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Abstract
We investigate under what conditions an n-Jordan homomorphism between rings or
algebras is an n-homomorphism. More specifically, if R and S are rings and S is of
characteristic greater than n, along with some other results for an n-Jordan homomor-
phismψ : R → S, we prove the following results: If S is a field and either char S = 0
or char S > 2 card {α ∈ S : αn−1 = 1}, thenψ is an n-homomorphism, where char S
and card denote the characteristic of S and the cardinal number (of a set), respectively.
If S is an integral domain, then ψ is an n-homomorphism if S is an algebra, or either
one of the conditions char S = 0, char S > 2(n − 1), n = 3, holds.

Keywords n-Jordan homomorphism · n-homomorphism · Characteristic of a ring ·
Field · Integral domain · Algebra · Banach algebra

Mathematics Subject Classification 13B10 · 16W20 · 47B48 · 47C05

1 Introduction

In the sequel we always assume that n ∈ N, n ≥ 2. An additive map (operator)
ψ : R → S between rings R and S is called an n-homomorphism if

ψ(a1a2 · · · an) = ψ(a1)ψ(a2) · · · ψ(an),
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for every a1, a2, ..., an ∈ R. A 2-homomorphism is simply called a homomorphism.
In particular, if ψ : R → S is an additive map such that ψ(an) = ψ(a)n for every
a ∈ R, it is called an n-Jordan homomorphism and a 2-Jordan homomorphism is
simply called a Jordan homomorphism .

In the definitions above, whenever R and S are algebras, the map (operator) ψ is
assumed to be either additive or linear, which will be specified in each case.

In 1956, I. N.Herstein introduced the concept of additive n-Jordan homomorphisms
on rings [10]. In 1968, for n = 2, W. Żelazko proved that every complex linear n-
Jordan homomorphism (Jordan homomorphism) on an algebra is a homomorphism
[20]. This result can be easily extended as follows, which is known as the Żelazko
Theorem:

Let A be an algebra,which is not necessarily commutative, and let B be a semisimple
commutative Banach algebra. Then every linear Jordan homomorphism ψ : A → B
is a homomorphism.

The study of connections of Jordan homomorphisms with homomorphisms dates
back to the 1940’s. The notion of linear n-homomorphisms on algebras was introduced
in 2005 by Sh. Hejazian et al. [9]. For the early works in this field, one may refer to
[1, 2, 10, 15, 17, 18] and [20].

It is a long-standing question that under what conditions an n-Jordan homomor-
phism between rings or algebras is an n-homomorphism.

During the recent years, some authors have presented certain conditions to establish
this property. In this paper, alongwith someother results on n-Jordan homomorphisms,
we will extend some of the known results in this field to more general cases, by some
new techniques.

We first review some definitions and elementary results, which will be useful in the
sequel.

Definition 1.1 Let R be a ring andN = {n ∈ N : na = 0 (a ∈ R)}. The characteristic
of R, which we denote by char R, is defined as follows:

char R
def=

{
minN , N �= ∅;
0, N = ∅.

Note that char R = 1 if and only if R = {0}.
Definition 1.2 Let R be a ring and n ∈ N.

1. R is said to be not of characteristic n if for each a ∈ R, na = 0 implies a = 0.
2. R is said to be of characteristic greater than n if R is not of characteristic k for

any k ∈ {1, 2, . . . , n}.
Obviously, if R �= {0} then R is not of characteristic 1. Moreover, if n ∈ N, then

it is easy to show that R is of characteristic greater than n if and only if R is not of
characteristic n!.
Remark 1.3 Definitions 1.1 and 1.2 are not compatible with each other. More specifi-
cally, assume that n ∈ N. Then the phrase “R is not of characteristic n”, in the sense
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of Definition 1.2, is not equivalent to char R �= n. Similarly, the phrase “R is of
characteristic greater than n” is not equivalent to char R > n.

To avoid ambiguity, from now on we will follow the convention that the phrases
“R is not of characteristic n” and “R is of characteristic greater than n” are to be
understood in the sense of Definition 1.2.

