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Abstract
This paper reviews strong stability preserving discrete variable methods for differen-
tial systems. The strong stability preserving Runge–Kutta methods have been usually
investigated in the literature on the subject, using the so-called Shu–Osher represen-
tation of these methods, as a convex combination of first-order steps by forward Euler
method. In this paper, we revisit the analysis of strong stability preserving Runge–
Kutta methods by reformulating these methods as a subclass of general linear methods
for ordinary differential equations, and then using a characterization of monotone gen-
eral linearmethods, whichwas derived by Spijker in his seminal paper (SIAM JNumer
Anal 45:1226–1245, 2007). Using this new approach, explicit and implicit strong sta-
bility preservingRunge–Kuttamethods up to the order four are derived. Thesemethods
are equivalent to explicit and implicit RKmethods obtained using Shu–Osher or gener-
alized Shu–Osher representation.We also investigate strong stability preserving linear
multistep methods using again monotonicity theory of Spijker.
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1 Introduction

It is a purpose of this paper to systematically investigate strong stability preserving
(SSP) Runge-Kutta (RK) methods and linear multistep methods (LMMs), for numer-
ical solution of initial-value problems for ordinary differential equations (ODEs)

{
y′(t) = f

(
t, y(t)

)
, t ∈ [t0, tend],

y(t0) = y0 ∈ R
m,

(1.1)

where the function f : R×R
m → R

m is assumed to be sufficiently smooth. To define
SSP property of numerical schemes, we assume that the discretization of (1.1) by the
forward Euler method

yn = yn−1 + h f (tn−1, yn−1), (1.2)

n = 1, 2, . . . , N , Nh = tend − t0, tn = t0 + nh, satisfies the condition

‖yn‖ ≤ ‖yn−1‖, (1.3)

n = 1, 2, . . . , N , in some norm or semi-norm ‖ · ‖, for all stepsizes h such that

h ≤ hFE . (1.4)

We then search for methods, which preserve the monotonicity property (1.3) of the
forward Euler method (1.2) under the restriction on the stepsize h, of the form

h ≤ C · hFE . (1.5)

We discuss first explicit RK methods. Such methods, in Butcher representation, take
the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Y [n]
i = yn−1 + h

i−1∑
j=1

ai j f
(
tn−1 + c j h,Y [n]

j

)
, i = 1, 2, . . . , s,

yn = yn−1 + h
s∑

j=1

b j f
(
tn−1 + c j h,Y [n]

j

)
,

(1.6)

n = 1, 2, . . . , N , and can be represented by the Butcher table

c A

bT
=

c1 = 0
c2 a21
c3 a31 a32
...

...
...

. . .

cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

.
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RK formulas (1.6) which satisfy (1.3) under the restriction (1.5) are called SSP RK
methods, and the constant C is called SSP coefficient. To compare schemes with
different number of stages s, we also define the effective SSP coefficient Ceff by

Ceff = C/s.

As discussed in [12, 14], the search for explicit SSP RKmethods (1.6) is facilitated
by SSP revealing representation of these methods as convex combinations of forward
Euler steps. This so-called Shu–Osher representation proposed in [35], has the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Y [n]
1 = yn−1,

Y [n]
i =

i−1∑
j=1

(
αi j Y

[n]
j + hβi j f

(
tn−1 + c j h,Y [n]

j

))
, i = 2, 3, . . . , s,

yn =
s∑

j=1

(
αs+1, j Y

[n]
j + hβs+1, j f

(
tn−1 + c j h,Y [n]

j

))
(1.7)

n = 1, 2, . . . , N , where αi j are scalars such that

i−1∑
j=1

αi j = 1, i = 2, 3, . . . , s + 1, (1.8)

and βi j are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

βi j = ai j −
i−1∑

k= j+1

αikak j , i = 2, 3, . . . , s, j = 1, 2, . . . , i − 1,

βs+1, j = b j −
s∑

k= j+1

αs+1,kak j , j = 1, 2, . . . , s.

(1.9)

The Shu–Osher representation of RK methods (1.6) is not unique, and the SSP coef-
ficient of (1.7), which depends on the choice of αi j , subject to (1.8), and the resulting
βi j , can be characterized by the following result, essentially due to Shu and Osher
[35] (see also [12, 14]).

Theorem 1.1 Assume that the forward Euler method (1.2) applied to (1.1) is strongly
stable, i.e., the inequality (1.3) holds under the time step restriction (1.4). Assume also
that αi j ≥ 0 and βi j ≥ 0. Then, the solution {yn} obtained by the RK method (1.6)
or (1.7) satisfies the strong stability bound (1.3) under the time step restriction (1.5)
with SSP coefficient C = C(α, β) given by

C(α, β) = min
{αi j

βi j
: i = 2, 3, . . . , s, j = 1, 2, . . . , i − 1

}
.
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It is also possible to characterize SSP coefficient of (1.7) if some of the βi j are
negative, and we refer to the monograph [12] for such results.

A lot of work was devoted to finding explicit SSP RK methods with large SSP
coefficients both by mathematical analysis, for low order methods, and numerical
searches, for higher order schemes. Most of these numerical searches were based on
formulation the appropriate optimization problems using Shu–Osher representation of
RK methods, and the characterization of SSP coefficient formulated in Theorem 1.1.

In this paper, we will search for explicit and implicit SSP RK formulas using a
different approach than that used in [12, 14], and which is based on monotonicity
theory of general linear methods (GLMs) developed by Spijker [36]. In this approach
we first reformulate RK methods in Butcher representation (1.6) as GLMs examined
in [36], and then reformulate the appropriate optimization problems in terms of the
abscissa vector c, the coefficient matrix A, and the weight vector b.

The organization of this paper is as follows. In Sect. 2 we review generalized Shu–
Osher representation introduced by Ferracina and Spijker [10], which can be used to
investigate implicit SSP RK methods. The monotonicity theory for GLMs developed
by Spijker [36] is reviewed in Sect. 3, and the resulting monotonicity theory for
RK methods, as well as the formulation of appropriate minimization problems for
computing explicit and implicit SSP RK methods, is described in Sect. 4. In Sect. 5,
we analyze explicit and in Sect. 6, implicit SSP RK methods obtained by solving the
minimization problems described in Sect. 4. We present examples of explicit SSP RK
methods of order p = 1, of order p = 2 with s = 2, 3, . . . , 10 stages, of order p = 3
with s = 3, 4, . . . , 10 stages, and of order p = 4 with s = 4, 5, . . . , 10 stages, and
implicit SSP RK methods up to the order p = 4. In Sect. 7, we analyze SSP LMMs,
and examples of explicit and implicit SSP LMMs of order p = 2, p = 3, and p = 4,
are presented in Sects. 8 and 9. Finally, in Sect. 10, some concluding remarks are
given.

