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Abstract

This paper proposes a two-grid mixed finite volume element method (TGMFVE) that
uses a 0 time discrete scheme to solve the Cahn-Hilliard equation. This method is
separated into two steps. In the first step, the solution of the Cahn—Hilliard equation
can be obtained by using a mixed 0 scheme of the finite volume element method on a
coarse grid using an iterative algorithm. The second step involves using the linearized
mixed 0 scheme finite volume element method to solve the equation on a fine grid. The
stability analysis of the 6 scheme of the two-grid mixed finite volume element method
has been performed. The priori error estimation for L norm and H' norm is also
analyzed. The results of theoretical analysis are confirmed by numerical experiments.
The results show that the theoretical results match the actual numerical results.

Keywords Cahn-Hilliard equation - 6 scheme - A priori error estimates - Stability -
Mixed finite volume element method - Two-grid

Mathematics Subject Classification 35Q35 - 74S10

1 Introduction

Let 2 € R%(d =2, 3) be a polygon-bounded domain. We think over the listed below
phase field Cahn—Hilliard equation proposed by Cahn and Hilliard (see [1-3]):
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9
= AyAY+ 0D = g0, 1€O.Tlxe.

y(x,0) = yo(x), x € £2, (1.1
dy _3vAy+ i) _ te(0.T].x € 02.

on on

where n denotes the unit outward normal of the boundary 2. y is a prescribed positive
constant, and g(x, t) is a source term, f(y) is a given nonlinear one, which satisfies
[f(y1) = f2)l = Clyt — y2l and [f(y) | = M(y)|y| where M(y) is a bounded
positive function.

Commonly used in fluid interfacial motion analysis, the Cahn—Hillard equation can
be utilized to solve relative problems [4-9]. Unfortunately, the analytical method is
not always able to solve many problems related to the Cahn—Hilliard equation due
to the non-linearity and fourth-order differential operator. A numerical analysis is
often utilized in the study of the dynamics of the Cahn—Hillard equation. The two
main types of discrete methods in the field of PDE are the finite element (FE) and
the finite volume element (FVE). These two methods are very flexible and can be
used in the analysis of complex computational domain (geometric region). Therefore,
FE and FVE are considered the industry’s first choice when it comes to engineering
software. They have a wide variety of applications. In [10], Chen et al. derived opti-
mal error estimates for both the first- and second-order SAV schemes with the finite
element method that is a Galerkin method with standard Lagrange elements based
on a mixed variational formulation in space. Ju et al. [11] presented a residual-based
a posteriori error estimate for the finite volume discretization of steady convection-
diffusionCreaction equations defined on surfaces in R>. In [12], Hu et al. proposed a
finite volume solver to solve 2D steady Euler equations. In [13], Nazari and Sabze-
vari derived computational bases for finite element spaces S» A°(7;,) and S, A'(7;,) in
each step of the h-adaptive method. Du et al. [14] considered the phase separation on
general surfaces by solving the nonlinear Cahn-Hilliard equation using a finite ele-
ment method. In [15], Jia et al. solved the modified Cahn—Hilliard equation via a large
time-stepping mixed finite-element method. Nabet et al. [16] proposed a numerical
scheme to solve a diphasic Cahn—Hilliard equation with dynamic boundary conditions.
In [17], Appadu et al. constructed four finite volume methods to solve the 2D con-
vective Cahn—Hilliard equation with specified initial condition and periodic boundary
conditions. Thus, the finite volume element algorithm appears to be one of the opti-
mal numerical algorithms concerning solving the Cahn—Hilliard equation as well as
accurately capturing the dynamic information of phase transition. Besides ensuring
the stability of a complicated system used in long-running numerical simulations, it
also satisfies some unique physical properties such as mass conservation and energy
decreasing progressively. Nevertheless, the traditional FVE algorithm for calculating
the equations of Cahn—Hillard uses Newton’s method, which also handles non-linear
terms. It is very complex and causes a lot of difficulty when it comes to solving the
current complicated phase field problems. For instance, it appears to be used to solve
nonlinear equations with low speed and great difficulty. Therefore, it is a challenging
problem to reduce the difficulty level of the traditional FVE algorithm by implement-
ing a numerical solution of high-order differential terms and nonlinear terms. Doing
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so not only effectively improves the accuracy of solving problems compared with
traditional FVE algorithm but also saves CPU elapsed time.

The results of numerous numerical tests have indicated that the two grid method
is an effective and practical tool for solving the Cahn—Hilliard equation (see, e.g.,
[18]) when dealing with the complex nonlinear terms. For the first time, the two-grid
method [19, 20] was proposed by professor Xu Jinchao as a discrete method about
solving asymmetric indeterminate and nonlinear problems. The basic idea of the two-
grid method in the calculation of the Cahn—Hilliard equation is as follows. First, a
small-scale nonlinear problem is solved discretely in the coarse grid space. At the
moment, the number of unknowns within the coarse grid space is few, which makes
the calculations scale very small and easy to calculate. Second, the solution of the
coarse grid space is projected into the fine grid space by the interpolation method. The
problem of linear approximation is to be solved in a finer grid, which makes it easier to
solve than the original problem. The use of this method can help reduce computation
time and enhance the efficiency of the solution. The computational method is able to
demonstrate its feasibility and effectiveness by accomplishing the goal of reducing
the order and the computational time.

However, there is not much research on the two-grid finite volume element method.
Therefore, we will use the two-grid mixed finite volume element method coupling 6
time discrete schemes to solve the Cahn—Hilliard equation problem in this paper.

The rest of the paper is organized as follows: Sect. 2 develops a two-grid algorithm
for solving the Cahn—Hilliard equation, as well as the corresponding time, spatial dis-
crete schemes and a two-grid numerical solution algorithm. In Sect. 3, the theoretical
analysis we provide for discrete two grid schemes includes the analysis of the stabil-
ity and error. In Sect. 4, some numerical examples are summarized to corroborate the
correctness of the result of theoretical derivation. In the end, conclusions are concisely
summarized in Sect. 5.

Throughout this paper, we put to use standard notations for Sobolev spaces on 2
as in [21]. For examples, L>(£2) and H'!(£2) are Hilbert spaces with norms || - l22(2)
(- llo) and || - [ 12y (Il - I11). For Vu € L%(£2), the L? norm for u could be defined

as |lull;2) = (Jo u|?dx)?. For Vu € H'(£2), the H' semi-norm is defined as

1 .

[ulgi (o) = (fg |Vu|?>dx)2 and the H' norm is defined as lull gy = (||M||iz(9) +
1
|u|§11(9))2

2 Two-Grid Algorithm for the Cahn-Hilliard Equation

In this section, we would give the discretization of the Cahn—Hilliard equation (1.1)
for mixed finite volume element with 0 scheme. Let w = —y Ay + f(y), the mixed
variational formulation of (1.1) is: find (y, w) such that

1°

2.1
W, q) - y(Vy.Vq) — (f().q) =0, forallg e H'(2),

{(? v) + (Vw, Vv) = (g, v), forallv e H'(£2),

where (-, -) isthe inner producton £2,1.e.Vu, v € Lz(.Q),(u, v) = fQ u(x)v(x)dx,x €
2.
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2.1 Temporal Discretization

We consider the 6 scheme. Let 1 = kAr (k = 0,1,2, ..., K) be the nodes in the
time interval [0, T'], where #; satisfy 0 =tg <t <th < --- <tgx =T with At = %
From [22], we give 6 scheme approximation for the function value and the first order
derivative value of function ¢ (¢) € H 1(£2) at time t;_g with @ € [0, %] as

D (tr—g) = (1 — ) (1) + 0P (tr—1) + O(Ar) ~ (1 — 0)p* + 041 = ¢* .

