) and take δ as suitable constant,
we can get

γ

4�t
(Ĥ [ykh ] − Ĥ [yk−1

h ]) + |wk−θ
h |21

≤ C‖gk‖20 + C‖gk−1‖20 + C‖ykH‖20 + C‖ykh‖20 + C‖yk−1
h ‖20 + C‖Dt y

k−θ
h ‖20.
(3.22)

Sum (3.22) with respect to k from 2 to K to get

Ĥ [yKh ] + 4�t

γ

K∑

k=2

|wk−θ
h |21

≤ Ĥ [y1h ] + C�t
K∑

k=2

‖gk‖20 + C�t
K∑

k=2

‖gk−1‖20 + C�t
K∑

k=2

‖ykH‖20

+C�t
K∑

k=2

‖ykh‖20 + C�t
K∑

k=2

‖yk−1
h ‖20 + C�t

K∑

k=2

‖Dt y
k−θ
h ‖20. (3.23)

Then we need to estimate ‖Dt y
k−θ
h ‖0. For k − 2, k − 1, k, let θ = 0 in the second

formula of (2.16)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
wk
h, I

∗
h qh

) − γ ah
(
ykh , I

∗
h qh

) = (
s
(
ykh , y

k
H

)
, I ∗

h qh
)
,

(
wk−1
h , I ∗

h qh
)

− γ ah
(
yk−1
h , I ∗

h qh
)

=
(
s
(
yk−1
h , yk−1

H

)
, I ∗

h qh
)

,
(
wk−2
h , I ∗

h qh
)

− γ ah
(
yk−2
h , I ∗

h qh
)

=
(
s
(
yk−2
h , yk−2

H

)
, I ∗

h qh
)

.

Then from (2.2), we have
(
Dtw

k−θ
h , I ∗

h qh
)

− γ ah
(
Dt y

k−θ
h , I ∗

h qh
)

= (3 − 2θ)

2�t

(
s
(
ykh , y

k
H

)
, I ∗

h qh
)

− (4 − 4θ)

2�t

(
s
(
yk−1
h , yk−1

H

)
, I ∗

h qh
)

+ (1 − 2θ)

2�t

(
s
(
yk−2
h , yk−2

H

)
, I ∗

h qh
)

. (3.24)

Taking qh = wk−θ
h in (3.24), vh = γ Dt y

k−θ
h in the first formula of (2.16) and

adding the resulting relations, we obtain

(
Dtw

k−θ
h , I ∗

h wk−θ
h

)
+ γ

(
Dt y

k−θ
h , I ∗

h Dt y
k−θ
h

)

= γ
(
g (x, tk−θ ) , I ∗

h Dt y
k−θ
h

)
+ (3 − 2θ)

2�t

(
s
(
ykh , y

k
H

)
, I ∗

h wk−θ
h

)
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− (4 − 4θ)

2�t

(
s
(
yk−1
h , yk−1

H

)
, I ∗

h wk−θ
h

)
+ (1 − 2θ)

2�t

(
s
(
yk−2
h , yk−2

H

)
, I ∗

h wk−θ
h

)
.

(3.25)

From Lemmas 3.1, 3.2, 2.1 and as the process from (3.16) to (3.19), we can get

C�t
K∑

k=2

‖Dt y
k−θ
h ‖20 ≤ C�t

K∑

k=0

‖gk‖20 + C‖y0H‖20 + C‖y0h‖20. (3.26)

Combine (3.26) and (3.23), we can arrive at the conclusion (3.9). ��

3.2 Error Analysis

The Ritz projection operator from [27] should be given to us as the first step in carrying
out the error analysis.

Lemma 3.4 Define the Ritz projection operator Rh : H1(Ω) → Vh as

ah(u − Rhu, I ∗
h vh) = 0, ∀vh ∈ Vh, (3.27)

with the estimate inequality

‖u − Rhu‖0 + ‖(u − Rhu)t‖0 ≤ Ch2, ∀u ∈ H2(Ω),

‖u − Rhu‖1 ≤ Ch‖u‖3,p (p > 1),

where h = h or H.

In the following, we would show the error estimation between finite volume element
solution and semi-discrete solution.

Theorem 3.5 Let yk, wk be the solution of semi-system (2.4)–(2.5), (ykH , wk
H ) be the

coarse grid solution of system (2.13)–(2.14), (ykh , w
k
h)be the fine grid solution of system

(2.15)–(2.16), respectively. With y0h = Rh y0, y0H = RH y0, there exists a constant C
independent of h, H ,�t , such that

‖yk − ykH‖0 +
(

�t
K∑

k=1

‖wk−θ − wk−θ
H ‖20

) 1
2

≤ CH2, (3.28)

‖yk − ykh‖0 +
(

�t
K∑

k=1

‖wk−θ − wk−θ
h ‖20

) 1
2

≤ Ch2 + CH4, (3.29)

‖yk − ykh‖1 +
(

�t
K∑

k=1

‖wk−θ − wk−θ
h ‖21

) 1
2

+ ‖yk − ykH‖0≤Ch +CH2. (3.30)
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Proof (I) In the coarse grid, let ykH−yk = ykH−RH yk+RH yk−yk = σ y,k,H+ρ y,k,H ,
and wk

H − wk = wk
H − RHwk + RHwk − wk = σw,k,H + ρw,k,H . Combine the

definition of Ritz projection operator (3.27) and (2.14), we can get

(Dtσ
y,k−θ,H , I ∗

HvH ) + aH (σw,k−θ,H , I ∗
HvH )