Definition 1.4 A ring R is called a prime ring if for any a, b ∈ R, whenever aRb = 0
then either a = 0 or b = 0. A non-zero commutative ring R is called an integral
domain if for all a, b ∈ R, the equality ab = 0 implies that either a = 0 or b = 0
(some authors require an integral domain to have an identity, but we don’t).

Note that whenever R is an integral domain in the Definition 1.1, N is, in fact, equal
to {n ∈ N : na = 0 for some non-zero a ∈ R}.

For the convenience of the reader we recall the following known result, which will
be used in the sequel. For part 1 of the theorem, one may refer to [11, Section 3.2,
problem 6], or [16, Chapter III, Theorem 1.9(iii)]. The other parts of the theorem are
immediate consequences of part 1.

Theorem 1.5 Assume that R is an integral domain.

1. The characteristic of R is either zero or a prime number.
2. The characteristic of R is the unique non-negative integer number with the fol-

lowing property:

na = 0 ⇐⇒ a = 0 or char R | n (a ∈ R, n ∈ Z).

3. If n ∈ N, then we have:

(i) R is not of characteristic n if and only if char R � n.
(ii) R is of characteristic greater than n if and only if char R = 0 or char R > n.

To define the Field of Fractions of a ring R, which is an integral domain, we
consider the relation ∼ on R × (R\{0}) as follows:

(a, b) ∼ (c, d) ⇐⇒ ad = bc (a, b, c, d ∈ R, b, d �= 0).

Clearly ∼ is an equivalence relation on R × (R\{0}). For all (a, b) ∈ R × (R\{0}),
define a/b as the equivalence class of (a, b) with respect to ∼.

An addition and a multiplication is defined on F = {a/b : a, b ∈ R, b �= 0} as
follows:

{+: F × F → F
(a/b) + (c/d) = (ad + bc)/(bd),

{· : F × F → F
(a/b) · (c/d) = (ac)/(bd).

These operations are well-defined and (F,+, ·) is a field, which is called the field of
fractions of R.

Now we take ϕ : R → F , a
ϕ
→ a2/a (a �= 0) and 0

ϕ
→ 0. It is easy to see that ϕ

is a one-to-one homomorphism. Therefore, we usually consider R and ϕ(R) to be the
same and so we may take R ⊆ F . In particular, for all a ∈ R, we usually denote ϕ(a)

by a.
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Proposition 1.6 char F = char R.

Proof By Theorem 1.5, char F is the unique non-negative integer number with the
following property:

na = 0 ⇐⇒ a = 0 or char F | n (a ∈ F, n ∈ Z).

Since R ⊆ F ,

na = 0 ⇐⇒ a = 0 or char F | n (a ∈ R, n ∈ Z). (1.1)

By Theorem 1.5, char R is the unique non-negative integer number with the following
property:

na = 0 ⇐⇒ a = 0 or char R | n (a ∈ R, n ∈ Z). (1.2)

By (1.1) and (1.2), it follows that char F = char R. �

2 Some Properties of n-Jordan Homomorphisms

We first present some known results, which we intend to extend them somehow in the
next sections.

One of the old and interesting results in this field is due to I. N. Herstein, which is
stated as follows:

Theorem 2.1 [10, Theorem K] Let ϕ : R → S be an n-Jordan homomorphism from
a ring R onto a prime ring S of characteristic larger than n, where n ≥ 3. Suppose
further that R has a unit element. Then ϕ = αψ , where ψ is either a homomorphism
or an anti-homomorphism and where α is an (n− 1)st root of unity lying in the center
of S.

Since αn = α in the theorem above, it is easy to see that ϕ turns out to be either
an n-homomorphism or an anti n-homomorphism. Moreover, Herstein at the end of
his article, states that “One might conjecture that an appropriate variant of Theorem
K would hold even if R does not have a unit element". This conjecture was proved
by M. Bresar, W. S. Martindale and R. C. Miers in 1998, as the main theorem of [5],
while they prove several results in this long paper to conclude the main theorem of
this article.