2.2)
326 — (4 —40)p (1 1= 20)¢ (14—
D (tes) — ( ) (1) — ( Z)iifk )+ )b U—2) | 0(A1?)
3 _20)ok — (4 — 40)k—! 1 —20)¢pk2
L 3—20)9" —( 221: TAZ20007 7 _ pgt 23

Based on (2.2), (2.3), we give the semi-discrete scheme for (2.1) as follows: find
(v, w?) e H'(22) x H'(£2) such that

(Diy?,v) + (Vw?, Vo) = (g(x, 1y).v),  forallv e HY(2), o
w2, q) —y(Vy?,Vg) — (f(y),q) =0, forallg € H'(2), '
fork =2,3,..., K, find 5%, w*=?%) e H'(£2) x H'(£2) such that
{ (D;y*=?, v) + (Vw*=?, Vv) = (g(x, i_g), v),  forallv e H'(£2), 25)
W= q) = y(Vy*0,Vg) — (F(*79).q) =0, forallg e H'(2).

2.2 Spatial Discretization

We use the mixed finite volume element methods in this paper. Let 7}, be the primal
quasi-uniform triangulation of 2, where h represents the largest one of the set &,
diameters in all subdivision triangles t. Based on the primal triangulation, we construct
the trial function space Vj, which is composed of linear basis function:

Vi, ={v e C(£2) : v|; is linear, VT € Tj}.

Next, we begin to establish dual subdivision 7}". In the previous triangulation men-
tioned above, we make connections in each triangle t. Let the interior angle of any
of Th* be no greater than 90°, take Z; as the barycenter of t, Z; is the intersection of
the mid-lines of t three edges, each triangle 7 can be divided into three subregions
7, (See Fig. 1), where z represents a vertex, also known as node. Let £2), be a set
of the vertices of 7. We term the new block formed of subregions t, shared vertex z
as control volume V, (See Fig. 2), where Z;,(7) is a set of the barycenter of t. Let
M), be a set of the midpoints of all interior edges ! of 7. Denote by Zg the set of
the interior vertices. Connect the points in the sets Z,(t), My, in turn, we can get a
polygon domain K surrounded by dotted lines in Fig. 2 around z, K is called dual
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Fig. 1 Triangular partition and its dual

Fig.2 The control volume V,

element. All dual elements form £2 new partition 7, donated as dual partition, Z;
is called the node of dual partition. The barycenter-type dual partition is easy to be
introduced for any triangulation 7} and will lead to relatively simple calculations. It is
well known that the dual partition 7, is quasi-uniform since the triangulation partition
Ty, is quasi-uniform. That is to say, existing positive constant C makes that

c'n?< meas(V;) < Ch*, Vze 2,
holds, where V. is a control volume and meas(V;) represents the area of V.
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From [23], we introduce an interpolation operator 1, : H Q) - vy

Lv="Y" vy, (2.6)

z€Z)
where

V= [v e L*(2): vk is constant, YK € Th*} ,

and v, is characteristic function of control volume V;. It is known that V}, is contained
in H'(£2), so the interpolation operator I;¥ can also act on the function v, € V.
Similarly from [23], it is known that

{ 117l 20y < IVl2 @) o)
”U - I];kv”Lz(Q) < Ch|v|Hl(_Q)'

From [23], the definition of the bilinear form a, (-, -) is as following:

ay (uh, I,fvh) =— Z vh(z)f Vuy - nds, Yuy, v, € Vp, (2.8)
aV,

€z
From Lemma 2.2 in [24], we have

Lemma 2.1 [} is self-adjoint in regard to the L? inner product,

(uh,I;l"vh)z(vh,I;l"uh), Yuy, vy € Vj. 2.9)
Define
1
Iunlllo := (up, Iyup)?. (2.10)
Then ||| - |llo and || - ||o are equivalent. Here the equivalent constants are independent
of h.

Due to the interpolation operator I,°, we write the full-discrete problem of (2.1) as

1 1
follows: find (y, , w;, ) € Vj x Vj, such that

1
(D,y}f, I;:vh> + ay, (wh , I*vh) g ( ) I*vh) for all v, € Vp,

1 1
(w,f, I,;"qh> — yap <yh, hqh> (f <yhz> h‘]h) =0, forallg, € Vp,

@2.11)
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fork =2,3,..., K, find (v, wy ) € V4 x Vj, such that

(oo™ g ) +an (™, 1)
= (g (x,tk—g), [jvy), forallvy € Vj,
(wh™ 1) = van (55~ 1) = (£ (5477) - 1 an)

=0, forallg, €Vp.

(2.12)

2.3 Two-Grid Algorithm

The above full-discrete scheme would be built for using the two-grid methods. 7y and
T}, are given as two triangulations of the domain §2 possessing different meshes size
H and h and H > h, T}; and T, be the dual subdivision of Ty and T}, respectively.
Their associated finite volume element spaces are defined as Vg, Vj, V;_} and Vh*,
respectively. And the interpolation operators on V;; and V" are denoted as /}; and I},
respectively. The two-grid algorithm (cf. [25]) can be shown as follows: for a general
nonlinear PDE, for example of the form Lu + Nu — f = 0 where Lu and Nu are
linear and nonlinear parts, respectively. f is the source term.

Two-grid scheme 1

1. Find u g € Vp such that

(Lr),ve) + (Nwp),ve) — (f,ve) =0 Yoy € Vi,
2. Find uy, € Vj, such that
(L), vp) + (N ), vp) + (N ) up —up), vp) = (f o) =0 Yoy, € Vi
where, an “exact” coarse solver can be used for problems on the coarse grid Ty at 1, which is generally

considered to be a rough area. u g, N(ug) and N'(u ) are calculated by projecting onto the fine grid T},
at 2.

Based on Vg, V;} and Vy,, V,f , the following is a two-grid algorithm that can be used
for the Cahn-Hilliard equation.

3 Numerical Analysis for Two Grid Discrete Scheme
Stability and error analysis of the two grid finite volume element with 8 scheme

provided in Algorithm 1 will be shown in this section. The stability of Algorithm 1 is
the first thing we shall show.
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Algorithm 1. Two grid finite volume element with 6 scheme.

I: Given yOH, which can be chosen the interpolation of yy on the V. For k = 1, solve the following
problem on the coarse grid 7y,

1 1
(Dtylzi,l;‘ivl_[)—i-aﬁ <w121,11*1vy>
= x,t1 ), I5vy ), forallvy € Vg,
<g< %) H H) HSVH (2.13)

1 1 1
(wé, Ii}qy) —yag (yé, I}qu) - (f <V§1> . I;}qH>

=0, forallgy € Vg,

fork =2, ..., K, solve the following problem on the coarse grid Ty,
(Dty];_[_a, I;‘IUH> +ay (w];l_e, I;‘lvy)
= (¢ (x.tr—p) . Ijjvp) . forallvy € Vg,

(wl,‘je, IZqH) —vyay (yfjg, ILqH> - (f (yl,‘[g) . ILqH>

=0, forall qH € Vg.