= (∂t y
k−θ − Dt RH yk−θ , I ∗

HvH ), (3.31)

and

(σw,k−θ,H , I ∗
HqH ) − γ aH (σ y,k−θ,H , I ∗

HqH )

= ( f (yk−θ
H ) − f (yk−θ ), I ∗

HqH ) + (wk−θ − RHwk−θ , I ∗
HqH ). (3.32)

Let vH = σ y,k−θ,H in (3.31), qH = σw,k−θ,H

γ
in (3.32), and add two formulas, we

have

(Dtσ
y,k−θ,H , I ∗

Hσ y,k−θ,H ) + 1

γ
(σw,k−θ,H , I ∗

Hσw,k−θ,H )

+aH (σw,k−θ,H , I ∗
Hσ y,k−θ,H ) − aH (σ y,k−θ,H , I ∗

Hσw,k−θ,H )

= (∂t y
k−θ − Dt RH yk−θ , I ∗

Hσ y,k−θ,H ) + 1

γ
( f (yk−θ

H ) − f (yk−θ ), I ∗
Hσw,k−θ,H )

+ 1

γ
(wk−θ − RHwk−θ , I ∗

Hσw,k−θ,H ).

From Lemma 3.2, we use Cauchy–Schwarz inequality as well as Young’s inequal-
ity to get

(Dtσ
y,k−θ,H , I ∗

Hσ y,k−θ,H ) + 1

γ
(σw,k−θ,H , I ∗

Hσw,k−θ,H )

= (∂t y
k−θ − Dt RH yk−θ , I ∗

Hσ y,k−θ,H ) + 1

γ
( f (yk−θ

H ) − f (yk−θ ), I ∗
Hσw,k−θ,H )

+ 1

γ
(wk−θ − RHwk−θ , I ∗

Hσw,k−θ,H )

≤ C

�t

∫ tk

tk−2

‖(y − RH y)t‖20dt + C‖σ y,k−θ,H‖20 + C‖ρw,k−θ,H‖20 + Cδ‖σw,k−θ,H‖20
+C(‖yk − ykH‖20 + ‖yk−1 − yk−1

H ‖20). (3.33)

From Lemma 3.1, we know that

(
Dtσ

y,k−θ,H , I ∗
Hσ y,k−θ,H

)
≥ 1

4�t

(
H [σ y,k,H ] − H [σ y,k−1,H ]

)
. (3.34)

Combine the inequality (3.33), (3.34), Lemma 2.1 and let δ as a suitable value, we
can get

1

4�t

(
H [σ y,k,H ] − H [σ y,k−1,H ]

)
+ 1

γ
‖|σw,k−θ,H‖|20
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≤ C

�t

∫ tk

tk−2

‖ (y − RH y)t ‖20dt + C‖σ y,k−θ,H‖20 + C‖ρw,k−θ,H‖20

+C
(
‖yk − ykH‖20 + ‖yk−1 − yk−1

H ‖20
)

. (3.35)

Sum (3.35) with respect to k from 2 to K to get

H [σ y,K ,H ] + 4�t

γ

K∑

k=2

‖|σw,k−θ,H‖|20 ≤ H [σ y,1,H ]

+C
∫ tK

t0
‖ (y − RH y)t ‖20dt + C�t

K∑

k=2

‖σ y,k−θ,H‖20 + C�t
K∑

k=2

‖ρw,k−θ,H‖20

+C�t
K∑

k=2

(
‖yk − ykH‖20 + ‖yk−1 − yk−1

H ‖20
)

. (3.36)

Now we need to give the estimate of H [σ y,1,H ]. Combine the definition of Ritz
projection operator (3.27) and (2.13), we can get

(
Dtσ

y, 12 ,H , I ∗
HvH

)
+ aH

(
σw, 12 ,H , I ∗

HvH

)

=
(
∂t y

1
2 − Dt RH y

1
2 , I ∗

HvH

)
, (3.37)

and

(
σw, 12 ,H , I ∗

HqH
)

− γ aH
(
σ y, 12 ,H , I ∗

HqH
)

=
(

f

(

y
1
2
H

)

− f
(
y

1
2

)
, I ∗

HqH

)

+
(
w

1
2 − RHw

1
2 , I ∗

HqH
)

. (3.38)

We take vH = σ y, 12 ,H in (3.37) and qH = σ
w, 12 ,H

γ
in (3.38), and use a similar

derivation to the one of inequality (3.36) to get

‖|σ y,1,H‖|20 + 2�t

γ
‖|σw, 12 ,H‖|20

≤ C
∫ t1

t0
‖ (y − RH y)t ‖20dt + C�t‖σ y, 12 ,H‖20 + C�t‖ρw, 12 ,H‖20 + ‖|σ y,0,H‖|20

+C�t
(‖y1 − y1H‖20 + ‖y0 − y0H‖20

)
. (3.39)

From (3.39) and Lemmas 2.1, 3.1, we easily know that

H [σ y,1,H ] = 2‖|σ y,1,H‖|20. (3.40)
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Combine (3.36), (3.39) with (3.40) to get

H [σ y,K ,H ] + 2�t

γ

K∑

k=1

‖|σw,k−θ,H‖|20 ≤ C‖|σ y,0,H‖|20

+C
∫ tK

t0
‖ (y − RH y)t ‖20dt + C�t

K∑

k=1

‖σ y,k−θ,H‖20 + C�t
K∑

k=1

‖ρw,k−θ,H‖20

+C�t
K∑

k=1

(
‖yk − ykH‖20 + ‖yk−1 − yk−1

H ‖20
)

, (3.41)

which is combined with Gronwall lemma, triangle inequality and Lemmas 2.1, 3.4
to arrive at (3.28).