Let 3 ≤ n ≤ 4 and R, S be commutative algebras. If ψ : R → S is an additive
n-Jordan homomorphism, then ψ is an n-homomorphism [7, Theorem 2.2].

Let R be a unital ring and S be a ring with characteristic greater than n. If every Jor-
dan homomorphism is either a homomorphism, or an anti-homomorphism, then every
n-Jordan homomorphism is either an n-homomorphism, or an anti n-homomorphism,
respectively [3, Theorem 2.4].

The following result is due to E. Gselmann [8, Theorem 2.1], which has also been
proved in [13, Theorem 2.3] with a different method.
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Theorem 2.2 If R and S are commutative rings, S is of characteristic greater than
n, and ψ : R → S is an n-Jordan homomorphism, then ψ is an n-homomorphism.
Moreover, if R is unital with the unit 1R, then ψ(1R) = ψ(1R)n and the function ϕ

defined by

ϕ(x) = ψn−2(1R)ψ(x) (x ∈ R),

is a homomorphism between R and S.

Note that the result above has also been proved in [4, Theorem 2.2] when R and
S are commutative algebras and ψ : R → S is an additive n-Jordan homomorphism.
However, recently it has also been proved in [6, Theorem 2.3], whenever R and S are
commutative algebras and ψ : R → S is a linear n-Jordan homomorphism.

We would like to indicate that in [8], there are some other interesting results for
the non-commutative case, which are somehow related to this subject. In fact, it is
shown that under certain conditions an additive map turns out to be an n-Jordan
homomorphism.

We now recall the following result [21, Theorem 2.4]:
Let R be a unital Banach algebra, which is not necessarily commutative, and let S

be a unital commutative semisimple Banach algebra. Then every 3-Jordan homomor-
phism f : R → S is a 3-homomorphism

The next result is an extension of the result above, which also extends the Żelazko
Theorem.

Let R be a ring, which is not necessarily commutative, and let S be a unital commu-
tative semisimple Banach algebra. Then every n-Jordan homomorphism f : R → S
is an n-homomorphism. In particular, if R is a Banach algebra and moreover, f is
linear, then f is automatically continuous [13, Corollary 2.10].

The following related result is an extension of [22, Theorem 3.4].

Theorem 2.3 [14, Theorem 3.2] Suppose that R and S are rings, where char S > n
and T : R → S is an n-Jordan homomorphism such that T (R) is commutative and
T (ab) = T (ba) for every a, b ∈ R. Then T is an n-homomorphism if ker T is an
ideal in R.

In the case that R and S are topological algebras equippedwith separating sequences
of submultiplicative seminorms, it has been investigated in the article [14] that under
some conditions an almost n-Jordan homomorphism T : R → S is an almost
n-homomorphism. In particular, it has been shown that whenever R and S are com-
mutative, then T turns out to be an almost n-homomorphism [14, Corollary 2.7].
Moreover, the automatic continuity of such maps has also been studied in this article.

In the following we assume that R and S are rings.

Definition 2.4 An additive map (operator) ϕ : R → S is called a weak n-Jordan
homomorphism if

ϕ

⎛
⎝ ∑

π : permutation

aπ(1)aπ(2) . . . aπ(n)

⎞
⎠ =

∑
π : permutation

ϕ(aπ(1))ϕ(aπ(2)) . . . ϕ(aπ(n)), (2.1)
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for all a1, a2, . . . , an ∈ R. A weak 2-Jordan homomorphism is simply called a weak
Jordan homomorphism.

Theorem 2.5 1. If the map ϕ : R → S is an n-Jordan homomorphism, then it is a
weak n-Jordan homomorphism.

2. If the map ϕ : R → S is a weak n-Jordan homomorphism and S is of characteristic
greater than n, then ϕ is an n-Jordan homomorphism.