2 A Generalization of the Shu–Osher Representation of RKMethods

As discussed in Sect. 1, the SSP properties of explicit RKmethods can be investigated
using the Shu–Osher representation (1.9), and SSP coefficient of these methods is
characterized in Theorem 1.1. It was proved in [14] that if implicit RK method has
order p > 1, then the coefficients αi j of its Shu–Osher representation (1.9) cannot
be all nonnegative. Hence, this representation cannot be used to find implicit SSP
methods of order greater than one. SSP properties of implicit RK methods are usu-
ally investigated using a generalization of Shu–Osher representation introduced by
Ferracina and Spijker [10] (see also [12, 18]). For RK methods with s stages, this
representation takes the form

123



Bulletin of the Iranian Mathematical Society (2022) 48:4029–4062 4033

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y [n]
i =

(
1 −

s∑
j=1

λi j

)
yn−1

+
s∑

j=1

(
λi j Y

[n]
j + hμi j f

(
tn−1 + c j h,Y [n]

j

))
, i = 1, 2, . . . , s,

yn =
(
1 −

s∑
j=1

λs+1, j

)
yn−1

+
s∑

j=1

(
λs+1, j Y

[n]
j + hμs+1, j f

(
tn−1 + c j h,Y [n]

j

))
,

(2.1)

n = 1, 2, . . . , N . Here, λi j and μi j are real coefficients. Following [10], we introduce
the matrices

L =
[
L0

L1

]
, L0 =

⎡
⎢⎣

λ11 · · · λ1s
...

. . .
...

λs1 · · · λss

⎤
⎥⎦ , L1 = [

λs+1,1 · · · λs+1,s
]
,

and

M =
[
M0

M1

]
, M0 =

⎡
⎢⎣

μ11 · · · μ1s
...

. . .
...

μs1 · · · μss

⎤
⎥⎦ , M1 = [

μs+1,1 · · · μs+1,s
]
.

The generalized Shu–Osher representation (2.1) of implicit RK method is not unique.
Assuming that the coefficient matrices L and M are given and that the matrix I − L0
is nonsingular, the Butcher representation of RK method

c A

bT
=

c1 a11 · · · a1s
...

...
. . .

...

cs as1 · · · ass
b1 · · · bs

(2.2)

can be computed from the formulas

A = (I − L0)
−1M0, bT = M1 + L1 A, c = Ae, (2.3)

where I is the identity matrix of dimension s, and e = [1, . . . , 1] ∈ R
s . Similarly, if

Butcher representation (c,A,b) of RK method is given, to compute the generalized
Shu–Osher representation (2.1) we have to choose the coefficient matrices L0 and L1,
and then compute the coefficient matrices M0 and M1 from the formulas

M0 = A − L0 A, M1 = bT − L1 A. (2.4)
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Wehave the following generalization of the Shu–Osher Theorem1.1, which follows
from the results of Ferracina and Spijker [11].

Theorem 2.1 Assume that the forward Euler method (1.2) applied to (1.1) is strongly
stable, i.e., the inequality (1.3) holds under the time step restriction (1.4). Assume also
that I − L0 is invertible and

λi j ≥ 0 and
s∑

k=1

λik ≤ 1 for 1 ≤ i ≤ s + 1, 1 ≤ j ≤ s.

Then, the solution {yn} obtained by the implicit RK method (2.1) or (2.2) satisfies the
strong stability bound (1.3) under the time step restriction (1.5) with SSP coefficient
C = C(A,b,L) given by

C(A,b,L) = min
{ λi j

μi j
: i = 1, 2, . . . , s + 1, j = 1, 2, . . . , s

}
.

3 Monotonicity Theory for GLMs

Consider a class of GLMs of the form

⎧⎪⎪⎨
⎪⎪⎩
Y [n]
i = h

m∑
j=1

ti j f
(
tn−1 + c j h,Y [n]

j

) +
�∑

j=1

si j y
[n−1]
j , i = 1, 2, . . . ,m,

y[n]
i = Y [n]

m−�+i , i = 1, 2, . . . , �,

(3.1)

n = 1, 2, . . . , N , 1 ≤ � ≤ m. In this formulation Y [n]
i , i = 1, 2, . . . ,m, are internal

approximations or stages, which are used to compute external approximations y[n]
i ,

i = 1, 2, . . . , �, which propagate from step to step. The formulation (3.1), which was
considered by Spijker [36], is specified by the abscissa vector c = [c1, . . . , cm]T ∈
R
m , and two coefficient matrices T = [ti j ] ∈ R

m×m and S = [si j ] ∈ R
m×�, where it

is assumed, without loss of generality, that

�∑
j=1

si j = 1, i = 1, 2, . . . ,m. (3.2)

This representation is not the most common one, and different representations of
GLMs are discussed by Burrage [2], Butcher [3, 4, 6], Hairer et al. [15], Hairer and
Wanner [16], Jackiewicz [24], and Wright [37].

Following the definition in [36], the GLM (3.1) is said to be monotonic if

∥∥Y [n]
i

∥∥ ≤ max
{∥∥y[n−1]

j

∥∥ : j = 1, 2, . . . �
}
, i = 1, 2, . . . ,m, (3.3)
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where Y [n]
i and y[n−1]

j satisfy (3.1). Denote by I the identity matrix of dimension s,

and, as in [36], let
[
S | γT

]
, γ ∈ R, be the s × (� + s) matrix whose first � columns

are equal to S, and the last s columns are equal to γT. Consider the condition

det(I + γT) �= 0 and (I + γT)−1 [
S γ T

] ≥ 0, (3.4)

where the inequality in (3.4) should be interpreted componentwise. Then the following
theorem, which characterizes the SSP coefficient of GLMs (3.1) can be deduced from
the results of [36].

Theorem 3.1 Assume that the forward Euler method (1.2) applied to (1.1) is strongly
stable, i.e., the inequality (1.3) holds under the time step restriction (1.4). Then the
solution {Y [n]

i } and {y[n−1]
i } obtained by the GLM (3.1) satisfies (3.3) under the time

step restriction (1.5) with SSP coefficient C = C(T,S) given by

C(T,S) = sup
{
γ ∈ R : γ satisfies (3.4)

}
. (3.5)

It follows from this theorem that the coefficients of GLMs (3.1), and the corre-
sponding SSP coefficient, can be computed by solving the minimization problem

F(T,S) = −γ −→ min, (3.6)

with a very simple objective function F(T,S) := −γ , subject to the nonlinear inequal-
ity constrains (3.4), and to equality constrains

�p,q(T,S) = 0, (3.7)

Here, �p,q(T,S) = 0 represents conditions for order p and stage order q. Such order
and stage order conditions for GLMs, in different representations, were investigated in
[3–5, 8, 15]. The approach based on solving the minimization problem (3.6), subject
to constrains (3.4) and (3.7), was used in [7, 21–23] to investigate some classes of SSP
GLMs up to the order p = 4. SSP GLMs were also investigated in [9, 19, 29]. SSP
two-step RK methods were investigated in [27], and multistep RK methods in [1].