(II) In the fine grid, let ykh − yk = ykh − Rh yk + Rh yk − yk = σ y,k,h + ρ y,k,h , and
wk
h − wk = wk

h − Rhw
k + Rhw

k − wk = σw,k,h + ρw,k,h . Firstly we would give
the estimation of (3.29). Combine the definition of Ritz projection operator (3.27)
and (2.16), we can get

(
Dtσ

y,k−θ,h, I ∗
h vh

)
+ ah

(
σw,k−θ,h, I ∗

h vh

)

=
(
∂t y

k−θ − Dt Rh y
k−θ , I ∗

h vh

)
, (3.42)

and

(σw,k−θ,h, I ∗
h qh) − γ ah(σ

y,k−θ,h, I ∗
h qh)

= ((1 − θ)s(ykh , y
k
H ) + θ f (yk−1

h ) − f (yk−θ ), I ∗
h qh) + (wk−θ − Rhw

k−θ , I ∗
h qh).

(3.43)

Let vh = σ y,k−θ,h in (3.42) and qh = σw,k−θ,h

γ
in (3.43), and add two formula, we

have

(
Dtσ

y,k−θ,h, I ∗
h σ y,k−θ,h

)
+ 1

γ

(
σw,k−θ,h, I ∗

h σw,k−θ,h
)

+ah
(
σw,k−θ,h, I ∗

h σ y,k−θ,h
)

− ah
(
σ y,k−θ,h, I ∗

h σw,k−θ,h
)

=
(
∂t y

k−θ − Dt Rh y
k−θ , I ∗

h σ y,k−θ,h
)

+ 1

γ

(
wk−θ − Rhw

k−θ , I ∗
h σw,k−θ,h

)

+ 1

γ

(
(1 − θ) s

(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
− f

(
yk−θ

)
, I ∗

h σw,k−θ,h
)

. (3.44)

From Lemma 3.2, we use Cauchy–Schwarz inequality as well as Young’s inequal-
ity to get

(
Dtσ

y,k−θ,h, I ∗
h σ y,k−θ,h

)
+ 1

γ

(
σw,k−θ,h, I ∗

h σw,k−θ,h
)
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=
(
∂t y

k−θ − Dt Rh y
k−θ , I ∗

h σ y,k−θ,h
)

+ 1

γ

(
wk−θ − Rhw

k−θ , I ∗
h σw,k−θ,h

)

+ 1

γ

(
(1 − θ) s

(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
− f

(
yk−θ

)
, I ∗

h σw,k−θ,h
)

≤ C

�t

∫ tk

tk−2

‖ (y − Rh y)t ‖20dt + C‖σ y,k−θ,h‖20 + C‖ρw,k−θ,h‖20 + Cδ‖σw,k−θ,h‖20

+C

(

‖yk − ykh‖20 + ‖
(
yk − ykH

)2 ‖20 + ‖yk−1 − yk−1
h ‖20

)

. (3.45)

From lemma 3.1, we know that

(
Dtσ

y,k−θ,h, I ∗
h σ y,k−θ,h

)
≥ 1

4�t

(
H [σ y,k,h] − H [σ y,k−1,h]

)
. (3.46)

Combine the inequality (3.45), (3.46) with Lemma 2.1 and let δ as a suitable value,
we can get

1

4�t

(
H [σ y,k,h] − H [σ y,k−1,h]

)
+ 1

γ
‖|σw,k−θ,h‖|20

≤ C

�t

∫ tk

tk−2

‖ (y − Rh y)t ‖20dt + C‖σ y,k−θ,h‖20 + C‖ρw,k−θ,h‖20

+C

(

‖yk − ykh‖20 + ‖
(
yk − ykH

)2 ‖20 + ‖yk−1 − yk−1
h ‖20

)

. (3.47)

Sum (3.47) with respect to k from 2 to K to get

H [σ y,K ,h] + 4�t

γ

K∑

k=2

‖|σw,k−θ,h‖|20 ≤ H [σ y,1,h]

+C
∫ tK

t0
‖ (y − Rh y)t ‖20dt + C�t

K∑

k=2

‖σ y,k−θ,h‖20 + C�t
K∑

k=2

‖ρw,k−θ,h‖20

+C�t
K∑

k=2

(

‖yk − ykh‖20 + ‖
(
yk − ykH

)2 ‖20 + ‖yk−1 − yk−1
h ‖20

)

. (3.48)

Now we need to give the estimation of H [σ y,1,h]. Combine the definition of Ritz
projection operator (3.27) with (2.15), we can get

(
Dtσ

y, 12 ,h, I ∗
h vh

)
+ ah

(
σw, 12 ,h, I ∗

h vh

)

=
(
∂t y

1
2 − Dt Rh y

1
2 , I ∗

h vh

)
, (3.49)

and
(
σw, 12 ,h, I ∗

h qh
)

− γ ah
(
σ y, 12 ,h, I ∗

h qh
)
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=
(
1

2
s(y1h , y

1
H ) + 1

2
f (y0h) − f

(
y

1
2

)
, I ∗

h qh

)

+
(
w

1
2 − Rhw

1
2 , I ∗

h qh
)

.