Proof The first statement of the theorem has beenmentioned in the proof of [10, Theo-
remK]. However, for a different proof of this result onemay refer to [13, Theorem2.2].

To prove the second statement, assume that ϕ : R → S is a weak n-Jordan homo-
morphism and S is of characteristic greater than n. If we take a1 = a2 = · · · = an =
a ∈ R in (2.1), it follows that n!ϕ(an) = n!ϕ(a)n . Since S is of characteristic greater
than n, we have ϕ(an) = ϕ(a)n for all a ∈ R. Hence ϕ is an n-Jordan homomorphism.

�
Proposition 2.6 Let S be of characteristic greater than n and ϕ : R → S be an n-
Jordan homomorphism. Then ϕ is an (n + k(n − 1))-Jordan homomorphism for all
k ≥ 0.

Proof We use induction. The conclusion is obvious for k = 0. Assume that k ≥
0 and ϕ is an (n + k(n − 1))-Jordan homomorphism. We must show that ϕ is an
(n + (k + 1)(n − 1))-Jordan homomorphism. Since ϕ is an n-Jordan homomorphism,
we have

ϕ

⎛
⎝ ∑

π : permutation
aπ(1)aπ(2) . . . aπ(n)

⎞
⎠ =

∑
π : permutation

ϕ(aπ(1))ϕ(aπ(2)) . . . ϕ(aπ(n)),

for all a1, a2, . . . , an ∈ R. If we put a1 = a2 = · · · = an−1 = a and an = b, then

(n − 1)!ϕ(an−1b + an−2ba + · · · + ban−1)

= (n − 1)!(ϕ(a)n−1ϕ(b) + ϕ(a)n−2ϕ(b)ϕ(a) + · · · + ϕ(b)ϕ(a)n−1).

Since S is of characteristic greater than n, it follows that

ϕ(an−1b + an−2ba + · · · + ban−1)

= ϕ(a)n−1ϕ(b) + ϕ(a)n−2ϕ(b)ϕ(a) + · · · + ϕ(b)ϕ(a)n−1.

Now we take b = an+k(n−1). Then

nϕ(an+(k+1)(n−1)) = ϕ(a)n−1ϕ(an+k(n−1)) + ϕ(a)n−2ϕ(an+k(n−1))ϕ(a)

+ · · · + ϕ(an+k(n−1))ϕ(a)n−1

= ϕ(a)n−1ϕ(a)n+k(n−1) + ϕ(a)n−2ϕ(a)n+k(n−1)ϕ(a)

+ · · · + ϕ(a)n+k(n−1)ϕ(a)n−1

= nϕ(a)n+(k+1)(n−1).
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Since S is of characteristic greater thann,wehaveϕ(an+(k+1)(n−1)) = ϕ(a)n+(k+1)(n−1).
�

Corollary 2.7 If R and S are rings such that S is not of characteristic 2 and ϕ : R → S
is a Jordan homomorphism, then ϕ is an n-Jordan homomorphism.

3 n-Jordan Homomorphisms into Fields

In this sectionwe assume that R and S are rings. Before introducing a new terminology,
we state the following result, which is easy to verify and can also be found in [12,
Example 2.4].

Proposition 3.1 Assume that S is not of characteristic 2, ϕ : R → S is a Jordan
homomorphism (homomorphism), α ∈ S, αn = α, and αϕ(a) = ϕ(a)α for all a ∈
R.Then themapψ : R → S, definedbyψ(a) = αϕ(a), is an n-Jordanhomomorphism
(n-homomorphism).

In contrast with the proposition above, we bring the following definition:

Definition 3.2 An n-homomorphism (n-Jordan homomorphism) ψ : R → S is called
decomposable if there exist a homomorphism (Jordan homomorphism) ϕ : R → S
and α ∈ S such that αn = α, αϕ(a) = ϕ(a)α for all a ∈ R, and ψ = αϕ. The ordered
pair (α, ϕ) is called a decomposition of ψ .