(2.14)

II: Solve the linearized Cahn—Hilliard equation on the fine grid 7j,, for k = 1: find ( y}l, w}l) e Vi x Vy,

such that
1 1
(Dzyhz , Iifvh> +ap <whz , I;fvh)

= )L If , forall Vi,
<g<x %> hv;,) orallvy € Vp (215)
3 3 1 1 0
(w,f, 1,;’%) - yay (yhz, 1,;"%) - (T (yh, Vi yh) , l;'[qh)
=0, forallg, € Vp,
fork=2,...,K:ﬁnd(y£,w’Z)eVh><Vh,suchthat

k—06 k—6
(D,yh , I,th) +ay (wh , I;l"vh)

= (g (x, tk_g) s I];kv],) , forall v, € Vp,

k—6 k—0 k—1
(wh J;fqh) —yay (yh J;[qh) - (T (y’h‘ A )J;fqh)

=0, forallg, € Vp,

(2.16)

where T(yk, y&, Vi) = (1 = 0)s(F v + 0 £ G 5Ok vE) = FOR) + £ 0RO GF = Y
k>1,0<6<1 whenk=1,60=}.
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3.1 Stability

The following are the various lemmas we will be introducing.

Zerl\:lma 3.1 For series {u]f) € Wy} (k= 2)and 6 € [0, %], the following inequality
olds

(Dtulé Lk 9) > i (H[uh] H[u],;_l]), G.1)
(D,w’;;“’, w’;ﬁ) > ﬁ (H[ul,;] - ﬁ[u’;;‘]), (3.2)
(D,u’,;_e, ulé_g) > & (H[uh] — ALk~ 1]). (3.3)

where

Hlufl = 3= 20)|[luf 115 — (1 = 20) 1wy~ 115 + 2 — 0)(4 = 20) |l — ™" W[5, k> 1,
Huy] = (3 —20)uf |} — (1 — 29)|u’;;1|% + Q2= 0)(1 —20)|uy — u’;;lﬁ, k>1,
Hlufl = 3 = 20)|luf 1§ — (1 = 20) luy " I5 + 2 — 0)(1 = 20) Juf — 7', k= 1.

and
HO ] = —— k2, 0<6 < - (3.4)
L T '
1
Hluy) = I}, 0=6 <, (3.5)
1 k2 1
Hlug) = sl lg, 0<6 < 5. (3.6)

where h = h or H.

Proof From (2.3) we have

, k>2.

bt _ B 7200y — (4 40y 4 (1 - 200
T 241

The operator D, ulf‘;e can be rewritten as

k—l k—2

D,uk =@- 29) - —29) .
k—0 3 u’,‘)fulé 1 kilfuléfz
Dy =(3-0) 5= = (3 -0) "

Then we have

k—6 * k—0
(Dtub Ihh)
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k k—1 k k=2
u, —u u, —u
_ b b sk | _ o _ b b * k
=(1-0) |:(2 —260) ( A7 Ih h) (1—-26) ( AT Ih h):|
k—1

k - k—1 —
3 o — My s k-1 1 Yo —Hy s k-1

From Lemma 2.1, we have

(s — ™", ) =%[|||u’,;|||6— ek~ W+ e = w013

(s — a2, rguk) = 5 [In 3 — ik 208+ a —u=203)

(i — ™ ™) = 2 [0 — ™03 = i — 03]
(™ =l ) = %[m I3 — 200G k™ = k2013

From the above formula, we can obtain that

3-20 _ 1—26 _ _
(Daar™ ™) = == (e 113 = 1 1|||(%)—W(n|u’,; 113 — Ny 2113

202 — 50 +2 P
e (el = ™0 = Wi =05

— %At (H[uh] - H[u’,;—‘]).

Further, when 6 = %, we can obviously get

1
Huy] = 2|ug 11§ = 1—1|||u’,;|||é.
2

When 6 € [0, %), from Cauchy—Schwarz inequality, we can get that

Hlup] = (3 = 20) | lug 11§ — (1 = 20) ||y~ 115+ 2 — )(1 — 20) ||y — ey~ (1

> (207 =70 + 5)l|luf 15 + (207 — 30 + Dllley 13
2 2
2 k=112 (260° — 560 4+ 2) k1112
—[(26% =36 + 1)) |ufy |||0+W||luh 131
:292_30+ [l b”|0 ||| h|||0

Similarly we can obtain (3.2), (3.3), (3.5) and (3.6). This completes the proof. O

From Lemma 2 in [26], we have
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Lemma3.2 Letuy, vy € Vy, I;)k be defined in (2.6), for ay (-, -) given in (2.8), we have

ap (u;,, ];Uh) = (Vuh, Vvh) ,
ah (Ltb, I;;Uh) = ah (vh, Iguh) .
where ) = h or H.

Then we consider the following stable inequality.

Theorem 3.3 For the coarse solution pair {ylf‘l, w’l‘i} € Vy x Vy, the stability for the
coupled system (2.13)—(2.14) holds:

5115 + ArZ Hwi P I1g < Clyd I +CAtZ g* 13- (3.7)
k=2 k=0

For the two-grid solution pair {y;’i, wlg} € Vi, x Vy, the stability for the system (2.15)—
(2.16) holds:

K K
IYRIG + ALY Hwy PG < Clypllg + CIYYIG + €AY lgklg,  (3.8)
k=2 k=0
K K
VI + A lwy P 1 + 1v§ 15 < CIypIG + Cllyglig + CAr Y lighIl5.
k=2 k=0

(3.9)

Proof (1) In the coupled system, we take vy = y];,_a and gy = w];_e in (2.14) to get

(DzyH Yy 9) +ap (wH) Iy 9) = (g O te—) Vi 9),
( A 9)—)/(111 (yHe ks 9) (f<y§179)’];}w1; )=0'

Further, we can easily get

o (1) = (o) (5 05 o)
(3.10)

Based on Lemma 3.2, f(y) satisfy Lipschitz continuity and we use Cauchy—
Schwarz inequality as well as Young’s inequality to get

1
(DtyH I 9) + = ” (wH O Iwi 9)
1

= L0 i) ¢ e 1)
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1 _ s k- *  k—
< 7 (5 ) Nol Ziwty o + 1 e ko) ol o
< Cliyk 15+ Cliyl 15 + Collwiy 115 + 18*15 + 118113 (3.11)
Combine Lemmas 2.1, 3.1 with the inequality (3.11), let § = ﬁ, we have
1
k k—1 k—0 1,2
a7 (OB = HOGT) + 5wl 13
< Cliyl 15+ Cly 15 + 18515 + 118" "115. (3.12)

Sum (3.12) with respect to k from 2 to K to get

K K K
2At _
HIy§1+ =Y llwh Il < Hiyy1+8At Y 18815+ CAr Y " Iy} 1I5.
Y k=2 k=1 k=1
(3.13)

1 1
In the next step, we need to estimate H[y}q]. We take vy = y[21 and gy = w121 in

(2.13) to get
b b !
* * _ *
(DtyH, IHyH> +ay (wH, IHyH> = (g (x, t%> , IHyH> ,
1 1 1 1 1 1
(w;{, I;flwlzi> —yay <y121,, I;f]w}i) - (f (yl%l) , I;;w;{) =0.
Further, we can easily get

1 1 1/ 1 1 1 1
a (v tiwiy) = 5 (whe i) = 5 (7 (k) i )

and on the basis of Lemma 3.2, f(y) satisfy Lipschitz continuity and we use
Cauchy—Schwarz inequality as well as Young’s inequality to get

1 1 1 1 1
(ovie 1)+ (w1
1 1 1 1
- (0 () et (o))
1 1 1
< Cllyy g+ CllyglI§ + Csllw I + Eng‘ 13+ Eng(’n%. (3.14)

Combine (2.2), (2.3) with the inequality (3.14), let § = ﬁ we have

1 Lz, L I
— + —llw
T Myallo 2y Nwg Il
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1 1
< Cllyylig + CIyi G + 518" + 5 18°13-

In the light of (3.13), we further get

2At K
HIyf1+ - > el G
k=2

K K
< Hiyj1+8A Y 18815+ CAr Y liykIIg

k=1 k=1
K K
< Clygllf+Cary lghlg +Cary vyl
k=0 k=1

Using Gronwall lemma for the above inequality, we complete the proof of the
inequality (3.7).
(II) For the fine grid system (2.16), we take v, = y;’:_e and g, = w,’i_e to get

(Do 1)+ an (wf 0 o)
= (8 (x, tk—p), I;Tyl;f_e> ,

(wh ™ trh ™) = van (57 ™) = (@ =005 O sy) + 01 (07") 5w ™)
=0.