(3.50)

We take vh = σ y, 12 ,h in (3.49) and qh = σ
w, 12 ,h

γ
in (3.50), and use a similar

derivation to the one of inequality (3.48) to get

‖|σ y,1,h‖|20 + 2�t

γ
‖|σw, 12 ,h‖|20

≤ C
∫ t1

t0
‖ (y − Rh y)t ‖20dt + C�t‖σ y, 12 ,h‖20 + C�t‖ρw, 12 ,h‖20 + ‖|σ y,0,h‖|20

+C�t

(

‖y1 − y1h‖20 + ‖
(
y1 − y1H

)2 ‖20 + ‖y0 − y0h‖20
)

. (3.51)

From (3.51) and Lemmas 2.1, 3.1, we easily know that

H [σ y,1,h] = 2‖|σ y,1,h‖|20. (3.52)

Combine (3.48), (3.51) with (3.52) to get

H [σ y,K ,h] + 2�t

γ

K∑

k=1

‖|σw,k−θ,h‖|20 ≤ C‖|σ y,0,h‖|20

+C
∫ tK

t0
‖ (y − Rh y)t ‖20dt + C�t

K∑

k=1

‖σ y,k−θ,h‖20 + C�t
K∑

k=1

‖ρw,k−θ,h‖20

+C�t
K∑

k=1

(

‖yk − ykh‖20 + ‖
(
yk − ykH

)2 ‖20 + ‖yk−1 − yk−1
h ‖20

)

,

which is combinedwithGronwall lemma, triangle inequalitywith Lemmas 2.1, 3.4
to arrive at (3.29).

(III) Then we would give the estimation of (3.30). Combine the definition of Ritz
projection operator (3.27) with (2.16), we can get

(
Dtσ

y,k−θ,h, I ∗
h vh

)
+ ah

(
σw,k−θ,h, I ∗

h vh

)

=
(
∂t y

k−θ − Dt Rh y
k−θ , I ∗

h vh

)
, (3.53)

and

(
σw,k−θ,h, I ∗

h qh
)

− γ ah
(
σ y,k−θ,h, I ∗

h qh
)

=
(
(1 − θ) s

(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
− f

(
yk−θ

)
, I ∗

h qh
)
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+
(
wk−θ − Rhw

k−θ , I ∗
h qh

)
. (3.54)

Let vh = σw,k−θ,h in (3.53) and qh = Dtσ
y,k−θ,h in (3.54) and subtract the

resulting equations following (2.9), we have

ah
(
σw,k−θ,h, I ∗

h σw,k−θ,h
)

+ γ ah
(
σ y,k−θ,h, I ∗

h Dtσ
y,k−θ,h

)

=
(
∂t y

k−θ − Dt Rh y
k−θ , I ∗

h σw,k−θ,h
)

−
(
wk−θ − Rhw

k−θ , I ∗
h Dtσ

y,k−θ,h
)

−
(
(1 − θ) s

(
ykh , y

k
H

)
+ θ f

(
yk−1
h

)
− f

(
yk−θ

)
, I ∗

h Dtσ
y,k−θ,h

)

= I + II + III. (3.55)

For I and II, from the Cauchy–Schwarz inequality as well as Young’s inequality,
we have

I + II

≤ ‖∂t yk−θ − Dt Rh y
k−θ‖0‖I ∗

h σw,k−θ,h‖0 + ‖wk−θ − Rhw
k−θ‖0‖I ∗

h Dtσ
y,k−θ,h‖0

≤ C‖Dt

(
ρ y,k−θ,h

)
‖20 + Cδ‖σw,k−θ,h‖20 + ‖ρw,k−θ,h‖20 + C‖Dtσ

y,k−θ,h‖20

≤ C‖ (3 − 2θ) [ρ y,k,h − ρ y,k−1,h] − (1 − 2θ) [ρ y,k−1,h − ρ y,k−2,h]
2�t

‖20
+‖ρw,k−θ,h‖20 + C‖Dtσ

y,k−θ,h‖20 + Cδ‖σw,k−θ,h‖20
≤ C

�t

∫ tk

tk−2

‖ (y − Rh y)t ‖20dt + ‖ρw,k−θ,h‖20 + C‖Dtσ
y,k−θ,h‖20 + Cδ‖σw,k−θ,h‖20.

(3.56)

Use Taylor formula and Cauchy–Schwarz inequality, we can get

III

≤ ‖(1 − θ)s(ykh , y
k
H ) + θ f (yk−1

h ) − f (yk−θ )‖0‖I ∗
h Dtσ

y,k−θ,h‖0
≤ C‖yk − ykh‖20 + C‖(yk − ykH )2‖20 + C‖yk−1 − yk−1

h ‖20 + ‖Dtσ
y,k−θ,h‖20.