The following result is due to Herstein in 1956:
If S is an integral domain and is not of characteristic 2, then every Jordan homo-

morphism ψ : R → S is a homomorphism [10, Lemma 4].
It is easy to see that the above result of Herstein can be extended to n-Jordan

homomorphisms as follows:

Proposition 3.3 Let S be an integral domain, which is not of characteristic 2 and let
ψ : R → S be a decomposable n-Jordan homomorphism. Then ψ is a decomposable
n-homomorphism.

Proposition 3.4 Assume that R and S are rings, S is of characteristic greater than n
and ψ : R → S is an n-Jordan homomorphism. In the case that R has a non-zero
identity, say 1R, it has been shown in [12, Theorem 2.5] that

(i) ψ(a2) = ψ(1R)n−2ψ(a)2 for all a ∈ R;
(ii) ψ is decomposable.

If we drop the assumption that R has an identity and let S = C, then

(a) there exists λ ∈ C such that λn−1 = 1 and ψ(a2) = λψ(a)2 for all a ∈ R [13,
Theorem 2.6];

(b) ψ is an n-homomorphism [13, Theorem 2.8].

In the sequel we always assume that ψ : R → S is an n-Jordan homomorphism.
The following lemma is due to T. G. Honary et al. [13, Theorem 2.5], which will

be used in the sequel.
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Lemma 3.5 If S is an integral domain which is of characteristic greater than n, then

ψ(a2)
n−1 = ψ(a)2n−2 for all a ∈ R. In particular, for every a ∈ R, ψ(a) = 0 if and

only if ψ(a2) = 0.

We now present the main results of this section, which are somehow extensions of
the results above.

Theorem 3.6 Assume that S is a field, which is of characteristic greater than n and
ψ �= 0. Then ψ is decomposable if and only if there exists λ ∈ S such that ψ(a2) =
λψ(a)2 for all a ∈ R. Moreover, in this case

1. λ is unique and λn−1 = 1S.
2. ψ is uniquely decomposable and λψ is a Jordan homomorphism.
3. ψ is a uniquely decomposable n-homomorphism.

Proof Let ψ be decomposable. Then there exist a Jordan homomorphism ϕ : R → S
and α ∈ S such that αn = α and ψ = αϕ. Since ψ �= 0 and S is a field, it follows that
α �= 0, ϕ = α−1ψ , and αn−1 = 1S . If we take λ = α−1, then

ψ(a2) = αϕ(a2) = αϕ(a)2 = α(α−1ψ(a))
2 = α−1ψ(a)2 = λψ(a)2. (a ∈ R)

Conversely, assume that there exists λ ∈ S such thatψ(a2) = λψ(a)2 for all a ∈ R.
If ϕ = λψ then ϕ is additive and moreover,

ϕ(a2) = λψ(a2) = λ2ψ(a)2 = (λψ(a))2 = ϕ(a)2. (a ∈ R)

Hence, ϕ is a Jordan homomorphism. Since S is an integral domain, by Lemma 3.5
and the hypothesis, we have

ψ(a)2n−2 = ψ(a2)
n−1 = (λψ(a)2)

n−1 = λn−1ψ(a)2n−2 (a ∈ R).

Since S is a field andψ �= 0, it follows thatλn−1 = 1S . Ifα = λ−1 thenαn−1 = 1S and
hence αn = α. Since ϕ = λψ , it follows thatψ = αϕ. Therefore,ψ is decomposable.

Now suppose that ψ is decomposable, λ ∈ S, and ψ(a2) = λψ(a)2 for all a ∈ R.
For the proof of 1, assume that there exists another λ′ ∈ S such that ψ(a2) =

λ′ψ(a)2 for all a ∈ R. Hence, λψ(a)2 = λ′ψ(a)2 for every a ∈ R. Since S is a field
and ψ �= 0, it follows that λ = λ′. Therefore, λ is unique. Moreover, we have already
shown that λn−1 = 1S .