4 Monotonicity Theory for RKMethods

In this section, we apply the monotonicity theory of GLMs (3.1) presented in [36], and
summarized in Theorem 3.1, to the special case of explicit RK methods in Butcher
representation. It can be verified that the RKmethod (1.6) given by the abscissa vector
c = [c1, . . . , cs]T ∈ R

s , coefficient matrix A = [ai j ] ∈ R
s×s , and weight vector

b = [b1, . . . , bs]T ∈ R
s , can be written as GLM (3.1) with m = s + 1, � = 1, and the

coefficient matrices T and S defined by

T =
[
A 0
bT 0

]
∈ R

(s+1)×(s+1), S =
[
e
1

]
∈ R

s+1, (4.1)
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where e = [1, . . . , 1]T ∈ R
s . Observe that for this representation the condition (3.2)

is automatically satisfied. Putting y[n−1]
1 = yn−1 and yn]

1 = yn , the RK method (1.6)
takes now the form

⎧⎪⎨
⎪⎩
Y [n]
i = yn−1 + h

m∑
j=1

ti j f
(
tn−1 + c j h,Y [n]

j

)
i = 1, 2, . . . , s + 1,

yn = Y [n]
s+1,

(4.2)

n = 1, 2, . . . , N . For the representation (4.2), the monotonicity condition (3.3) takes
the form

∥∥Yn]
i

∥∥ ≤ ∥∥yn−1
∥∥, i = 1, 2, . . . , s + 1. (4.3)

In particular, for i = s + 1, we have Y [n]
s+1 = yn , and the condition (4.3) implies the

condition (1.3).
We will reformulate next the nonlinear inequality constrains (3.4), the charac-

terization of SSP coefficient given by the condition (3.5) in Theorem 3.1, and the
minimization problem (3.6) in terms of the coefficients c, A, and b, of RK method
(1.6). We have

I + γT =
[
I + γA 0
γbT 1

]

and it follows that det(I + γT) �= 0 if A is strictly lower triangular, which is the
case for explicit RK methods, or if A is lower triangular with nonzero entries on the
diagonal, which is the case for diagonally implicit RK methods. We have also

(I + γT)−1 =
[
I + γA 0
γbT 1

]−1

=
[

(I + γA)−1 0
−γbT (I + γA)−1 1

]
,

and it follows that

(I + γT)−1
[
S | γT

] =
[

(I + γT)−1 0

−γbT (I + γA)−1 1

] [
e γA 0

1 γbT 0

]

=
[

γ (I + γA)−1e γ (I + γA)−1A 0

1 − γbT (I + γA)−1e γ (bT − γbT (I + γA)−1A) 0

]
.

Since

γ (bT − γbT (I + γA)−1A) = γbT (I − γ (I + γA)−1A) = γbT (I + γA)−1,

we obtain

(I + γT)−1[S | γT
] =

[
γ (I + γA)−1e γ (I + γA)−1A 0

1 − γbT (I + γA)−1e γbT (I + γA)−1 0

]
.

123
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It follows from det(I + γT) �= 0 and the above relation that the condition (3.4) is
equivalent to

γ (I + γA)−1e ≥ 0, γ (I + γA)−1A ≥ 0,
1 − γbT (I + γA)−1e ≥ 0, γbT (I + γA)−1 ≥ 0.

(4.4)

We summarize the above discussion in the following theorem.

Theorem 4.1 Assume that the forward Euler method (1.2) applied to (1.1) is strongly
stable, i.e., the inequality (1.3) holds under the time step restriction (1.4). Then the
solution {Y [n]

i } and {yn−1} obtained by the RK method (4.2) satisfies (4.3) (hence also
(1.3)) under the time step restriction (1.5) with SSP coefficient C = C(c,A,b) given
by

C(c,A,b) = sup
{
γ ∈ R : γ satisfies (4.4)

}
. (4.5)

It follows from this theorem that, similarly as for GLMs (3.1), the coefficients of
RK methods (1.6) or (4.2), and the corresponding SSP coefficient, can be computed
by solving the minimization problem

F(c,A,b) = −γ −→ min, (4.6)

subject to the nonlinear inequality constrains (4.4), and the equality constrains

�p(c,A,b) = 0. (4.7)

Here, �p(c,A,b) = 0 stands for order conditions for RK methods up to the order p.
Such conditions are discussed in the monographs [3, 4, 15].

5 Explicit SSP RKMethods

In this section, we analyze explicit SSP RK methods. Examples of such methods, up
to the order p = 4 with s ≤ 10 stages, are obtained by solving the minimization
problem (4.6), subject to the inequality constrains (4.4), and the equality constrains
(4.7).

5.1 Explicit SSP RKMethods of Order p = 1

The explicit RK method of order p = 1 with s = 1 stages corresponds to the forward
Euler method (1.2), for which c = 0, A = 0, b = 1,

T =
[
0 0
1 0

]
, S =

[
1
1

]
.
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For this method the condition det(I + γT) �= 0 is automatically satisfied, and the
inequalities (4.4) reduce to

γ ≥ 0, 1 − γ ≥ 0.

This leads, as expected, to C = Ceff = 1.

5.2 Explicit SSP RKMethods of Order p = 2

In this section, we will search for explicit SSP RKmethods of order p = 2 with s ≥ 2
stages. Solving the minimization problem (4.6) with inequality constrains (4.4) and
equality constrains (4.7) corresponding to p = 2 leads to RK methods with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

s−1 0
1

s−1
1

s−1 0
...

...
...

. . .
1

s−1
1

s−1
1

s−1 · · · 0
1

s−1
1

s−1
1

s−1 · · · 1
s−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s
1
s
1
s
...

1
s
1
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c = Ae.

For these methods C = s − 1 and Ceff = (s − 1)/s. We have listed in Table 1 SSP
coefficients C and Ceff , intervals of absolute stability, and areas of regions of absolute
stability for RK methods of order p = 2 with s = 2, 3, . . . , 10, stages. We have
also plotted on Fig. 1 stability regions of these methods and on Fig. 2 scaled stability
regions obtained by multiplying the points on the boundary of regions of absolute
stability by p/s, where p is the order and s is the number of stages. These regions
increase in size as s ranges from 2 to 10. On these figures stability regions of SSP RK
method with p = s = 2 are plotted by a thick line.

Table 1 SSP coefficients C and
Ceff, intervals of absolute
stability, and areas of the regions
of absolute stability for RK
methods of order p = 2 with
s = 2, 3, . . . , 10, stages

s C Ceff Interval Area

2 1 1/2 (−2, 0) 5.83

3 2 2/3 (−4.5, 0) 15.87

4 3 3/4 (−6, 0) 31.94

5 4 4/5 (−8.3, 0) 54.00

6 5 5/6 (−10, 0) 82.26

7 6 6/7 (−12.3, 0) 116.58

8 7 7/8 (−14, 0) 157.17

9 8 8/9 (−16.2, 0) 203.85

10 9 9/10 (−18, 0) 256.82
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Re(z)

0

5

10
Im

(z
)

Fig. 1 Stability region of SSP RK method with p = s = 2 (thick line) and stability regions of SSP RK
methods of order p = 2 with s = 3, 4, . . . , 10 stages (thin lines). These regions increase in size as s ranges
from 2 to 10

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Re(z)

0

0.5

1

1.5

2

Im
(z
)

Fig. 2 Stability region of SSP RK method with p = s = 2 (thick line) and scaled stability regions of SSP
RK methods of order p = 2 with s = 3, 4, . . . , 10 stages (thin lines). These regions increase in size as s
ranges from 2 to 10

5.3 Explicit SSP RKMethods of Order p = 3

We will search for explicit SSP RK methods of order p = 3 with s = 3, 4, . . . , 10,
stages. Solving the minimization problem (4.6) with constrains (4.4) and (4.7) corre-
sponding to p = s = 3, we obtain the method whose Butcher representation is

c A

bT
=

0
1 1
1
2

1
4

1
4

1
6

1
6

2
3

,
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Table 2 SSP coefficients C and
Ceff, intervals of absolute
stability, and areas of the regions
of absolute stability for RK
methods of order p = 3 with
s = 3, 4, . . . , 10, stages

s C Ceff Interval Area

3 1 1/3 (−2.5, 0) 9.03

4 2 1/2 (−5.1, 0) 19.32

5 2.65 0.53 (−6.2, 0) 33.03

6 3.52 0.59 (−7.2, 0) 51.21

7 4.29 0.61 (−8.9, 0) 73.42

8 5.11 0.64 (−11, 0) 100.77

9 6.00 0.67 (−13.3, 0) 131.18

10 6.79 0.68 (−14.6, 0) 168.25

and for which C = 1 and Ceff = 1/3. It can be verified that this method is equivalent
to the Shu–Osher method SSPRK(3,3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y [n]
1 = yn−1,

Y [n]
2 = yn−1 + h f

(
tn−1,Y

[n]
1

)
,

Y [n]
3 = 3

4
yn−1 + 1

4
Y [n]
2 + 1

4
h f

(
tn−1 + h,Y [n]

2

)
,

yn = 1

3
yn−1 + 2

3
Y [n]
3 + 2

3
h f

(
tn−1 + h/2,Y [n]

3

)
,

described in Theorem 2.3 in [12].
Solving the minimization problem (4.6) with constrains (4.4) and (4.7) correspond-

ing to p = 3 and s = 4, we obtain the method whose Butcher representation is

c A

bT
=

0
1
2

1
2

1 1
2

1
2

1
2

1
6

1
6

1
6

1
6

1
6

1
6

1
2

.