(3.57)

From Lemmas 3.1, 3.2 and (3.55)–(3.57), we can obtain that

1

4�t

(
Ĥ [σ y,k,h] − Ĥ [σ y,k−1,h]

)
+ |σw,k−θ,h |21

≤ C

�t

∫ tk

tk−2

‖(y − Rh y)t‖20dt + ‖ρw,k−θ,h‖20 + C‖Dtσ
y,k−θ,h‖20

+C‖yk − ykh‖20 + C‖(yk − ykH )2‖20 + C‖yk−1 − yk−1
h ‖20. (3.58)
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Sum (3.58) with respect to k from 2 to K to get

Ĥ [σ y,K ,h] + 4�t
K∑

k=2

|σw,k−θ,h |21 ≤ Ĥ [σ y,1,h] + C
∫ tK

t0
‖(y − Rh y)t‖20dt

+C�t
K∑

k=2

‖Dtσ
y,k−θ,h‖20 + C�t

K∑

k=2

‖ρw,k−θ,h‖20

+C�t
K∑

k=2

(‖yk − ykh‖20 + ‖(yk − ykH )2‖20 + ‖yk−1 − yk−1
h ‖20). (3.59)

Now we need to give the estimate of Ĥ [σ y,1,h]. Combine the definition of Ritz
projection operator (3.27) and (2.15), we can get

(
Dtσ

y, 12 ,h, I ∗
h vh

)
+ ah

(
σw, 12 ,h, I ∗

h vh

)

=
(
∂t y

1
2 − Dt Rh y

1
2 , I ∗

h vh

)
, (3.60)

and

(
σw, 12 ,h, I ∗

h qh
)

− γ ah
(
σ y, 12 ,h, I ∗

h qh
)

=
(
1

2
s(y1h , y

1
H ) + 1

2
f (y0h) − f

(
y

1
2

)
, I ∗

h qh

)

+
(
w

1
2 − Rhw

1
2 , I ∗

h qh
)

.

(3.61)

We take vh = σw, 12 ,h in (3.60) and qh = Dtσ
y, 12 ,h in (3.61), and use the similar

derivation to the one of inequality (3.59) to get

γ

2�t
|σ y,1,h |21 + |σw, 12 ,h |21

= γ

2�t
|σ y,0,h |21 + C

�t

∫ t1

t0
‖(y − Rh y)t‖20dt + ‖ρw, 12 ,h‖20 + C‖Dtσ

y, 12 ,h‖20

+C‖y1 − y1h‖20 + C‖
(
y1 − y1H

)2 ‖20 + C‖y0 − y0h‖20. (3.62)

Multiply 2�t on both sides of the above formula

γ |σ y,1,h |21 + 2�t |σw, 12 ,h |21
= γ |σ y,0,h |21 + C

∫ t1

t0
‖(y − Rh y)t‖20dt + 2�t‖ρw, 12 ,h‖20 + C�t‖Dtσ

y, 12 ,h‖20
+C�t‖y1 − y1h‖20 + C�t‖(y1 − y1H )2‖20 + C�t‖y0 − y0h‖20. (3.63)
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From (3.63) and Lemmas 2.1, 3.1, we easily know that

Ĥ [σ y,1,h] = 2|σ y,1,h |21. (3.64)

Combine (3.59), (3.63) with (3.64) to get

Ĥ [σ y,K ,h] + 2�t
K∑

k=1

|σw,k−θ,h |21

≤ C
∫ tK

t0
‖(y − Rh y)t‖20dt

+C�t
K∑

k=2

‖Dtσ
y,k−θ,h‖20 + C�t‖Dtσ

y, 12 ,h‖20 + C�t
K∑

k=1

‖ρw,k−θ,h‖20

+C�t
K∑

k=1

(‖yk − ykh‖20 + ‖(yk − ykH )2‖20 + ‖yk−1 − yk−1
h ‖20) + C |σ y,0,h |21.

(3.65)

Then we need to estimate ‖Dtσ
y,k−θ,h‖0. Let θ = 0 in (3.54), we have

(
σw,k,h, I ∗

h qh
)

− γ ah
(
σ y,k,h, I ∗

h qh
)

=
(
s
(
ykh , y

k
H

)
− f

(
yk

)
, I ∗

h qh
)

+
(
wk − Rhw

k, I ∗
h qh

)
,

(
σw,k−1,h, I ∗

h qh
)

− γ ah
(
σ y,k−1,h, I ∗

h qh
)

=
(
s
(
yk−1
h , yk−1

H

)
− f

(
yk−1

)
, I ∗

h qh
)

+
(
wk−1 − Rhw

k−1, I ∗
h qh

)
,

(
σw,k−2,h, I ∗

h qh
)

− γ ah
(
σ y,k−2,h, I ∗

h qh
)

=
(
s
(
yk−2
h , yk−2

H

)
− f

(
yk−2

)
, I ∗

h qh
)

+
(
wk−2 − Rhw

k−2, I ∗
h qh

)
.

Then from (2.3), we have

(
Dtσ

w,k−θ,h, I ∗
h qh

)
− γ ah

(
Dtσ

y,k−θ,h, I ∗
h qh

)

=
(

(3 − 2θ) σw,k,h − (4 − 4θ) σw,k−1,h + (1 − 2θ) σw,k−2,h

2�t
, I ∗

h qh

)

−γ ah

(
(3 − 2θ) σ y,k,h − (4 − 4θ) σ y,k−1,h + (1 − 2θ) σ y,k−2,h

2�t
, I ∗

h qh

)

=
⎛

⎝
(3 − 2θ) s

(
ykh , y

k
H

) − (4 − 4θ) s
(
yk−1
h , yk−1

H

)
+ (1 − 2θ) s

(
yk−2
h , yk−2

H

)