For the proof of 2, let ψ be decomposable with the decomposition ψ = αϕ, where
α = λ−1 and ϕ = λψ . To show that ψ is uniquely decomposable, assume that
ψ = α̃ϕ̃ is another decomposition of ψ . We must show that α̃ = α and ϕ̃ = ϕ. By the
argument above, ϕ̃ = α̃−1ψ and ψ(a2) = α̃−1ψ(a)2 for all a ∈ R. Hence, α̃−1 = λ

and consequently we have

α̃ = λ−1 = α,

ϕ̃ = α̃−1ψ = α−1ψ = λψ = ϕ.
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Finally, for the proof of 3, letψ be a decomposable n-Jordan homomorphism. Since S
is a field, it is an integral domain and hence, by Proposition 3.3, ψ is a decomposable
n-homomorphism. �
Corollary 3.7 Assume that S is a field, which is of characteristic greater than n and
ψ �= 0. Then the following statements are equivalent:

1. ψ is a decomposable n-Jordan homomorphism.
2. ψ is a uniquely decomposable n-Jordan homomorphism.
3. ψ is a uniquely decomposable n-homomorphism.

Remark 3.8 Assume that S is a field and Z = {α ∈ S : αn−1 = 1S}. For all α ∈ S,

αn−1 − 1S = (α − 1S)(α
n−2 + αn−3 + · · · + α + 1S).

Therefore, Z = {1S} ∪ {α ∈ S : αn−2 + αn−3 + · · · + α + 1S = 0} (if n = 2 then
Z = {1S}). Note that Z has at most n − 1 distinct elements, even if S is an integral
domain [19, Corollary 2.8.4].

The following theorem is an extension of [13, Theorem 2.8].

Theorem 3.9 Let S be a field, which is of characteristic greater than n and let Z =
{α ∈ S : αn−1 = 1S}. Ifψ �= 0, thenψ is a uniquely decomposable n-homomorphism
if one of the following cases holds:

1. char S = 0.
2. p

def= char S > 2 card Z.

Note that in case 2, p is a prime number, by Theorem 1.5.

Proof Let λ : {a ∈ R : ψ(a) �= 0} → Z , a 
→ λa
def= ψ(a2)/ψ(a)2. By Lemma 3.5,

the map λ is well defined. By Theorem 3.6,ψ is decomposable if and only if the map λ

is constant. To show that the map λ is constant, let a, b ∈ R such thatψ(a), ψ(b) �= 0.
We must show that λa = λb. On the contrary, assume that λa �= λb and define the sets
M and M0 as follows:

M =
{

N, in case 1;
{1, 2, . . . , p}, in case 2; M0 = {m ∈ M : ψ(ma + b) = 0}.

Obviously, for all m ∈ M0,

mψ(a) = −ψ(b). (3.1)

Now we show that M0 has at most one element. Let m1,m2 ∈ M0 and m1 ≥ m2.
By (3.1), (m1 − m2)ψ(a) = 0. Since S is an integral domain and ψ(a) �= 0, in case
1 (char S = 0), it follows that m1 = m2. In case 2, since char S = p, we have
p | m1 − m2; but m1,m2 ∈ {1, 2, . . . , p} and hence m1 = m2.
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We now define λm = λ(ma+b) for m ∈ M\M0. Then,

ψ((ma + b)2) = λmψ(ma + b)2, (3.2)

ψ((ma + b)2) = m2λaψ(a)2 + λbψ(b)2 + mψ(ab + ba), (3.3)

λmψ(ma + b)2 = λmm
2ψ(a)2 + λmψ(b)2 + 2λmmψ(a)ψ(b). (3.4)

Combining (3.2), (3.3), and (3.4), we conclude that

m2(λa − λm)ψ(a)2 + m(ψ(ab + ba)

−2λmψ(a)ψ(b)) + ψ(b)2(λb − λm) = 0. (3.5)

For α ∈ Z , take Mα = {m ∈ M\M0 : λm = α}. Then {Mα : α ∈ Z , Mα �= ∅} is
a partition for M\M0. Now we show that Mλa has at most one element. By (3.5), for
m ∈ Mλa we have

m(ψ(ab + ba) − 2λaψ(a)ψ(b)) = −(λb − λa)ψ(b)2. (3.6)

Let m1 and m2 be two distinct elements of Mλa . By (3.6), it follows that

(m1 − m2)(ψ(ab + ba) − 2λaψ(a)ψ(b)) = 0.