Further, we can easily get

1
k=0 k=0 k—0 k=0
h (yh Ay, ) =3 (wh Ay, )

_% ((1 _0)s <y;;, yg) +Of <y/}§—1> , 1,;“w’,§—0) .

(3.15)

Based on Lemma 3.2, f(y) satisfy Lipschitz continuity and we use Cauchy—
Schwarz inequality as well as Young’s inequality to get

_ _ 1 _ _
(Dok k) L (ki)

— i ((1 —0)s (y;’i, y’é) t+of (yﬁ*‘) ’ z;wg—e> N (g . fecs) ,;yzgfe)

< Clly 13 + Cllyk 13 + Cllyy 13 + Calwi =213 + 113 + 118513
(3.16)
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Combine Lemmas 2.1, 3.1, take and the inequality (3.16), let § = ﬁ, we have

1 k k—1 1 k—6 2
aar (HDR = HDE) i
< ClIyS 13+ Cllykid + Cllyy " 13 + kg + ng="13. 3171

Sum (3.17) with respect to k from 2 to K to get
K
2At _
HIyS 1+ = " lllw, I
Y k=2

K K K
< Hiypl+8At Y 18515+ CAt Y llyyllo + CAL Y lyslig. (3.18)
k=1 k=2 k=1

For H [yé], using the similar process to that as above, and applying Lemma 3.1,
we have

K
1 K2 2At k—0 2
[ +_ w
1 9|||yh o y kE_z Il h i

K K K
< Clyplig+ CAr Y llghllg + CAr Y vy lig+ CAr Y llygllg.  (3.19)
k=0 k=1 k=1

Using Gronwall lemma and the conclusion of (3.7) for the above inequality, we
complete the proof of the inequality (3.8).

(II) Now we give the estimate of inequality (3.9). Take v;, = wfl_e and g, = Dy y’;_e
in (2.16) to get

(D,yllfe, I;fwiie) + ay, (w];*g, I;‘wz*g) = (g (x, tr—p) , l,fw§79> s
(w’,j‘(’, I,Tny,’j_e) — yay (y',i‘e, I;‘ny’;_“’) - (T (y,’i, i, y,’j_l) : I,j‘D;y,’j_e> =0.

Subtract the above formula, from (2.9) we have

ap (w',i_g, Ii,‘w’,;_e) + yap (y];ﬁ_g, I;Z‘Dtyl;f_e)

— (g (x. fe_p) I;w’,;—f)) — ((1 —0)s (y’,;, y’,‘{) vof (y,’j—l) , 1,;“Dty,’j‘9) .
(3.20)

We use Cauchy—Schwarz inequality as well as Young’s inequality for the above
equation, and f (y) satisfy Lipschitz continuity

an (w’,j‘g, I,;*w,’j“’> + yan (yﬁ“’, I,;*Dzyi,‘_6>

= g e =) lollTwf ™o + 11 = 005 (v, vfy ) +6.7 (57") loll 25 D™ o
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< Cligh I3 + Cllg" 13 + Cslwi =13 + ClIv 13 + Clyf I + Cllyy 13
+CID Y13, (3.21)

Combine Lemmas 3.1, 3.2 with the inequality (3.21) and take § as suitable constant,
we can get

Y  hrk rak—1 k—0,2
E(H[yh]_H[yh ])+|wh I7

< ClIgM I3 + Clg" " 13 + Cly 13 + Clyf g + Cllyy =I5 + CIDeyy 113
(3.22)

Sum (3.22) with respect to k from 2 to K to get

K
A 4At _
Hlyf 1+ — > 1wy
4 k=2

K K K
< Ay +carY g3+ car Y 16 13+ cany vk IR
k=2 k=2 k=2

K K K
+CALY Iypllg+CALY vy G+ C A Y Dy 0l (3.23)
k=2 k=2 k=2

Then we need to estimate || Dtyfl_e llo- Fork —2,k —1, k, let & = 0 in the second
formula of (2.16)

(wh Iian) = van (v Iian) = (s (v ¥4) - Zian) -
(wh™" 1ran) = van (5~ Tran) = (s 08" 08")  dian )
(wl;fz, I;f%) — yan (yl;ffz, 1;;"%) = (5 (yl;ffz, yé{z) , 1;}"61/1) .
Then from (2.2), we have
(Dzwﬁ_e, I;TCIh) — yap (Dzyl;i_e» 1;76111)

(3 —26) & (4 —40) k=1 k-1
= (s 0hooh) dian) = 5= (s (ol ) dian)

P22 02 ) i)

Taking g5, = w],j*g in (3.24), v, = yDtyllfe in the first formula of (2.16) and
adding the resulting relations, we obtain

(D,wﬁfe, Ih*wllfe) +y (Dry;]fe, I;Dr)’ziﬁ

_ (3—120) _
=y(g(x,tk—9),1/fny;]§ 9)+ AL (5(325#/;1)7 ,j‘w,’j 9)
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_(42_;9) (5 (yﬁfl,yfi*l) ’ Ufwﬁ) + (12_;9) (5 (yl’;iz’ygz)’ ’Tw’ﬁie)'

(3.25)

From Lemmas 3.1, 3.2, 2.1 and as the process from (3.16) to (3.19), we can get

K K
CALY 1Dy ~"llg < €AY g s + Clly g + Cllyplig.  (3.26)
k=2 k=0

Combine (3.26) and (3.23), we can arrive at the conclusion (3.9). m]

3.2 Error Analysis

The Ritz projection operator from [27] should be given to us as the first step in carrying
out the error analysis.

Lemma 3.4 Define the Ritz projection operator Ry, : H' (£2) > Vi as
ay(u — Ryu, I;zkvh) =0, Vv, eV, (3.27)
with the estimate inequality

lu — Ryullo + [ — Ryu)sllo < Ch?, Yu € H*(82),
lu — Ryully = Chllullz,p, (p> 1),

where ) = h or H.

In the following, we would show the error estimation between finite volume element
solution and semi-discrete solution.