2�t
, I ∗

h qh

⎞

⎠

−
(

(3 − 2θ) f
(
yk

) − (4 − 4θ) f
(
yk−1

) + (1 − 2θ) f
(
yk−2

)

2�t
, I ∗

h qh

)
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+
(
Dt

(
wk−θ − Rhw

k−θ
)

, I ∗
h qh

)
. (3.66)

Taking qh = σw,k−θ,h in (3.66), vh = γ Dtσ
y,k−θ,h in (3.53) and adding the

resulting relations we obtain

(
Dtσ

w,k−θ,h, I ∗
h σw,k−θ,h

)
+ γ

(
Dtσ

y,k−θ,h, I ∗
h Dtσ

y,k−θ,h
)

= γ
(
∂t y

k−θ − Dt Rh y
k−θ , I ∗

h Dtσ
y,k−θ,h

)
+

(
Dt

(
wk−θ − Rhw

k−θ
)

, I ∗
h σw,k−θ,h

)

+
⎛

⎝
(3 − 2θ) s

(
ykh , y

k
H

) − (4 − 4θ) s
(
yk−1
h , yk−1

H

)

2�t
, I ∗

h σw,k−θ,h

⎞

⎠

+
⎛

⎝
(1 − 2θ) s

(
yk−2
h , yk−2

H

)

2�t
, I ∗

h σw,k−θ,h

⎞

⎠

−
(

(3 − 2θ) f
(
yk

) − (4 − 4θ) f
(
yk−1

) + (1 − 2θ) f
(
yk−2

)

2�t
, I ∗

h σw,k−θ,h

)

.

(3.67)

From Lemmas 3.1, 2.1, 3.4, 3.2 and as the process from (3.45) to (3.52), we can
get

C�t
K∑

k=2

‖Dtσ
y,k−θ,h‖20 + C�t‖Dtσ

y, 12 ,h‖20 ≤ C(h2 + H4). (3.68)

Then from Lemma 3.4, triangle inequality, (3.68) and (3.65), we can arrive at
(3.30). ��

Next, we would show the main error estimation of this paper.

Theorem 3.6 Let y, w be the solution of system (2.1), (ykH , wk
H ) be the coarse grid

solution of the system (2.13)–(2.14), (ykh , w
k
h) be the fine grid solution of the system

(2.15)–(2.16), respectively. With y0h = Rh y0, y0H = RH y0, there exists a constant C
independent of h, H ,�t , such that

‖y(tk) − ykH‖0 +
(

�t
K∑

k=1

‖w(tk−θ ) − wk−θ
H ‖20

) 1
2

≤ C
(
�t2 + H2

)
, (3.69)

‖y(tk) − ykh‖0+
(

�t
K∑

k=1

‖w(tk−θ ) − wk−θ
h ‖20

) 1
2

≤C
(
�t2 + h2 + H4

)
, (3.70)

‖y(tk) − ykh‖1 +
(

�t
K∑

k=1

‖w(tk−θ ) − wk−θ
h ‖21

) 1
2

+‖y(tk) − ykH‖0 ≤ C
(
�t2 + h + H2

)
. (3.71)
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Proof Let Ek−θ
y = y(tk−θ ) − yk−θ and Ek−θ

w = w(tk−θ ) − wk−θ and we easily know
from systems (2.5) and the mixed variational formulation of (1.1) that for k ≥ 2, we
can obviously get

[(Dt y(tk−θ ), υ) + (∇w(tk−θ ),∇υ)] − [(Dt y
k−θ , v) + (∇wk−θ ,∇v)]

= [(Dt y(tk−θ ), υ) − (Dt y
k−θ , v)] + [(∇w(tk−θ ),∇υ) − (∇wk−θ ,∇v)]

= (Dt (y(tk−θ ) − yk−θ ), υ) + (∇(w(tk−θ ) − wk−θ ),∇υ)

= (Dt E
k−θ
y , υ) + (∇Ek−θ

w ,∇υ)

= (Rk−θ
1 , υ),

and

(
w (tk−θ ) − wk−θ , q

)
− γ

(
∇

(
y (tk−θ ) − yk−θ

)
,∇q

)

−
(
f (y (tk−θ )) − f

(
yk−θ

)
, q

)

=
(
Ek−θ

w , q
)

− γ
(
∇Ek−θ

y ,∇q
)

−
(
f (y (tk−θ )) − f

(
yk−θ

)
, q

)

=
(
Rk−θ
2 , q

)
,

where

Rk−θ
1 = Dt

(
y (tk−θ ) − yk−θ

)
− �

(
w (tk−θ ) − wk−θ

)
= O

(
�t2

)
,

Rk−θ
2 =

(
w (tk−θ ) − wk−θ

)
+ γ�

(
y (tk−θ ) − yk−θ

)
−

(
f (y (tk−θ )) − f

(
yk−θ

))

= O
(
�t2

)
.