Since (m1 − m2) �= 0 and in case 1, char S = 0, it follows that ψ(ab + ba) −
2λaψ(a)ψ(b) = 0. In case 2, since char S = p and p � (m1 − m2), we have
ψ(ab + ba) − 2λaψ(a)ψ(b) = 0. Thus in both cases,

ψ(ab + ba) − 2λaψ(a)ψ(b) = 0.

By (3.6), we see that (λb − λa)ψ(b)2 = 0. Therefore, either ψ(b) = 0 or λb = λa .
This contradiction shows that Mλa has at most one element.

Now assume that α ∈ Z\{λa}. We show that Mα has at most two elements. Letm1,
m2, m3 be three distinct elements of Mα . By (3.5), we see that for m ∈ Mα ,

m2(λa − α)ψ(a)2 + m(ψ(ab + ba) − 2αψ(a)ψ(b)) = −(λb − α)ψ(b)2.

Therefore,

(m1
2 − m2

2)(λa − α)ψ(a)2 = −(m1 − m2)(ψ(ab + ba) − 2αψ(a)ψ(b)).

With a similar argument as in the above, we have

(m1 + m2)(λa − α)ψ(a)2 = −(ψ(ab + ba) − 2αψ(a)ψ(b)). (3.7)

Similarly, we have

(m1 + m3)(λa − α)ψ(a)2 = −(ψ(ab + ba) − 2αψ(a)ψ(b)). (3.8)
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By (3.7) and (3.8), it follows that (m2 − m3)(λa − α)ψ(a)2 = 0.
Again with a similar argument as before, we have (λa − α)ψ(a)2 = 0. Therefore,

either ψ(a) = 0 or λa = α. This contradiction shows that Mα has at most two
elements.

We know that

M = M0 ∪ Mλa ∪
( ⋃

α∈Z\{λa}
Mα

)
.

In case 1, M = N. Hence

card N ≤ 1 + 1 + 2 card (Z\{λa}) = 2 + 2 (card Z − 1) = 2 card Z .

Therefore, Z must be infinite, whereas card Z ≤ n − 1.
In case 2, since card {1, 2, . . . , p} ≤ 2 card Z , it follows that p ≤ 2 card Z ,

whereas p > 2 card Z .
Therefore, in both cases, we get a contradiction. �

Corollary 3.10 Let S be a field and ψ �= 0. If char S > 2(n − 1), then ψ is a uniquely
decomposable n-homomorphism.

Proof Take Z = {α ∈ S : αn−1 = 1S}. Since card Z ≤ n − 1 and char S > 2(n − 1),
it follows that char S > 2 card Z . By Theorem 3.9, ψ is a uniquely decomposable
n-homomorphism. �

Example 3.11 Let S = C and ψ �= 0. Then there exist a unique homomorphism
ϕ : R → C and a unique k ∈ {0, 1, . . . , n − 2} such that

ψ = exp

(
2kπ i

n − 1

)
ϕ.

Example 3.12 Let S = R and ψ �= 0.

1. If n is odd, then either ψ or −ψ is a homomorphism.
2. If n is even, then ψ is a homomorphism.

Example 3.13 Let n = 4 and S = Zp, where p is a prime number, p ≥ 5, and
Zp = Z/(pZ) = {k + pZ : k ∈ Z}. Then S is a field and char S = p. Since p ≥ 5, it
follows that S is of characteristic greater than n = 4.