Theorem 3.5 Let y*, w* be the solution of semi-system (2.4)—(2.5), (ylff, w];,) be the
coarse grid solution of system (2.13)—(2.14), ( y,lj, wﬁ) be the fine grid solution of system
(2.15)—(2.16), respectively. With y,? = Rpyo, y% = Rpyyo, there exists a constant C
independent of h, H, At, such that

N—=

K
1y* = Vi llo + (Ar N w’;,9||5) <CH?, (3.28)
k=1
1
K 2
1Y = yillo + (At >l - w,ﬁ‘%) < Ch? + CH®, (3.29)
k=1
1
K 2
Iy* = yilh + (At > lwt? - w’,i‘9||%> +1Iy* = ¥ llo<Ch +C H?. (3.30)
k=1

@ Springer



Bulletin of the Iranian Mathematical Society (2023) 49:28 Page 17 0f34 28

Proof (I) Inthecoarsegrid,lety’l‘i—yk = y’,‘l,—RHyk—i-RHyk—yk =gVl pykH
and w’}i —wk = w'}, — Ryw* + Rywk — wk = gwhkH 4 ,ow’k’H. Combine the
definition of Ritz projection operator (3.27) and (2.14), we can get

(Do M hvg) + ap (@0 Tivg)

= @ — DRy, Ivm), (3.31)
and

(@ =M 1 an) — yap (0 0  Ian)
= (FO = FOR, Ign) + 0 — Ryw*=?, Iqm). (3.32)

w,k—0,H

Let vy = oV%=0.H jn (3.31), g =< in (3.32), and add two formulas, we

have

, 1
(D,a%k*ﬁh’, I;IUy,k—O,H) + ;(Gw,kfe,H’ ];}Uw,kfe,H)

w,kfé,H’ I;}G_y,kfe,H) _ )‘,k*@,H’ I[‘ri:IO_w,kfe,H)

+ag (o ag(o

- - - Lo - -
= @' = DRy Lo ) £ (F O ) = fORT). T

1
+7(wk_0 _ RHwk—O, I}O}O,w,k—@,H).
4

From Lemma 3.2, we use Cauchy—Schwarz inequality as well as Young’s inequal-
ity to get

- b 1 _ _
(Do Q'H,I;‘,a”k 0.Hy 4 ;(Uw,k G.H!I;_klaw,k 0.H)

- 0 e ke [ - -
= @7 = DeRuy ™ Lo ) £ (0 = SO, dge 0

1
+= (w0 — Rywko, I}c_}o,w,k—B,H)

C Tk _ _ _
== Iy — Ruy)eli§dt + Cllo> =0 H )2+ Cllp™* =013 + C8)|o* =073
k-2
+CUY* = Y5113+ 1y* T = i) (3.33)

From Lemma 3.1, we know that

, , |
(Dtm"k_g’H, I}'_}a"’k_e’H) > (H[oy’k’H] — H[oy’k_l’H]). (3.34)

Combine the inequality (3.33), (3.34), Lemma 2.1 and let § as a suitable value, we
can get

1 kL H k—1,H 1 k—0,H 2
o (HIo 1 = H k1 ])+;|||a“* A2
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c [ " _
<— I (v — Ry y), 13dr + Cllo?*=0H |2 4 C)| pw-*=0-1 3
At tk—2
+C (1% = Y1+ 15" = v I3) (3.35)

Sum (3.35) with respect to k from 2 to K to get

anr &
Hlo? 5] 4 — 3 o™ = H[§ < H[o™ 1]

k=2
ix K K
+C / I = Ruy), 15de + CAL Y llo" O 15+ cary [ "5
0] k=2 k=2
K
+CArY” (IvF = i3+ 1 =) (336)
k=2

Now we need to give the estimate of H[o” L.H] Combine the definition of Ritz
projection operator (3.27) and (2.13), we can get

1 1
(D,ay’2’H, IZ,UH) +ay (aw’Z’H, I;_}UH>

= (8ty% — DRigy?, I;}vﬁ), (3.37)
and
(o™ 1) = ya (o744, Ty
1
= <f <yi,> - f (ﬁ) , IZqH> + (w% — Ryw?, 1;;qH). (3.38)

w,l,H
We take vy = ay’%’H in (3.37) and gy = < yz in (3.38), and use a similar

derivation to the one of inequality (3.36) to get

2At 1
) 1,H 2 v3.H 12
o115 + B o™ 215

g 1 1
< C/ I (v = Ruy), I3de + CAto> 212+ CAtlp™ 25|13 + |10 %5 )13
10

+CAL(Iy" =y 15+ 10 = ¥y 113) - (3.39)
From (3.39) and Lemmas 2.1, 3.1, we easily know that
Hlo> ] =2]lle 3. (340)
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Combine (3.36), (3.39) with (3.40) to get

K
, 2At _ !
Hlo" %M 4 =% "o 7[5 < Clllo™ " I15

k=1
1% K K
+C / I = Ry, I§de + CArY o 5+ Cary o™ 73
fo k=1 k=1
K
+car Y (I =yl + 1" = v I3) (3.41)
k=1

which is combined with Gronwall lemma, triangle inequality and Lemmas 2.1, 3.4
to arrive at (3.28).
(II) In the fine grid, let y,’j —yk = y,’j — Rpy* + Ryyk — yk = o¥ kol 4 pykh angd
wlg —wk = wZ — Rpwk + Rywk — wk = oWk 4 pwkh Firstly we would give
the estimation of (3.29). Combine the definition of Ritz projection operator (3.27)
and (2.16), we can get

(Dtay’k_e’h, I;fvh> + ay, (Uw,k—Q,h’ I;fvh>

= (8" = DRI 1 un) (3.42)
and

(@00 Lign) — yan(” =", Iiqn)

= (1= 0)s(y, ¥i) + 0Ly~ = FOR, Iign) + h 0 — Ryw* ™, I gp).
(3.43)
Let vy = 0?0 in (3.42) and g, = =~
have

in (3.43), and add two formula, we

1

(Dto.y,k—&h’ I;:Uy,k—a,h> + = <O_w,k—9,h’ I;:Uw,k—e,h)
Y

tay (aw,kfe,h7 I;ay,kfe,h> —a (Gy,kfe,h’ I;Gw,kfe,h>

1
_ (8,y"*9 . D;Rhykfe, I;Uy,kfe,h) + ; (wkfe — Ryuw*. I;Uw,kfe,h>

+% ((1 —0)s (y,’;, y’,;) . (y’,;—l) ny <yk—9) , I}T(Tw’k_g’h) . (3.44)

From Lemma 3.2, we use Cauchy—Schwarz inequality as well as Young’s inequal-
ity to get

' ! 1
(Dtay,kfe,h’ I;lﬁa}‘,kfe,h) + -

(Uw,kfﬂ,h’ I;;Gw,kfe,h>
Y
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Y
L —oys (shovty) +0r (547) = £ (540) o0

173
Il (v = Ruy), I§de + Clo> =05 + Cll o™ =" % + Csllo™ =13
-2

, 1
_ <atyk—9 — Dy Ryy* I;:o},k—e,h) 4+ (wk—e — Ryu*", I;ow,k—e,h>
+

IA
?‘QV
~\

k

2
+C (ny" — R+ (5 = ok 1S+ 1y = H%) : (3.45)
From lemma 3.1, we know that

X 1 e
(D,ay’k_e’h, I,:‘U>’k_9’h) > (H[ay’k’h] — Ho"* ”’]). (3.46)

Combine the inequality (3.45), (3.46) with Lemma 2.1 and let § as a suitable value,
we can get

1 ko k=1,h 1 k=6.h 12
o (Hlo7 1 = Hio” ’])+;|||aw’ 2

C Ik _ -~
< Il (v — Ruy), I13de + Cllo? =013 4 C|l k=002

Aty
2
+C (ny" — B+ 1 (5 = ) I+ A - y’;‘1||3> . (34D

Sum (3.47) with respect to k from 2 to K to get

4nr &
Hlo" K4 —=% "o M5 < Hio? M)

k=2
ix K K
+C / Iy = Ray), lgde + CAL Y " o? K054 Car Y [lp"* 03
o k=2 k=2
K 2
+CArY (ny" —ilo+1 (yk =) I+ - y,’;‘lné) . (B4

k=2

Now we need to give the estimation of H[o” 117 Combine the definition of Ritz
projection operator (3.27) with (2.15), we can get