For this method C = 2 and Ceff = 1/2.
The coefficients of methods obtained by solving the minimization problem (4.6)

with constrains (4.4) and (4.7) corresponding to p = 3 and s = 5, 6, . . . , 10, are
not listed here, but can be obtained from the authors. We have listed in Table 2 SSP
coefficients C and Ceff , interval of absolute stability, and areas of regions of absolute
stability for RK methods of order p = 3 with s = 3, 4, . . . , 10, stages. We have
also plotted on Fig. 3 stability regions of these methods and on Fig. 4 scaled stability
regions obtained by multiplying the points on the boundary of regions of absolute
stability by p/s, where p is the order and s is the number of stages. As for methods
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Fig. 3 Stability region of SSP RK method with p = s = 3 (thick line) and stability regions of SSP RK
methods of order p = 3 with s = 4, 5, . . . , 10 stages (thin lines). These regions increase in size as s ranges
from 3 to 10
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Fig. 4 Stability region of SSP RK method with p = s = 3 (thick line) and scaled stability regions of SSP
RK methods of order p = 3 with s = 4, 5, . . . , 10 stages (thin lines). These regions increase in size as s
ranges from 3 to 10

of order two these regions increase in size as s ranges from 3 to 10. On these figures
stability regions of SSP RK method with p = s = 3 are plotted by a thick line.

5.4 Explicit SSP RKMethods of Order p = 4

In this section we will search for explicit SSP RK methods of order p = 4 with
s = 4, 5, . . . , 10, stages. It was proved in [13, 30] that explicit SSP RK methods with
s = 4 stages do not exist, and this was also confirmed by our numerical searches.
Solving the minimization problem (4.6) with constrains (4.4) and (4.7) corresponding
to p = 4 and s = 5, we obtain the method with coefficients
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Table 3 SSP coefficients C and
Ceff, intervals of absolute
stability, and areas of the regions
of absolute stability for RK
methods of order p = 4 with
s = 5, 6, . . . , 10, stages

s C Ceff Interval Area

5 1.51 0.30 (−5.3, 0) 22.59

6 2.29 0.38 (−5.9, 0) 34.53

7 3.32 0.47 (−7.1, 0) 53.33

8 4.15 0.52 (−8.7, 0) 76.56

9 4.91 0.55 (−11.3, 0) 102.37

10 6.00 0.60 (−13.9, 0) 134.06

A =

⎡
⎢⎢⎢⎢⎣

0
0.391752226571889 0
0.217669096261169 0.368410593050372 0
0.082692086657811 0.139958502191896 0.251891774271693 0
0.067966283637115 0.115034698504632 0.207034898597385 0.544974750228520 0

⎤
⎥⎥⎥⎥⎦ ,

b =

⎡
⎢⎢⎢⎢⎣

0.146811876084786
0.248482909444976
0.104258830331980
0.274438900901350
0.226007483236907

⎤
⎥⎥⎥⎥⎦ , c = Ae.

For this method C = 1.51 and Ceff = 0.30. This methods is equivalent to
SSPRK(5,4) scheme, whose Shu–Osher representation is listed in [12].

The coefficients of methods obtained by solving the minimization problem (4.6)
with constrains (4.4) and (4.7) corresponding to p = 4 and s = 6, 7, 8, 9, are not listed
here, but can be obtained from the authors. The coefficients of method corresponding
to p = 4 and s = 10 are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
6 0
1
6

1
6 0

1
6

1
6

1
6 0

1
6

1
6

1
6

1
6 0

1
15

1
15

1
15

1
15

1
15 0

1
15

1
15

1
15

1
15

1
15

1
6 0

1
15

1
15

1
15

1
15

1
15

1
6

1
6 0

1
15

1
15

1
15

1
15

1
15

1
6

1
6

1
6 0

1
15

1
15

1
15

1
15

1
15

1
6

1
6

1
6

1
6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
10
1
10
1
10
1
10
1
10
1
10
1
10
1
10
1
10
1
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c = Ae.

For this method C = 6 and Ceff = 3/5. This method is equivalent to the SSPRK(10,4)
scheme, whose Shu–Osher representation is listed in [12]. We have listed in Table 3
SSP coefficients C and Ceff , interval of absolute stability, and areas of regions of
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Fig. 5 Stability region of RK method with p = s = 4 (thick line) and stability regions of SSP RK methods
of order p = 4 with s = 5, 6, . . . , 10 stages (thin lines). These regions increase in size as s ranges from 4
to 10
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Fig. 6 Stability region of RK method with p = s = 4 (thick line) and scaled stability regions of SSP RK
methods of order p = 4 with s = 5, 6, . . . , 10 stages (thin lines). These regions increase in size as s ranges
from 4 to 10

absolute stability for RK methods of order p = 4 with s = 5, 6, . . . , 10, stages. We
have also plotted on Fig. 5 stability regions of these methods and on Fig. 6 scaled
stability regions obtained by multiplying the points on the boundary of regions of
absolute stability by p/s, where p is the order and s is the number of stages. We
have also plotted on these figures by a thick line stability region of RK method with
p = s = 4. As for methods of order two and three these regions increase in size as s
ranges from 4 to 10.

6 Implicit SSP RKMethods

In this section, we analyze implicit SSP RK methods. Examples of such methods, up
to the order p = 4, are obtained by solving the minimization problem (4.6), subject
to the inequality constrains (4.4), and the equality constrains (4.7).
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6.1 Implicit SSP RKMethods of Order p = 1

The implicit RKmethod of order p = 1with s = 1 stages corresponds to the backward
Euler method

yn = yn−1 + f (tn, yn),

n = 1, 2, . . . , N , for which c = 1, A = 1, b = 1,

T =
[
1 0
1 0

]
, S =

[
1
1

]
.

For this method, the condition det(I + γT) = 1 + γ �= 0 is satisfied for γ ≥ 0, and
the inequalities (4.4) reduce to

γ (1 + γ )−1 ≥ 0, 1 − γ (1 + γ )−1 ≥ 0.

These conditions lead to C = Ceff = ∞, compare [12, 28].

6.2 Implicit SSP RKMethods of Order p = 2

In this section, we will search for implicit SSP RKmethods of order p = 2 with s ≥ 2
stages. Solving the minimization problem (4.6) with inequality constrains (4.4) and
equality constrains (4.7) corresponding to p = 2 leads to singly diagonally implicit
RK methods with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2s
1
s

1
2s

1
s

1
s

1
2s

...
...