Similarly, we can follow that

[(Dt y(t 1
2
), υ) + (∇w(t 1

2
),∇υ)] − [(Dt y

1
2 , v) + (∇w

1
2 ,∇v)]

= [(Dt y(t 1
2
), υ) − (Dt y

1
2 , v)] + [(∇w(t 1

2
),∇υ) − (∇w

1
2 ,∇v)]

= (Dt (y(t 1
2
) − y

1
2 ), υ) + (∇(w(t 1

2
) − w

1
2 ),∇υ)

= (Dt E
1
2
y , υ) + (∇E

1
2
w,∇υ)

= (R
1
2
3 , υ),

and

(w(t 1
2
) − w

1
2 , q) − γ (∇(y(t 1

2
) − y

1
2 ),∇q) − ( f (y(t 1

2
)) − f (y

1
2 ), q)

= (E
1
2
w, q) − γ (∇E

1
2
y ,∇q) − ( f (y(t 1

2
)) − f (y

1
2 ), q) = (R

1
2
4 , q),
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where

R
1
2
3 = Dt (y(t 1

2
) − y

1
2 ) − �(w(t 1

2
) − w

1
2 ) = O(�t2),

R
1
2
4 = (w(t 1

2
) − w

1
2 ) + γ�(y(t 1

2
) − y

1
2 ) − ( f (y(t 1

2
)) − f (y

1
2 )) = O(�t2).

We use the similar analysis as the ones in the Theorem 3.5 to simply get

‖(y(tk) − yk)‖0 +
(

�t
K∑

k=1

‖w(tk−θ ) − wk−θ‖20
) 1

2

≤ C�t2, (3.72)

and

‖y(tk) − yk‖1 +
(

�t
K∑

k=1

‖w(tk−θ ) − wk−θ‖21
) 1

2

≤ C�t2. (3.73)

Finally, we combine (3.72) and (3.73) with the result in Theorem 3.5 and use triangle
inequality to get the conclusion of Theorem 3.6. ��
Remark 3.7 From the Theorem 3.6 one also can see that the coarse grid can be much
coarser than the fine grid and achieve asymptotically optimal approximation as long

as the mesh sizes satisfy H ≤ O(h
1
2 ), this means that the convergence rate of the

space is not lowered. From the second and third inequalities of Theorem 3.6, it can be
obtained that the spatial convergence order of error ‖y − yh‖0 and ‖y − yh‖1 is 2 and
1, respectively. The time convergence order of errors ‖y − yh‖0 and ‖y − yh‖1 is 2.

4 Numerical Examples

The two numerical examples given in this section will help us test the efficiency of
our computation carried out with respect to the two-grid mixed finite volume element
method united with the θ -scheme. For the implementation of numerical computations
in two-dimensional cases, we take triangle segmentation for spatial domain Ω . In the
following description, themesh length of the coarse grid is taken as H and h is taken as

the mesh length of the fine grid. Then we choose H to satisfy h < H ≤ h
1
2 . Therefore,

only the error order of h is shown in our example.

Example 4.1 In (1.1), on the space domain Ω = [0, 1] × [0, 1] and the time inter-
val [0, 1], we take a term f (y) = y3 − y that is nonlinear and the exact solution
y(t, x1, x2) = cos(π t) cos(πx1) cos(πx2), thenwegive the source term g(t, x1, x2) =
∂ y
∂t − �(−γ�y + f (y)).

In Tables 1, 2 and 3, by taking θ = 0.5, �t = 1/250, changed γ = 1, 0.1, 10.
For testing CPU time, we arrive at the CPU time comparison between two-grid mixed
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Table 1 θ = 0.5, �t = 1/250, γ = 1

TGMFVE MFE

H h ‖y − yh‖1 CPU time
Seconds h ‖y − yh‖1 CPU time

Seconds Ratio

0.0884 0.0221 0.1090 6.0740 0.0221 0.1091 8.1911 1.3486

0.0442 0.0055 0.0273 69.7599 0.0055 0.0273 167.4619 2.4005

0.0221 0.0014 0.0068 1.6526e+03 0.0014 0.0068 6.5479e+03 3.9622

Table 2 θ = 0.5, �t = 1/250, γ = 0.1

TGMFVE MFE

H h ‖y − yh‖1 CPU time
Seconds h ‖y − yh‖1 CPU time

Seconds Ratio

0.0884 0.0221 0.1092 6.0679 0.0221 0.1090 9.7017 1.5989

0.0442 0.0055 0.0273 71.9671 0.0055 0.0273 185.4141 2.5764

0.0221 0.0014 0.0068 1.6526e+03 0.0014 0.0068 4.6761e+03 2.8295

Table 3 θ = 0.5, �t = 1/250, γ = 10

TGMFVE MFE

H h ‖y − yh‖1 CPU time
Seconds h ‖y − yh‖1 CPU time

Seconds Ratio

0.0884 0.0221 0.1090 5.6528 0.0221 0.1091 8.2236 1.4548

0.0442 0.0055 0.0273 70.9364 0.0055 0.0273 173.8794 2.4511

0.0221 0.0014 0.0068 1.6512e+03 0.0014 0.0068 1.2337e+05 74.7154

finite volume element (TGMFVE) and mixed finite element (MFE) under same mesh
and same order H1 error result. The radio in Tables 1, 2 and 3 is CPU time of MFE

CPU time of TGMFVE .
By the contrast between two-grid mixed finite volume element method and mixed
finite element method, we see that two-grid mixed finite volume element method can
not only economize the CPU time to a great extent, but also get the better convergence
rate.

In Tables 4, 5 and 6, with the parameter θ = 0.5, altered γ = 1, 0.1, 10.We arrive at
the CPU time comparison between two-grid mixed finite volume element (TGMFVE)
and mixed finite element (MFE) under same mesh, same time step and same order H1

error result. The ratio is also the specific value of CPU time. Compared with a mixed
finite element method in these examples, we can see distinctly from the calculated
data in Tables 1, 2, 3, 4, 5 and 6 shows clearly the advantages of utilizing the two-grid
mixed finite volume element method. It not only effectively reduce calculation error
but also achieve the preferable convergence rate.