(D,ay’%’h, I;l“vh> + ay, (O’w’%’h, I;vh)
1
= (907 = DiRIY?. I (3.49)
and
<0w’%’h, Iith) —yap (Gy’%’h, 1;%)
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Lo | IR 1 J—
= <§s(yh, yp) + Ef(yh) - f (W) ) Ihqh> + (w2 — Ryw?, Ihqh).
(3.50)

w.l,h
We take v, = oV 3h in (3.49) and g, = < yz in (3.50), and use a similar

derivation to the one of inequality (3.48) to get

2At 1
o> MG + = Illo™ 2" |15
Y
n 1 1
< c/ I (v — Ruy); I3de + CAtlla” 2 |2 + CAt] o™ 215 + 1o 0" )13
0]
2
+C A (ny‘ — I3+ (5" = vh) 1+ 10 - y2||%) : (3.51)
From (3.51) and Lemmas 2.1, 3.1, we easily know that

Hlo>M") = 2]ljo M 5. (3:52)

Combine (3.48), (3.51) with (3.52) to get

K
2At
K.h k—0.h (2 0.0y 2
Hlo” "]+ S > o o < Cllle™™"Illg
k=1

tx K K
+C / 1 = Ray), I5de + CAL Y flo = 5+ Car Y llp™ M3
o k=1 k=1
K 2
+CArYy. (ny" — B+ 1 (5 =) I+ A - y,i“lné) ,

k=1
which is combined with Gronwall lemma, triangle inequality with Lemmas 2.1, 3.4
to arrive at (3.29).

(III) Then we would give the estimation of (3.30). Combine the definition of Ritz
projection operator (3.27) with (2.16), we can get

(Dtcry’kfg’h, I;‘;Wl) + ay, (aw’kfe’h, I;‘;Wl)
= (90" = DR T (3.53)
and
(ow""e”’, I;,“qh) — yan (ay’k’e’h, 1th)

= (a=ers (k. vh) +or (57") = £ (") tian)
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+ (wk_9 — Rpwk?, I,j‘qh) . (3.54)

Let v, = 0% %" in (3.53) and ¢, = D,0¥*=%" in (3.54) and subtract the
resulting equations following (2.9), we have

an (Uw,k—e,@ I;:Uw,k—e,h> +ya (Uy,k—f),h’ I;:Dtay,k—e,h)
_ (3,yk*9 — DRy, I;lkaw,kfe,h) _ (wkfe — Ryuw, I;Dtay,kfe,h>

(=05 (shrly) +07 (517) = 7 (40 1 i)
= [+ +1IL (355)

For I and 1II, from the Cauchy—Schwarz inequality as well as Young’s inequality,
we have

I+ 10
< 13,*7 — DRy NN 170 * 0 Mg + w* 0 — Ryw* =l 1} Do * 01

< CIDy (p7700) I + Callo ™ PRI 4 10" 00 + € Do kO3

(3 = 20) [p* k! — p¥ k1) — (1 = 26) [p¥ AT — pra2hy
=Cl| I3
2At
Hp " F MG + ClIDo ™ G 4 C8llo ™ G
e

C _ o _
<= Il v = Ruy), 13de + 0™ K013 + €| Do k0N 3 4 5ok =0h 2.
/)

(3.56)
Use Taylor formula and Cauchy—Schwarz inequality, we can get

I
<1 = O)sGE, Vi) +0 O = FOFDIoNEE Do 0
< ClIy* = yf I3 + IR = Y5213 + Iy =t — kN3 + 1Dy F 0 3.

(3.57)
From Lemmas 3.1, 3.2 and (3.55)—(3.57), we can obtain that
1 2 )k, h 2 k—1,h k—6,h 2
o (Al — Alo ™ =10) 4 ok
_cm _R 24 wh=0.hy2 L oy ovk—6.hy2
< Iy — Ryy)ell3de + llp I3+ ClD,o I3
At feen
+CIIY* = yEIG + CIGR = ip2I5 + iy =t =y Mg (3.58)
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Sum (3.58) with respect to k from 2 to K to get

K tx
Hlo" M +4a1 ) |03 < Hlo !+ C / Iy = Ry llgde
k=2 10
K K

+CALY Do KOG+ CArY o™ MG

k=2 k=2

K
FCALY (Y =l + IO = yi)? I+ 1Y = D). (3.59)

k=2

Now we need to give the estimate of H [0Y'1"]. Combine the definition of Ritz
projection operator (3.27) and (2.15), we can get

<D,0y’%’h, I}fvh> +ay, (O’w’%’h, I;:vh)
= (81)’% — DiRyy?, I,:‘vh), (3.60)
and
(0“)’%’}’, 1;7%) —yay (Gy’%’h, I;Qh)

1 1 1 1 1
= (55@2, i) + Ef(y;(,)) —f <y2) , IZ‘%) + (wz — Ryw?, I;th).
(3.61)

We take v, = o2 in (3.60) and ¢, = D,Uy’%’h in (3.61), and use the similar
derivation to the one of inequality (3.59) to get

14 1
R RN
= L|Uy,0,h|2 + E/ll 1y — Ray) ||2dt + ”pw,%,h”2 +C|ID O,y,%,hHZ
2At 1 At o 10 0 t 0
2
+Clly" = yall5 + Cll (yl - y},) 12+ Cly® = 012, (3.62)

Multiply 2At¢ on both sides of the above formula

1
ylo¥ M+ 2480 20|}
h 1 1
=ylo? M2 4 C / Iy — Ruy)elI3dr + 24t p™ 2|3 + CAt)| Do 213

4]

+CAtY =y 3+ CAtl" =y 13+ Carly? — vl (3.63)
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From (3.63) and Lemmas 2.1, 3.1, we easily know that
HloV ] = 2|07 103, (3.64)

Combine (3.59), (3.63) with (3.64) to get

K
I:I[O')?,K,h] 4 2At Z |O,w,k—0,h |%

k=1
154 )
< [ = Ryl
0]
K , K
+CALY Do M2 4 CAL Do 2R+ CAr Y o™ 003
k=2 k=1
K
+CALY (Y = YEIG + 1G5 = yEP 15 + 1Y = 37 Ig) + Clo O 3.
k=1

(3.65)

Then we need to estimate || D;o¥**~%"|o. Let & = 0 in (3.54), we have

(Uw’k’h, sz%) —yap <0y’k’h, Iifqh>
= (5 (y'h‘, y';%) - f (yk) : 12‘6111) + (w" — Ry, I;th) :
(Gw,kfl,h’ I;,“qh) —yay (O,y,kfl,h7 Iifq;,)
= (5 (y’lj_l, y’;,‘l) —f (yk‘l) : I;fqh) + (w"_1 — Ryw* ™", szqh) :
(Uw,k—z,h’ I;:qh) —yay (Gy,k—z,h’ I;,‘qh)
= (5 (y£_2, y,"fz) —f (yk’z) : I;,“qh) + (w"*2 — Rpuw*2, I}T‘]h) :
Then from (2.3), we have

(D™ 0 tiqn) = yan (Do, ki)