...
. . .

1
s

1
s

1
s · · · 1

2s
1
s

1
s

1
s · · · 1

s
1
2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s
1
s
1
s
...

1
s
1
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c = Ae.

For these methods C = 2s and Ceff = 2. The stability function

R(z) = 1 + zbT (I − zA)−1e

of these methods takes the form R(z) = P(z)/Q(z), where P(z) and Q(z) are poly-
nomials of degree s equal to

P(z) = det(I − zA + z e bT ),

and

Q(z) = det(I − zA) = (1 − λz)s .

123



Bulletin of the Iranian Mathematical Society (2022) 48:4029–4062 4045

Here, λ = 1/(2s) is the diagonal element of the coefficient matrixA. It can be verified
that the Nørsett polynomial E(y) defined by [16]

E(y) = Q(iy)Q(−iy) − P(iy)P(−iy), y ∈ R,

is identically equal to zero. This proves that all these methods are A-stable.
Choosing the matrix L to be equal to

L =
[
L0

L1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0
1 0

. . .
. . .

1 0
1 0

0 0 · · · · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(s+1)×s,

the coefficient matrix M of the generalized Shu–Osher representation (2.1) takes the
form

M =
[
M0

M1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2s
1
2s

1
2s
1
2s

1
2s

. . .
. . .

1
2s

1
2s
1
2s

1
2s

0 0 · · · · · · 0 1
2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(s+1)×s .

This representation was presented in [12]. As already observed, the generalized Shu–
Osher representation is not unique, and for RK method of order p = 2 with s = 2
stages given by

c =
[

1
4
3
4

]
, A =

[
1
4 0
1
2

1
4

]
, b =

[
1
2
1
2

]
,

Ferracina and Spijker [10] have chosen

L =
[
L0

L1

]
=

⎡
⎢⎣

1
2 0
1
2

1
2

0 1

⎤
⎥⎦ ,
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which leads to

M =
[
M0

M1

]
=

⎡
⎢⎢⎣

1
8 0
1
8

1
8

0 1
4

⎤
⎥⎥⎦ .

6.3 Implicit SSP RKMethods of Order p = 3

In this section, we will search for implicit SSP RKmethods of order p = 3 with s ≥ 2
stages. Solving the minimization problem (4.6) with inequality constrains (4.4) and
equality constrains (4.7) corresponding to p = 3 leads to singly diagonally implicit
RK methods with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s+1−√
s2−1

2(s+1)√
s2−1
s2−1

s+1−√
s2−1

2(s+1)√
s2−1
s2−1

√
s2−1
s2−1

s+1−√
s2−1

2(s+1)

...
...

...
. . .

√
s2−1
s2−1

√
s2−1
s2−1

√
s2−1
s2−1

· · · s+1−√
s2−1

2(s+1)√
s2−1
s2−1

√
s2−1
s2−1

√
s2−1
s2−1

· · ·
√
s2−1
s2−1

s+1−√
s2−1

2(s+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [ 1
s

1
s · · · 1

s

]T
, c = Ae.

For these methods C = s − 1 + √
s2 − 1 and Ceff = (s − 1 + √

s2 − 1)/s.
Choosing the matrix L to be equal to

L =
[
L0

L1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1 0
1 0

. . .
. . .

1 0
1 0

0 0 · · · · · · 0 λs+1,s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(s+1)×s,

where

λs+1,s = (s + 1)
(
s − 1 + √

s2 − 1
)

s
(
s + 1 + √

s2 − 1
) ,
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Fig. 7 Stability regions of implicit SSP RK methods of order p = 3 with s = 2, 3, . . . , 10 stages. These
regions increase in size as s ranges from 2 to 10

the coefficient matrix M of the generalized Shu–Osher representation (2.1) takes the
form

M =
[
M0

M1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ11
μ21 μ11

μ21 μ11
. . .

. . .

μ21 μ11
μ21 μ11

0 0 · · · · · · 0 μs+1,s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(s+1)×s,

where

μ11 = 1

2

(
1 −

√
s − 1

s + 1

)
, μ21 = 1

2

(√
s + 1

s − 1
− 1

)
,

and

μs+1,s = s + 1

s
(
s + 1 + √

s2 − 1
) .

This generalizedShu–Osher representationwas presented in [12].All thesemethods
have bounded stability regions. These regions are plotted on Fig. 7 for p = 3 and
s = 2, 3, . . . , 10, and the scaled stability regions, obtained by multiplying points on
the boundary of these regions by p/s are plotted on Fig. 8. These regions increase in
size as s ranges from 2 to 10.

6.4 Implicit SSP RKMethods of Order p = 4

In this section, we will search for implicit SSP RK methods of order p = 4 with
s ≥ 3 stages. Solving the minimization problem (4.6) with inequality constrains (4.4)
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Fig. 8 Scaled stability regions of implicit SSP RK methods of order p = 3 with s = 2, 3, . . . , 10 stages.
These regions increase in size as s ranges from 2 to 10

and equality constrains (4.7) corresponding to p = 4 and s = 3 leads to diagonally
implicit RK methods with coefficients given by

A =
⎡
⎣ 0.1572288784923564 0 0
0.4522707327651950 0.0450020385343502 0
0.3140166706802460 0.3693145682602409 0.1583343805297566

⎤
⎦ ,

b = [
0.3540519556894777 0.2884480711749641 0.3574999731355583

]T
,

c = Ae.

For this method C = 2.05 and Ceff = 0.68. The generalized Shu–Osher representation
of this method is presented in [12].

Solving the minimization problem (4.6) with inequality constrains (4.4) and equal-
ity constrains (4.7) corresponding to p = 4 and s = 4 leads to diagonally implicit RK
methods with coefficients given by

A =

⎡
⎢⎢⎣
0.1193097641665687 0 0 0
0.3454513963186752 0.0706060213251719 0 0
0.2761337244300779 0.2372027892889927 0.0706060424397012 0
0.2595320654029659 0.2229417285069986 0.2789066675911974 0.1193097692494192

⎤
⎥⎥⎦ ,

b = [
0.2766452587403324 0.2233547210615690 0.2233547484281947 0.2766452717699039

]T
,

c = Ae.

For this method C = 4.42 and Ceff = 1.11. The generalized Shu–Osher represen-
tation of this method is presented in [12].

We have also solved the minimization problem (4.6) with inequality constrains
(4.4) and equality constrains (4.7) corresponding to p = 4 and s = 5, 6, . . . , 10. The
coefficients of these methods in Butcher form are not listed here, but can be obtained
from the authors, and the generalized Shu–Osher representations of these methods are
presented in [12].

The stability regions of these SSPRKmethods of order p = 4with s = 3, 4, . . . , 10
stages are plotted on Fig. 9 and the scaled stability regions, obtained by multiplying
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Fig. 9 Stability regions of implicit SSP RK methods of order p = 4 with s = 3, 4, . . . , 10 stages. These
regions increase in size as s ranges from 3 to 10
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Fig. 10 Scaled stability regions of implicit SSP RK methods of order p = 4 with s = 3, 4, . . . , 10 stages.
These regions increase in size as s ranges from 3 to 10

points on the boundary of these regions by p/s are plotted on Fig. 10. Similarly as for
SSP RK methods of order p = 3, these regions increase in size as s ranges from 3 to
10.

Coefficients of optimal implicit SSP RK methods up to order p = 6 are listed in
[12].