Since Z = {α ∈ S : αn−1 = 1S} = {k + pZ : k ∈ Z, k3 − 1 ∈ pZ}, for
p = 5, it follows that Z = {1 + pZ} and hence p > 2 = 2 card Z . If p ≥ 7,
then p > 6 = 2(n − 1) ≥ 2 card Z . Therefore, for all prime numbers p ≥ 5, a
4-Jordan homomorphismψ : R → Zp is a uniquely decomposable 4-homomorphism
by Theorem 3.9.
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4 n-Jordan Homomorphisms into Integral Domains

In this section, R and S are rings and ψ : R → S is an n-Jordan homomorphism.
Before presenting our main results of this section, we bring the following known
result, which is due to T. G. Honary in 2020 [12, Corollary 2.9].

Proposition 4.1 If R is unital and S is an integral domain, which is of characteristic
greater than n, then ψ : R → S is an n-homomorphism.

In contrast with the result above we present the following result:

Theorem 4.2 Let S be an integral domain andψ �= 0. Thenψ is an n-homomorphism
if one of the following cases holds:

(i) char S = 0.
(ii) char S > 2(n − 1).

Proof Let F be the field of fractions of S. Since ψ : R → S is an n-Jordan homo-
morphism, so is ψ : R → F . On the other hand, from Proposition 1.6, it follows
that char F = char S and hence, in case (i), char F = 0. Therefore, by Theo-
rem 3.9, ψ : R → F is a uniquely decomposable n-homomorphism. Since in case
(i i), char F > 2(n − 1), it follows from Corollary 3.10, that ψ : R → F is a
uniquely decomposable n-homomorphism. Thus, in both cases ψ : R → F is an
n-homomorphism and hence ψ : R → S is also an n-homomorphism. �
It is interesting to note that, whenever R is unital in the theorem above, it is shown
in [12, Corollary 2.9] that ψ is an n-homomorphism, without imposing any of the
conditions (i) or (ii).

The following result is an extension of [21, Theorem 2.4] and [12, Theorem 2.13].

Theorem 4.3 Let n = 3 and S be an integral domain, which is of characteristic greater
than 3. Then either ψ or −ψ is a homomorphism and hence ψ is a 3-homomorphism.

Proof If ψ = 0, then the claim is obviously true. So we assume that ψ �= 0.
Let F be the field of fractions of S and Z = {a/b ∈ F : (a/b)2 = 1F }. Since S is

of characteristic greater than n = 3, so is F . By Theorem 1.5,

either char F = 0 or char F > 3. (4.1)

By (4.1), we see that 1F �= −1F . Since card Z ≤ 2 and {1F ,−1F } ⊆ Z , it follows
that Z = {1F ,−1F }.

Since char F is a prime number, char F ≥ 5 whenever char F > 3. Therefore, it
is clear from (4.1), that

either char F = 0 or char F > 2 card Z . (4.2)

Since ψ : R → S is an n-Jordan homomorphism, so is ψ : R → F . By (4.2) and
Theorem 3.9, ψ : R → F is a uniquely decomposable 3-homomorphism. So there
exist a unique α ∈ Z and a unique homomorphism ϕ : R → F such that ψ = αϕ.
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If α = 1F , then (ψ : R → F) = (ϕ : R → F) and hence ϕ(R) ⊆ S and
(ψ : R → S) = (ϕ : R → S). Therefore, ψ : R → S is a homomorphism.

If α = −1F , then (ψ : R → F) = (−ϕ : R → F) and hence ϕ(R) ⊆ S and
(−ψ : R → S) = (ϕ : R → S). Therefore, −ψ : R → S is a homomorphism.

Consequently, either ψ : R → S or −ψ : R → S is a homomorphism and hence
ψ : R → S is a 3-homomorphism. �

Finally, if S is an algebra then N = {k ∈ N : ka = 0 (a ∈ S)} = φ. Hence
char S = 0 and so we obtain the following result, which is an easy consequence of
Theorem 4.2.

Theorem 4.4 If R is a ring and S is an algebra, which is an integral domain, then
every n-Jordan homomorphism ψ : R → S is an n-homomorphism.
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