(3 _ 29)0_111,k‘h _ (4 _ 49) aw,kfl,h + (1 _ 29) O.w,k72,h .
- 2At Anan
(B —20)0kt — (4 —40) ¥ F1 4 (1 —20) g k=20
—Yan Ay an

2At

(B —20)s(yk,)K) — (4—4)5 (y,’j“, yf,‘l) T (1-20)s (y’,j—z, y’;,—z) )
2At D

B-20)f () -@-49) 7 (") +a =20 F (7).
- 2A1 A
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+ (D, (w"*(’ - Rhw"*(’) , I,j‘qh) . (3.66)

Taking ¢, = o**=" in (3.66), v, = yD;o¥*=%" in (3.53) and adding the
resulting relations we obtain

(Do_wk —0.h o w,k— 011)+V<Do_vk —0.h I Dok eh)
y<3tyk O _ D Ryy*? I Dok 9h>+(Dr (wkfé)_Rhwk—9>’1;lko,w.k—9,h)

_ k=1 k-1
3B- 29)5 yh YH) 4 49)5()’h s Y ),I;Uw’ke‘h)

2At

_ k=2 k-2
((1 20)s (3250 )J;Uw’kg,h)

B=20) () =4 =40 F (M) +A =20 F (") L ko
2At T '

(3.67)

From Lemmas 3.1, 2.1, 3.4, 3.2 and as the process from (3.45) to (3.52), we can
get

K
CAt Z | Dyor¥ k=02 4 CAL|| Do 2 13 < C(h* + HY). (3.68)
k=2

Then from Lemma 3.4, triangle inequality, (3.68) and (3.65), we can arrive at
(3.30). O
Next, we would show the main error estimation of this paper.

Theorem 3.6 Let y, w be the solution of system (2.1), (yll;, w’},) be the coarse grid
solution of the system (2.13)—(2.14), (y;f, wﬁ) be the fine grid solution of the system

(2.15)—(2.16), respectively. With y,? = Rpyo, y% = Rpyyo, there exists a constant C
independent of h, H, At, such that

K }
130 = ¥iyllo + (Ar > lwi-o) — iy ||o) =c(at+H?). (369

k=1

K 2
(1) y’,;||o+<Az 2 wt—g) — wy~ ||0) =C (al+n*+ H*), 370)
k=1

1
K 2
Ly () = yxlh + (Az > lw(ti—g) — wﬁ%%)

k=1
+ily @) = i llo < C(At2+h+H2). (3.71)
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Proof Let E;‘,’e = y(tr—g) — y*~? and Eﬁ)’g = w(tr_p) — w*? and we easily know
from systems (2.5) and the mixed variational formulation of (1.1) that for k > 2, we
can obviously get

[(Dyy(tr—), V) + (Vw(tr—g), V)] — [(Dy* %, v) + (V' V)]
= [(Dyy(tr-0), v) — (DY, )] + [(Vw(tk—g), Vv) — (Vw ™", V)]
= (D (y(tr-0) — Y™, v) + (V(w(tx—g) — w*™7), Vv)
= (DE\™" v) + (VEL . Vv)

= (R, v),
and
(w (t-0) = w7, q) =y (V (v o) = ") . V)
~(ro @ = r(*).q)
= (EL0.q) =7 (VEE. V) = (£ & o) = £ () )
(ra)
where

R =Dy (v (p) = ¥ ) = & (w (0) = wt ") = 0 (ar?),
REY = (w ) = w0 ) 4y A (3 o) = ) = (f 0 o) = £ (57))
=0 (At2> :
Similarly, we can follow that
[(Dry (1)), ) + (Vwr(ey), Vo)l = [(Dry2, v) + (Vw?, Vo))
= [(Dy(1)), v) = (Dyy3, )] + [(Vw(ty), V) = (Vu?, Vo)l
= (Di(y(t) = y9), v) + (V(w(ty) — w?), Vo)
= (D,Ey%, V) + (VEZ, V)
— (R}, v).
and
(w(ty) = w?, ) = y(V((t) = y9), Vo) = (F(ap) = FOD), @)

1 1 1
= (Ew,q) —y(VEy, Vq) = (f(y(1) — O = (R, q),
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where

R} = Diy(1ty) — y}) = Aw(ty) — wh) = 0(AP),
1 1

R = ity —w?) +yAO() = y) = (F0 ) = f(r7) = 0.

We use the similar analysis as the ones in the Theorem 3.5 to simply get

K 2
1) — Y9 llo + (Ar D lw-o) — wk—9||%) <CA?, (372
k=1
and
K 2
Iy () = y*lh + (Ar D llwg) — wk—f’n%) <Car’. (3.73)
k=1

Finally, we combine (3.72) and (3.73) with the result in Theorem 3.5 and use triangle
inequality to get the conclusion of Theorem 3.6. O

Remark 3.7 From the Theorem 3.6 one also can see that the coarse grid can be much
coarser than the fine grid and achieve asymptotically optimal approximation as long
as the mesh sizes satisfy H < O(h%), this means that the convergence rate of the
space is not lowered. From the second and third inequalities of Theorem 3.6, it can be
obtained that the spatial convergence order of error ||y — yp|lo and ||y — yx |1 is 2 and
1, respectively. The time convergence order of errors ||y — ypllo and ||y — yp |1 is 2.

4 Numerical Examples

The two numerical examples given in this section will help us test the efficiency of
our computation carried out with respect to the two-grid mixed finite volume element
method united with the 6-scheme. For the implementation of numerical computations
in two-dimensional cases, we take triangle segmentation for spatial domain £2. In the
following description, the mesh length of the coarse grid is taken as H and 4 is taken as
the mesh length of the fine grid. Then we choose H tosatisfyh < H < n. Therefore,
only the error order of % is shown in our example.

Example 4.1 In (1.1), on the space domain 2 = [0,1] x [0, 1] and the time inter-
val [0, 1], we take a term f(y) = y> — y that is nonlinear and the exact solution
y(t, x1, x2) = cos(mt) cos(mx1) cos(mwxy), then we give the source term g (¢, x1, x2) =

B — A(=yAy + f().

In Tables 1, 2 and 3, by taking 6 = 0.5, Ar = 1/250, changed y = 1,0.1, 10.
For testing CPU time, we arrive at the CPU time comparison between two-grid mixed
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Table1 0 = 0.5, At = 1/250, y = 1

TGMFVE MFE

H h Iy —yuly  Etime h Iy —yully G time Ratio
0.0884 0.0221 0.1090 6.0740 0.0221 0.1091 8.1911 1.3486
0.0442 0.0055 0.0273 69.7599 0.0055 0.0273 167.4619 2.4005
0.0221 0.0014 0.0068 1.6526e+03 0.0014 0.0068 6.5479¢+-03 3.9622
Table2 6 = 0.5, Ar =1/250,y = 0.1

TGMFVE MFE

H h ly —yuly  SEltime h Iy —yull;  Eltime Ratio
0.0884 0.0221 0.1092 6.0679 0.0221 0.1090 9.7017 1.5989
0.0442 0.0055 0.0273 71.9671 0.0055 0.0273 185.4141 2.5764
0.0221 0.0014 0.0068 1.6526e+03 0.0014 0.0068 4.6761e+03 2.8295
Table3 6 = 0.5, Ar =1/250,y = 10

TGMFVE MFE

H h Iy —yuly  Ellime h Iy —yully  Elime Ratio
0.0884 0.0221 0.1090 5.6528 0.0221 0.1091 8.2236 1.4548
0.0442 0.0055 0.0273 70.9364 0.0055 0.0273 173.8794 2.4511
0.0221 0.0014 0.0068 1.6512e+03 0.0014 0.0068 1.2337e+05 74.7154

finite volume element (TGMFVE) and mixed finite element (MFE) under same mesh
and same order H! error result. The radio in Tables 1, 2 and 3 is CP%PHH;m(ff"]fG]\ﬁ,IFFEVE.
By the contrast between two-grid mixed finite volume element method and mixed
finite element method, we see that two-grid mixed finite volume element method can
not only economize the CPU time to a great extent, but also get the better convergence
rate.