7 Linear MultistepMethods

In this section, we will analyze LMMs specified by the coefficients

α = [
αk αk−1 · · · α1

] ∈ R
k,

[
β β0

] ∈ R
k+1,

where

β = [
βk βk−1 · · · β1

] ∈ R
k .
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These methods are defined by

yn =
k∑
j=1

α j yn− j + h
k∑
j=0

β j f (tn− j , yn− j ), (7.1)

n = k, k + 1, . . . , N , Nh = tend − t0, tn = t0 + nh, where y0 = y(t0), y1, . . . , yk−1
are the given starting values.

The first and second characteristic polynomials of LMM (7.1) are defined by

ρ(ξ) = ξ k −
k∑
j=1

α jξ
k− j , σ (ξ) =

k∑
j=0

β jξ
k− j .

The LMM (7.1) is said to be zero-stable if no root of the first characteristic polynomial
ρ(ξ) has modulus greater than one, and if every root with modulus one is simple.

The method (7.1) has order p if and only if the following order conditions are
satisfied

k∑
j=1

α j = 1,
k∑
j=1

j� α j = �

k∑
j=0

j�−1 β j , � = 1, 2, . . . , p, (7.2)

compare [4, 6, 15, 17, 24, 31, 32]. The relations corresponding to p = 1,

k∑
j=1

α j = 1,
k∑
j=1

j α j =
k∑
j=0

β j ,

are usually referred to as consistency conditions. These conditions can be written in
the more compact form

ρ(1) = 0, ρ′(1) = σ(1).

If β0 = 0 the method (7.1) is explicit. For such methods the following result was
formulated in [12], compare also [20, 34].

Theorem 7.1 Assume that the forward Euler method (1.2) applied to (1.1) is strongly
stable, i.e., the inequality (1.3) holds under the time step restriction (1.4). Then, the
solution yn and obtained by the LMM (7.1) satisfies (1.3) under the time step restriction
(1.5) with SSP coefficient C = C(α, β) given by

C(α, β) =
{
min

{αi

βi
, αi , βi ≥ 0, i = 0, 1, . . . , k

}
,

0, otherwise.
(7.3)

We have also the following bound on the SSP coefficients of explicit LMMs.
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Theorem 7.2 (Lenferink [33]) The SSP coefficient C(α, β) of an k step explicit LMM
(7.1) of order p > 1 satisfies the bound

C(α, β) ≤ k − p

k − 1
. (7.4)

In what follows we will investigate SSP properties of LMMs (7.1) by reformulating
thesemethods as GLMs (3.1), and then usingmonotonicity theory of GLMs developed
by Spijker [36]. Putting

c = [−k −k + 1 · · · 0 ]T
, tn+c = [

tn−k tn−k+1 · · · tn
]T

,

Y [n] =

⎡
⎢⎢⎢⎣

yn−k

yn−k+1
...

yn

⎤
⎥⎥⎥⎦ , y[n] =

⎡
⎢⎢⎢⎣
yn−k+1
yn−k+2

...

yn

⎤
⎥⎥⎥⎦ ,

f (tn+c,Y
[n]) =

⎡
⎢⎢⎢⎣

f (tn−k, yn−k)

f (tn−k+1, yn−k+1)
...

f (tn, yn)

⎤
⎥⎥⎥⎦ ,

the LMM (7.1) can be written as GLM (3.1) with m = k + 1, � = k, abscissa vector
c and coefficient matrices S and T defined by

S =
[
I
α

]
∈ R

(k+1)×k, T =
[
0 0
β β0

]
∈ R

(k+1)×(k+1),

where 0 is k × k zero matrix, 0 is k × 1 zero vector, and I is k × k identity matrix.
Then, det(I + γ T) = 1 + γβ0 �= 0 for γ �= −1/β0,

(I + γ T)−1 =
⎡
⎢⎣

I 0

− γ β

1 + γ β0

1

1 + γ β0

⎤
⎥⎦ ,

(I + γ T)−1 [
S γ T

] =
⎡
⎢⎣

I 0 0

α − γ β

1 + γ β0

γ β

1 + γ β0

γ β0

1 + γ β0

⎤
⎥⎦ ,

and it follows that the conditions (3.4) take the form

γ �= − 1

β0
,

α − γ β

1 + γ β0
≥ 0,

γ β

1 + γ β0
≥ 0,

γ β0

1 + γ β0
≥ 0. (7.5)

We summarize the above discussion in the following theorem.
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Theorem 7.3 Assume that the forward Euler method (1.2) applied to (1.1) is strongly
stable, i.e., the inequality (1.3) holds under the time step restriction (1.4). Then the
solution yn and obtained by the LMM (7.1) satisfies (1.3) under the time step restriction
(1.5) with SSP coefficient C = C(α, β, β0) given by

C(α, β, β0) = sup
{
γ ∈ R : γ satisfies (7.5)

}
. (7.6)

We have also the following bound on SSP coefficient of implicit LMMs.

Theorem 7.4 ([20, 34]) The SSP coefficient C(α, β, β0) of implicit LMM (7.1) of order
p > 1 satisfies the bound

C(α, β, β0) ≤ 2. (7.7)

It follows from Theorem 7.3 that the coefficients α, β, and β0 of LMM (7.1),
and the corresponding SSP coefficient C(α, β, β0), can be computed by solving the
minimization problem

F(α, β, β0) = −γ −→ min, (7.8)

subject to the nonlinear inequality constrains (7.5), and the equality constrains (7.2)
corresponding to the order conditions up to the order p.

8 Explicit SSP LMMs

In this section, we investigate explicit SSP LMMs up to the order p = 4, i.e., methods
(7.1) corresponding to β0 = 0. The explicit methodwith p = 1 and k = 1 corresponds
to the forward Euler method, and was analyzed in Sect. 5.1. The explicit methods of
order p = 2, p = 3, and p = 4, are analyzed in the sections below.

8.1 Explicit SSP LMMs of Order p = 2

In this section, we will search for explicit LMMs of order p = 2 with k ≥ 3 stages.
Solving the minimization problem (7.8) with inequality constrains (7.5) and equality
constrains (7.2) corresponding to β0 = 0 and the order p = 2 leads to LMMs with
coefficients given by

α1 = (k − 1)2 − 1

(k − 1)2
, αi = 0, i = 2, 3, . . . , k − 1, αk = 1

(k − 1)2
,

β1 = k

k − 1
, βi = 0, i = 2, 3, . . . , k,

and SSP coefficient Ceff = (k − 2)/(k − 1). These methods were derived in [33], and
were also reproduced in [12]. We have listed in Table 4 SSP coefficients C = Ceff ,
intervals of absolute stability, areas of regions of absolute stability and max{|r j |, j =
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Table 4 SSP coefficients
C = Ceff, intervals of absolute
stability, areas of the regions of
absolute stability, and
max{| r j |} for LMMs of order
p = 2 with k = 3, 4, . . . , 10,
steps

k C = Ceff Interval Area max{|r j |}
3 1/2 (−1.33, 0) 1.22 0.50

4 2/3 (−1.33, 0) 1.70 0.50

5 3/4 (−1.60, 0) 1.98 0.54

6 4/5 (−1.60, 0) 2.17 0.57

7 5/6 (−1.71, 0) 2.30 0.60

8 6/7 (−1.71, 0) 2.40 0.63

9 7/8 (−1.78, 0) 2.48 0.65

10 8/9 (−1.78, 0) 2.55 0.67
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Fig. 11 Stability region of Adams–Bashforth method of order p = 2 (thick line) and of SSP LMMs of
order p = 2 with k = 3, 4, . . . , 10, steps (thin lines). These regions increase in size as k ranges from 3 to
10

2, 3, . . . , k}, where r j , j = 2, 3, . . . , k, are roots of the first characteristic polynomial
ρ(ξ), which are less than one, for LMMs of order p = 2 with k = 3, 4, . . . , 10, steps.
The regions of absolute stability for these methods corresponding to k = 3, 4, . . . , 10,
are plotted on Fig. 11. These regions increase in size as k ranges from 3 to 10. We
have also plotted on this figure by a thick line the stability region of Adams–Bashforth
methods of order p = 2. This method is defined by

yn = yn−1 + h

(
3

2
f (tn−1, yn−1) − 1

2
f (tn−2, yn−2)

)
,

n = 2, 3, . . . , N , with given starting values y0 = y(t0) and y1.

