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Abstract
In this paper, we propose to solve semidefinite nonlinear complementarity problems
(NCP) associated to a nonlinear matrix function , by a quasi-Newton method. For this,
we reformulate this problem as a smooth nonlinear matrix equation by using a new
smooth NCP matrix function, then we apply a quasi-Newton method for solving this
matrix equation. We prove the local superlinear convergence of our algorithm and we
give some numerical examples to illustrate the efficiency of the proposed method.
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function · Matrix equation · Quasi-Newton method · Superlinear convergence
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1 Introduction

LetSn andSn+ denote the space of n×n symmetricmatrices, and the cone of symmetric
positive semidefinite matrices respectively. We endow Sn with the inner product and
the Frobenius norm defined by
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〈X , S〉 = Tr(XS) and ‖X‖F = √〈X , X〉,

where X , S ∈ Sn and Tr(·) stands for the trace of a matrix.
The notation A � 0 and A � 0 means that A is symmetric positive semidefinite

and symmetric positive definite, respectively.
Let F : Sn → Sn be a continuously differentiable function. The Semidefinite Non-

linear Complementarity Problem associated to F (SDNCP(F)) is defined as follows:
Find X ∈ Sn such that:

X ∈ Sn+,Y = F(X) ∈ Sn+, and 〈X ,Y 〉 = Tr(XY ) = 0. (1.1)

If F is an affine function of the form F(X) = L(X) + Q where L : Sn → Sn

is a linear operator and Q ∈ Sn , then SDNCP(F) is called a semidefinite linear
complementarity problem (SDLCP(F), for short).

Note that the SDNCP(F) is a generalization of the nonnegative orthant nonlinear
complementarity problem (NCP) defined by: Find x ∈ R

n such that:

x ≥ 0, f (x) ≥ 0, and xT f (x) = 0, (1.2)

where f : R
n → R

n is continuously differentiable vector function.
This problem arises naturally in the optimality conditions of semidefinite pro-

gramming problems (SDP) involving inequality constraints and has wide applications
in engineering, economics, management sciences and other fields (see [10, 12], for
example). Some methods have been proposed to solve the SDNCP(F) problems, for
example, interior-point methods and merit function methods in [11]. Chen and Tseng
[13] proposed a so-called exact non-interior continuation (or smoothing-type Newton)
method to solve SDNCP(F).

Another approach to solve the problem (SDNCP(F)) is to reformulate it as a matrix
equation H (X , S) = 0 where H : Sn × Sn → Sn × Sn is defined by

H (X , S) =
(

φ (X , S)

F(X) − S

)
, (1.3)

and φ : Sn × Sn → Sn is an NCP function, that is:

φ (X , S) = 0 ⇔ X ∈ Sn+, S ∈ Sn+, and XS = 0. (1.4)

Most reformulations of the SDNCP(F) problem use nonsmooth NCP functions and
the most popular NCP functions are Fischer–Burmeister function [6, 7, 9], defined by

φFB (X , S) = X + S −
√
X2 + S2, (1.5)

and the natural residual function [2], defined by
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φNR (X , S) = min (X , S) = 1

2

(
X + S −

√
(X − S)2

)
.

= 1

2
(X + S − |X − S|) , (1.6)

where the matrix valued functions square root, min and absolute value are defined in
the following section.

It is shown in [4], that the functions φFB and φmin are not differentiable every-
where, but only strongly semismooth functions. To overcome the nonsmoothness,
many authors [8, 13, 14] used smooth approximations of these functions. Smooth
approximations of φFB and φmin [2, 8, 13, 15], are given for a parameter μ ∈ R

∗+,
respectively by:

φ
μ
FB (X , S) = X + S −

√
X2 + S2 + 2μ2 I , (1.7)

and

φ
μ
NR (X , S) = 1

2

(
X + S −

√
(X − S)2 + 4μ2 I

)
. (1.8)

In this paper, we propose a new NCP function to give a smooth reformulation of
the SDNCP(F) problem. This new NCP function is continuously differentiable and is
defined by φα : Sn × Sn → Sn where

φα (X , S) = XS + SX − 1

α
[min (0, X + S)]2 , 0 < α ≤ 1. (1.9)

The rest of the paper is organized as follows. In Sect. 2, we recall some useful
preliminaries that will be needed in the sequel. We study some properties of the NCP
function φα in Sect. 3. In Sect. 4, we develop our algorithm for solving the SDNCP(F)
using the NCP function φα and a quasi-Newtonmethod. For the sake of illustrating the
effectiveness of our algorithm, some numerical experiments are reported in Sect. 5.
We draw conclusions in Sect. 6.