In Tables 4, 5 and 6, with the parameter & = 0.5, altered y = 1, 0.1, 10. We arrive at
the CPU time comparison between two-grid mixed finite volume element (TGMFVE)
and mixed finite element (MFE) under same mesh, same time step and same order H 1
error result. The ratio is also the specific value of CPU time. Compared with a mixed
finite element method in these examples, we can see distinctly from the calculated
data in Tables 1, 2, 3, 4, 5 and 6 shows clearly the advantages of utilizing the two-grid
mixed finite volume element method. It not only effectively reduce calculation error
but also achieve the preferable convergence rate.

In Table 7, by taking 8 = 0.5, changed y = 1, 0.1, 10. For testing the order of spa-
tial convergence, we keep At = 1/250 unchanged. We arrive at two-grid mixed finite
volume element method error estimates (L2 norm) with second-order convergence
rate and error estimates (H ' norm) with first-order convergence rate.
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Table4 6 =05,y =1

At H h Iy = yulh Order CPU lime Ratio
TGMFVE

1/80 0.0884 0.0221 0.1090 1.9974 2.5850 1.6402

1/160 0.0442 0.0055 0.0273 2.0053 59.0494 2.5277

1/320 0.0221 0.0014 0.0068 2.1567e+03 4.2281
MFE

1/80 0.0221 0.1091 1.9987 4.2400

1/160 0.0055 0.0273 2.0053 149.2586

1/320 0.0014 0.0068 9.1188¢+03

Table5 0 = 0.5, y =0.1

At H h Iy = yulh Order CSZIcJog:;le Ratio
TGMFVE

1/80 0.0884 0.0221 0.1091 1.9987 2.0568 1.6846

1/160 0.0442 0.0055 0.0273 2.0053 47.1549 2.6680

1/320 0.0221 0.0014 0.0068 2.1912e+03 2.6604
MFE

1/80 0.0221 0.1090 0.9954 3.4648

1/160 0.0055 0.0273 2.0053 125.8101

1/320 0.0014 0.0068 5.8294e+03

In Table 8, with the parameter & = 0.5, altered y = 1, 0.1, 10. We inspect the rate
at which temporal convergence of 6-scheme. Here we use the same order reduction
method, that is to say, in estimates L? norm, while At becomes 1/2 of the previous
value, H and i change 1/2 of the previous value, we get the L? norm convergence
order of two-grid mixed finite volume element method is close to 2. Similarly, in
estimates H! norm, while A¢ becomes 1 /2 of the previous value, H and h change 1/4
of the previous value, we also attain convergence rate of the second-order (H! norm).
Our method can reach the calculation accuracy of the second-order convergence rate
of time.

Further, we show the figures of numerical solutions. In Figs. 3 and 4, based on the
parameters & = 0.5,y = 1 and At = 1/250, under the parameter 7 = 0.0221 the
figures of numerical solution yj, is given atf = 0.25 and r = 1.

Example 4.2 We illustrate the typical phase separation phenomena of the Cahn-
Hilliard equation through a numerical example from [28]. The space domains are all
the unit square 2 = [0, 11x[0, 1], with uniform triangulation thereon. The scale of the
coarse triangulation is H = 0.0625, the scale of the fine triangulation is 7 = 0.0078,
the stepsize is At = 0.001, y =4 x 1074, taking the source term g(z, x1, x2) = 0,
the nonlinear term f(y) = y3 — y, we choose the numerical example only including
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Table6 0 = 0.5,y = 10

At H h Iy = yuli Order CPulime Ratio
TGMFVE

1/80 0.0884 0.0221 0.1090 0.9954 2.0819 1.3056

1/160 0.0442 0.0055 0.0273 2.0053 47.1750 2.5748

1/320 0.0221 0.0014 0.0068 2.1615¢+03 85.4731
MFE

1/80 0.0221 0.1091 1.9987 27181

1/160 0.0055 0.0273 2.0053 121.4641

1/320 0.0014 0.0068 1.8475¢405

Table7 0 = 0.5, Ar = 1/250

Mesh y =1 y =0.1 y =10

H h ly = ynllo Order ly = ynllo Order ly = ynllo Order

0.0884 0.0221 0.0017 2.0495 0.0011 2.0894 0.0018 2.0397
0.0442 0.0055 9.8280e—05 2.3477 6.0161e—05 1.6497 1.0549e—04 2.4796
0.0221 0.0014 3.9572e—06 6.2951e—06 3.5460e—06

H h Iy =yl Order Iy =yl Order Iy —ynlh Order

0.0884 0.0221 0.1090 0.9954 0.1092 0.9967 0.1090 0.9954
0.0442 0.0055 0.0273 1.0159 0.0273 1.0159 0.0273 1.0159
0.0221 0.0014 0.0068 0.0068 0.0068

the initial value

2 2
(0, x1, x2) = 1072 sin3 (o.ogm (xi — 0.5)) sin3 <0.0224 (x2 — 0.5))

Following the computation of our method, we can observe the typical phase tran-
sition phenomena: phase separation-coarsening see Figure. 5.

5 Conclusion

In this thesis, we develop the two-grid mixed finite-volume element method with
0 schemes that can solve the Cahn-Hilliard equation. The theoretical conclusions
encompassing stability analysis and a priori error estimation in L norm and H' norm
for the & scheme with two grid mixed finite volume element method have been given,
the numerical experiments results exhibited during the verification process are then
used to demonstrate the theoretical correctness of the proposed study.

@ Springer



Page310f34 28

Bulletin of the Iranian Mathematical Society (2023) 49:28

9¢10°0 9¢10°0 9¢10°0 82000 65000 08/1
9200°C S¥S00 9200°C S¥S0°0 9200°C S¥S0°0 01100 12200 ov/T
0000°C 081T0 08661 LLTTO 0866'1 LLTITO w00 +880°0 0z/1
18L0°C S0T6°0 S0L6'T T€S80 S910°C 80880 89LT°0 9€S€°0 01/1

J1pIO e — € 19pIO e — € 19pIO IuC — € y H fAv4

70—2960'1 S0—9899°L 70—29G0°1 €500°0 01100 0ce/1

S666°1 70—9T8E¥ 7866°1 70—9%90°¢ £666°1 70—20CC' ¥ 01100 12200 091/1
0820C 81000 0LS61 1000 0,661 L1000 12200 wy0'0 08/1
08L0C 9L00°0 0000°C 8¥700°0 98L61 L9000 w00 7880°0 ov/1
19pI0 o)|4€ — A 19pI0 o146 — A 19pI0 0|4 — ) y H v

or=4 ro=4 =4 USON oy,

€0=06 83q9eL

pringer

As



28 Page32o0f34 Bulletin of the Iranian Mathematical Society (2023) 49:28

two-grid mixed finite volume element solution Y, att=0.25

\wz

1r

Fig.3 yj, with h = 0.0221, At = 545,06 =0.5and y = 1

two-grid mixed finite volume element solution Y, att=1
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Fig.5 The phase evolution of Example IT
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