8.2 Explicit SSP LMMs of Order p = 3

Solving the minimization problem (7.8) with inequality constrains (7.5) and equality
constrains (7.2) corresponding to β0 = 0, p = 3, and k = 4, k = 5, and k = 6, lead
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Table 5 SSP coefficients C = Ceff, intervals of absolute stability, areas of the regions of absolute stability,
and max{| r j |} for LMMs of order p = 3 with k = 4, k = 5, and k ≥ 6, steps

k C = Ceff Interval Area max{|r j |}
4 1/3 (−0.89, 0) 0.73 0.77

5 1/2 (−1.07, 0) 1.12 0.73

≥ 6 0.5828 (−1.35, 0) 1.38 0.73
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Fig. 12 Stability region of Adams–Bashforth method of order p = 3 (thick line) and of SSP LMMs of
order p = 3 with k = 4, k = 5, and k ≥ 6, steps (thin lines). These regions increase in size as k ranges
from 4 to 6

to the methods

yn = 16

27
yn−1 + 11

27
yn−4 + h

(
16

9
f (tn−1, yn−1) + 4

9
f (tn−4, yn−4)

)
, (8.1)

with optimal SSP coefficient C = Ceff = 1/3,

yn = 25

16
yn−1 + 7

32
yn−5 + h

(
25

16
f (tn−1, yn−1) + 5

16
f (tn−5, yn−5)

)
, (8.2)

with optimal SSP coefficient C = Ceff = 1/2,

yn = 1020

1199
yn−1 + 113

3685
yn−5 + 791

6668
yn−6

+h

(
886

607
f (tn−1, yn−1) + 162

3079
f (tn−5, yn−5) + 909

4466
f (tn−6, yn−6)

)
,

(8.3)

with SSP coefficient C = Ceff ≈ 0.5828. The coefficients of (8.3) are listed in Matlab
rational format. The methods (8.1), (8.2), and (8.3), are equivalent to SSPMS(4, 3),
SSPMS(5, 3), and SSPMS(6, 3)2 formulas listed in [12]. The search for methods of
order p = 3 and k > 6 leads to the method (8.3) corresponding to k = 6.
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We have listed in Table 5 SSP coefficients C = Ceff , intervals of absolute stability,
areas of regions of absolute stability and max{|r j |, j = 2, 3, . . . , k}, where r j , j =
2, 3, . . . , k, are roots of the first characteristic polynomial ρ(ξ), which are less than
one, for LMMs of order p = 3 with k = 4, k = 5, and k ≥ 6, steps. The regions of
absolute stability for these methods corresponding to k = 4, k = 5, and k ≥ 6, are
plotted on Fig. 12. These regions increase in size as k ranges from 4 to 6. We have also
plotted on this figure by a thick line the stability region of Adams–Bashforth methods
of order p = 3. This method is defined by

yn = yn−1 + h

(
23

12
f (tn−1, yn−1) − 4

3
f (tn−2, yn−2) + 5

12
f (tn−3, yn−3)

)
,

n = 3, 4, . . . , N , with given starting values y0 = y(t0), y1, and y2.

8.3 Explicit SSP LMMs of Order p = 4

Solving the minimization problem (7.8) with inequality constrains (7.5) and equality
constrains (7.2) corresponding to β0 = 0, p = 4, and k = 5, leads to the method with
rather small SSP coefficient and very small region of absolute stability. The coefficients
of this method are not listed here. Solving this minimization problem corresponding
to p = 4 and k = 6 we obtain the method, which in Matlab rational format takes the
form

yn = 963

2812
yn−1 + 304

1585
yn−4 + 747

7984
yn−5 + 808

2171
yn−6

+h

(
1667

802
f (tn−1, yn−1) + 1823

1566
f (tn−4, yn−4) + 707

1245
f (tn−5, yn−5)

)
.

(8.4)

The SSP coefficient of this method is C = Ceff ≈ 0.1648. This method is equivalent
to SSPMS(4, 6) method, which was found numerically in [25, 26], and reproduced in
[12].

We have listed in Table 6 SSP coefficients C = Ceff , intervals of absolute stability,
areas of regions of absolute stability and max{|r j |, j = 2, 3, . . . , k}, where r j , j =
2, 3, . . . , k, are roots of the first characteristic polynomial ρ(ξ), which are less than
one, for explicit LMMs of order p = 4 with k = 5, 6, . . . , 10, steps. The regions of
absolute stability for these methods corresponding to k = 5, 6, . . . , 10, are plotted on
Fig. 13. These regions increase in size as k ranges from 5 to 10. We have also plotted
on this figure by a thick line the stability region of Adams–Bashforth methods of order
p = 4. This method is defined by

yn = yn−1 + h

(
55

24
f (tn−1, yn−1) − 59

24
f (tn−2, yn−2)

+37

24
f (tn−3, yn−3) − 9

24
f (tn−4, yn−4)

)
,
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Table 6 SSP coefficients
C = Ceff, intervals of absolute
stability, areas of the regions of
absolute stability, and
max{| r j |} for LMMs of order
p = 4 with k = 5, 6, . . . , 10,
steps

k C = Ceff Interval Area max{|r j |}
5 0.0212 (−0.05, 0) 0.01 0.98

6 0.1648 (−0.59, 0) 0.22 0.85

7 0.2816 (−0.76, 0) 0.47 0.78

8 0.3586 (−0.72, 0) 0.52 0.75

9 0.3925 (−0.85, 0) 0.71 0.75

10 0.4208 (−0.95, 0) 0.84 0.78
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Fig. 13 Stability region of Adams–Bashforth method of order p = 4 (thick line) and of SSP LMMs of
order p = 4 with k = 5, 6, . . . , 10, steps (thin lines). These regions increase in size as k ranges from 5 to
10

n = 4, 5, . . . , N , with given starting values y0 = y(t0), y1, y2, and y3.
The SSP coefficients of explicit LMMs of order up tp p = 15 with up to k = 50

steps are listed in [12].

9 Implicit SSP LMMs

In this section, we investigate implicit SSP LMMs up to the order p = 4, i.e., methods
(7.1) with β0 �= 0. The implicit method with p = 1 and k = 1 corresponds to the
backward Euler method, and was analyzed in Sect. 6.1. The implicit methods of order
p = 2, p = 3, and p = 4, are analyzed in the sections below.