In Table 7, by taking θ = 0.5, changed γ = 1, 0.1, 10. For testing the order of spa-
tial convergence, we keep �t = 1/250 unchanged. We arrive at two-grid mixed finite
volume element method error estimates (L2 norm) with second-order convergence
rate and error estimates (H1 norm) with first-order convergence rate.
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Table 4 θ = 0.5, γ = 1

�t H h ‖y − yh‖1 Order CPU time
Seconds Ratio

TGMFVE

1/80 0.0884 0.0221 0.1090 1.9974 2.5850 1.6402

1/160 0.0442 0.0055 0.0273 2.0053 59.0494 2.5277

1/320 0.0221 0.0014 0.0068 2.1567e+03 4.2281

MFE

1/80 0.0221 0.1091 1.9987 4.2400

1/160 0.0055 0.0273 2.0053 149.2586

1/320 0.0014 0.0068 9.1188e+03

Table 5 θ = 0.5, γ = 0.1

�t H h ‖y − yh‖1 Order CPU time
Seconds Ratio

TGMFVE

1/80 0.0884 0.0221 0.1091 1.9987 2.0568 1.6846

1/160 0.0442 0.0055 0.0273 2.0053 47.1549 2.6680

1/320 0.0221 0.0014 0.0068 2.1912e+03 2.6604

MFE

1/80 0.0221 0.1090 0.9954 3.4648

1/160 0.0055 0.0273 2.0053 125.8101

1/320 0.0014 0.0068 5.8294e+03

In Table 8, with the parameter θ = 0.5, altered γ = 1, 0.1, 10. We inspect the rate
at which temporal convergence of θ -scheme. Here we use the same order reduction
method, that is to say, in estimates L2 norm, while �t becomes 1/2 of the previous
value, H and h change 1/2 of the previous value, we get the L2 norm convergence
order of two-grid mixed finite volume element method is close to 2. Similarly, in
estimates H1 norm, while�t becomes 1/2 of the previous value, H and h change 1/4
of the previous value, we also attain convergence rate of the second-order (H1 norm).
Our method can reach the calculation accuracy of the second-order convergence rate
of time.

Further, we show the figures of numerical solutions. In Figs. 3 and 4, based on the
parameters θ = 0.5, γ = 1 and �t = 1/250, under the parameter h = 0.0221 the
figures of numerical solution yh is given at t = 0.25 and t = 1.

Example 4.2 We illustrate the typical phase separation phenomena of the Cahn–
Hilliard equation through a numerical example from [28]. The space domains are all
the unit squareΩ = [0, 1]×[0, 1], with uniform triangulation thereon. The scale of the
coarse triangulation is H = 0.0625, the scale of the fine triangulation is h = 0.0078,
the stepsize is �t = 0.001, γ = 4 × 10−4, taking the source term g(t, x1, x2) = 0,
the nonlinear term f (y) = y3 − y, we choose the numerical example only including
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Table 6 θ = 0.5, γ = 10

�t H h ‖y − yh‖1 Order CPU time
Seconds Ratio

TGMFVE

1/80 0.0884 0.0221 0.1090 0.9954 2.0819 1.3056

1/160 0.0442 0.0055 0.0273 2.0053 47.1750 2.5748

1/320 0.0221 0.0014 0.0068 2.1615e+03 85.4731

MFE

1/80 0.0221 0.1091 1.9987 2.7181

1/160 0.0055 0.0273 2.0053 121.4641

1/320 0.0014 0.0068 1.8475e+05

Table 7 θ = 0.5, �t = 1/250

Mesh γ = 1 γ = 0.1 γ = 10

H h ‖y − yh‖0 Order ‖y − yh‖0 Order ‖y − yh‖0 Order

0.0884 0.0221 0.0017 2.0495 0.0011 2.0894 0.0018 2.0397

0.0442 0.0055 9.8280e−05 2.3477 6.0161e−05 1.6497 1.0549e−04 2.4796

0.0221 0.0014 3.9572e−06 6.2951e−06 3.5460e−06

H h ‖y − yh‖1 Order ‖y − yh‖1 Order ‖y − yh‖1 Order

0.0884 0.0221 0.1090 0.9954 0.1092 0.9967 0.1090 0.9954

0.0442 0.0055 0.0273 1.0159 0.0273 1.0159 0.0273 1.0159

0.0221 0.0014 0.0068 0.0068 0.0068

the initial value

y(0, x1, x2) = 10−3 sin3
(

2π

0.0624
(x1 − 0.5)

)

sin3
(

2π

0.0624
(x2 − 0.5)

)

Following the computation of our method, we can observe the typical phase tran-
sition phenomena: phase separation-coarsening see Figure. 5.

5 Conclusion

In this thesis, we develop the two-grid mixed finite-volume element method with
θ schemes that can solve the Cahn–Hilliard equation. The theoretical conclusions
encompassing stability analysis and a priori error estimation in L2 norm and H1 norm
for the θ scheme with two grid mixed finite volume element method have been given,
the numerical experiments results exhibited during the verification process are then
used to demonstrate the theoretical correctness of the proposed study.
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Fig. 5 The phase evolution of Example II
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