9.1 Implicit SSP LMMs of Order p = 2

Solving the minimization problem (7.8) with inequality constrains (7.5) and equality
constrains (7.2) corresponding to β0 �= 0, p = 2, and k ≥ 1, leads to the trapezoidal
method

yn = yn−1 + 1

2

(
f (tn, yn) + f (tn−1, yn−1)

)
, (9.1)

123



Bulletin of the Iranian Mathematical Society (2022) 48:4029–4062 4057

n = 1, 2, . . . , N . This method is A-stable. The coefficient matrices S and T of Spijker
representation of this method are given by

S =
[
1
α1

]
=

[
1
1

]
, T =

[
0 0
β1 β0

]
=

[
0 0

1
2

1
2

]
,

and it can be verified that relations (7.5) for this method reduce to

γ �= −2, 0 ≤ γ ≤ 2.

This leads to the optimal SSP coefficient C = Ceff = 2, compare Theorem 7.4.
Themethod (9.1) can be also written as implicit RKmethodwith FSAL (First Same

As Last) property, with coefficients

c A

bT
=

0 0 0

1 1
2

1
2

1
2

1
2

,

or

⎧⎪⎪⎨
⎪⎪⎩

Y1 = yn−1,

Y2 = yn−1 + 1

2

(
f (tn−1,Y1) + f (tn,Y2)

)
,

yn = Y2,

n = 1, 2, . . . , N .

9.2 Implicit SSP LMMs of Order p = 3

Solving the minimization problem (7.8) with inequality constrains (7.5) and equality
constrains (7.2) corresponding to β0 �= 0, p = 3, and k ≥ 2, leads to the methods
with coefficients

α1 = k2(2k − 3)

(k − 1)2(2k + 1)
, α j = 0, j = 2, 3, . . . , k − 1, αk = 1

(2k + 1)(k − 1)2
,

β0 = k

2k + 1
, β1 = k2

(2k + 1)(k − 1)
, β j = 0, j = 2, 3, . . . , k,

and optimal SSP coefficients

C = Ceff = 2k − 1

k − 1
,

compare [34].
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Table 7 SSP coefficients
C = Ceff, intervals of absolute
stability, areas of the regions of
absolute stability, and
max{| r j |} for LMMs of order
p = 3 with k = 2, 3, . . . , 10,
steps

k C = Ceff Interval Area max{|r j |}
2 1.0000 (−4.00, 0) 15.76 0.20

3 1.5000 (−9.33, 0) 67.76 0.19

4 1.6667 (−13.33, 0) 142.23 0.24

5 1.7500 (−17.60, 0) 245.30 0.29

6 1.8000 (−21.60, 0) 372.28 0.33

7 1.8333 (−25.71, 0) 527.17 0.37

8 1.8571 (−29.71, 0) 706.90 0.41

9 1.8750 (−33.78, 0) 914.44 0.44

10 1.8889 (−37.78, 0) 1147.51 0.46
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Fig. 14 Stability region of Adams–Moulton method of order p = 3 (thick line) and of SSP LMMs of order
p = 4 with k = 5, 6, . . . , 10, steps (thin lines). These regions increase in size as k ranges from 5 to 10

We have listed in Table 7 SSP coefficients C = Ceff , intervals of absolute stability,
areas of regions of absolute stability and max{|r j |, j = 2, 3, . . . , k}, where r j , j =
2, 3, . . . , k, are roots of the first characteristic polynomial ρ(ξ), which are less than
one, for implicit LMMs of order p = 3 with k = 2, 3, . . . , 10, steps. The regions of
absolute stability for these methods corresponding to k = 2, 3, . . . , 10, are plotted on
Fig. 14. These regions increase in size as k ranges from 2 to 10. We have also plotted
on this figure by a thick line the stability region of Adams–Moulton methods of order
p = 3. This method is defined by

yn = yn−1

+h

(
5

12
f (tn, yn) + 2

3
f (tn−1, yn−1) − 1

12
f (tn−2, yn−2)

)
,

n = 2, 3, . . . , N , with given starting values y0 = y(t0), and y1.
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Table 8 SSP coefficients C = Ceff, intervals of absolute stability, areas of the regions of absolute stability,
and max{| r j |} for LMMs of order p = 4 with k = 3, and k ≥ 4, steps

k C = Ceff Interval Area max{|r j |}
3 1.0000 (−3.56, 0) 11.25 0.40

≥ 4 1.2432 (−5.65, 0) 24.57 0.38
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Fig. 15 Stability region of Adams–Moulton method of order p = 4 (thick line) and of SSP LMMs of order
p = 4 with k = 3, and k ≥ 4, steps (thin lines). These regions increase in size as k ranges from 3 to 4

9.3 Implicit SSP LMMs of Order p = 4

Solving the minimization problem (7.8) with inequality constrains (7.5) and equality
constrains (7.2) corresponding to β0 �= 0, p = 4, and k = 3, leads to the method with
coefficients

yn = 27

32
yn−1 + 5

32
yn−3

+h

(
3

8
f (tn, yn) + 27

32
f (tn−1, yn−1) + 3

32
f (tn−3, yn−3)

)
,

(9.2)

n = 3, 4, . . . , N , with starting values y0 = y(t0), y1, and y2. Solving the mini-
mization problem (7.8) with inequality constrains (7.5) and equality constrains (7.2)
corresponding to β0 �= 0, p = 4, and k ≥ 4, leads to the method with coefficients,
which in Matlab rational format, are given by

α1 = 3407
3691 , α2 = 0, α3 = 177

5482 , α4 = 323
7233 ,

α j = 0, j = 5, 6, . . . , k,

β0 = 1272
3277 , β1 = 617

831 , β2 = 0, β3 = 115
4428 , β4 = 137

3814 ,

β j = 0, j = 5, 6, . . . , k.

(9.3)
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The methods (9.2) and (9.3) are equivalent to the methods derived in [34]. We
have listed in Table 8 SSP coefficients C = Ceff , intervals of absolute stability,
areas of regions of absolute stability and max{|r j |, j = 2, 3, . . . , k}, where r j ,
j = 2, 3, . . . , k, are roots of the first characteristic polynomial ρ(ξ), which are less
than one, for implicit LMMs of order p = 3 with k = 3, and k ≥ 4, steps. The regions
of absolute stability for these methods corresponding to k = 3, and k ≥ 4, are plotted
on Fig. 15. These regions increase in size as k ranges from 3 to 4. We have also plotted
on this figure by a thick line the stability region of Adams–Moulton methods of order
p = 4. This method is defined by

yn = yn−1 + h

(
9

24
f (tn, yn) + 19

24
f (tn−1, yn−1) − 5

24
f (tn−2, yn−2)

+ 1

24
f (tn−3, yn−3))

)
,

n = 3, 4, . . . , N , with given starting values y0 = y(t0), y1, and y2.
The SSP coefficients of implicit LMMs of order up tp p = 15 with up to k = 50

steps are listed in [12].

10 Concluding Remarks

SSP properties of explicit or implicit RK methods are usually investigated using
Shu–Osher or generalized Shu–Osher representations. In this paper, we discussed
the construction of explicit and implicit SSP RK methods using a different point of
view. This different approach is based of reformulating first RK methods as GLMs,
and then using monotonicity theory of GLMs developed by Spijker [36] to construct
explicit or implicit SSP RK methods. Both approaches, i.e., approach based on Shu–
Osher or generalized Shu–Osher representation, or monotonicity theory of GLMs,
lead to the same classes of explicit or implicit RK methods, but expressed in different
representations (Shu–Osher, generalized Shu–Osher, or Butcher). The SSP LMMs are
also investigated using monotonicity theory of GLMs.
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