2 Preliminaries

In this section, we recall the spectral definition of matrix valued function associated to
a given real valued function and we present a classical result about its differentiability.

For any X ∈ Sn , let λ1 (X) ≤ λ2 (X) ≤ · · · ≤ λn (X) be eigenvalues
of X , then X admits a spectral decomposition of the form X = PDX PT for
some P ∈ On , where On denotes the set of P ∈ R

n×n that are orthogonal and
DX = diag[λ1 (X) , . . . , λn (X)] denotes the n × n diagonal matrix where λi (X) are
diagonal elements.
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Let f : R → R. We can define a corresponding matrix valued function F : Sn →
Sn by

X → F (X) = Pdiag ( f (λ1 (X)) , f (λ2 (X)) , . . . , f (λn (X))) PT, (2.1)

where X = PDX PT is the spectral decomposition of X .

Example 2.1 (1) For f (t) = √
t, the corresponding function F : Sn+ → Sn+ is defined

by

F(X) = √
X = Pdiag

(√
λ1 (X), . . . ,

√
λn (X)

)
PT.

is called square root function.
(2) For f (t) = min (0, t) , the corresponding function F : Sn → Sn is defined by

F(X) = min(0, X) = Pdiag (min (0, λ1 (X)) , . . . ,min (0, λn (X))) PT.

is called the min function.
(3) For f (t) = |t | , the corresponding function F : Sn → Sn is defined by

F(X) = |X | = Pdiag (|λ1 (X)| , . . . , |λn (X)|) PT, (2.2)

is called the absolute value function.

Remark 2.2 Note that the definition of absolute value function given by (2.2) is not
applicable to the vectors, since here the absolute value is applied to the eigenvalues
and not the entries of a matrix. Furthermore, we have

|X | =
√
X2 and |X |2 = X2.

It is proved in [5, 7, 14] that the matrix valued function F inherited all topological
properties of the function f , in particular we have:

Proposition 2.3 (See [7, 14] for the proof) Let f : R → R and F : Sn → Sn be the
corresponding matrix valued function. Let X = PDX PT be the spectral decomposi-
tion of X. Then

F is (continuously) differentiable at an X ∈ Sn with eigenvalues λ1 (X) , . . . ,

λn (X) if and only if f is (continuously) differentiable at λ1 (X) , . . . , λn (X) .

Moreover, F ′ (X) is an operator given by

F ′ (X) (H) = P
[
f [1] (DX ) ◦

(
PH PT

)]
PT, (2.3)

where ◦ is the Hadamard product and f [1] (DX ) is the matrix whose elements are:

[
f [1] (DX )

]

i j
=

{
f (λi )− f (λ j)

λi−λ j
, if i �= j ∈ {1, 2, . . . , n}

f ′ (λi ) if i = j ∈ {1, 2, . . . , n} . (2.4)
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3 Properties of the Function �˛

In this section, we state some properties of the function φα given by (1.9). In particular,
we show that this function is an NCP function, that is continuously differentiable and
we calculate its derivative.
First, we remark that our new function φα can be expressed equivalently as follows:

φα (X , S) = XS + SX − 1

4α
(X + S − |X + S|)2 , 0 < α ≤ 1, (3.1)

or by the form:

φα (X , S) = XS + SX − 1

α
Pdiag( f (λ1), . . . f (λn))P

T, 0 < α ≤ 1, (3.2)

with f (·) = min2(0, ·) and X + S = PDPT is the spectral decomposition of the
symmetric matrix X + S.

Proposition 3.1 The function φα defined in (1.9) is an NCP function for all 0 < α ≤ 1,
i.e.:

X ∈ Sn+, S ∈ Sn+, and Tr(XS) = 0 ⇔ φα (X , S) = 0.

Proof Let 0 < α ≤ 1.
(1) Suppose that X ∈ Sn+, S ∈ Sn+, and Tr(XS) = 0, then

XS = SX = 0 ⇒ XS + SX = 0,

and

X + S ∈ Sn+ ⇒ min (0, X + S) = 0.

Obviously, this implies that φα (X , S) = 0
(2) Conversely, suppose that φα (X , S) = 0. Using the form (3.1) of the function φα

and the fact that φα (X , S) = 0, it follows that

XS + SX − 1

4α
(X + S − |X + S|)2 = 0.

So,

4α (XS + SX) = (X + S − |X + S|)2 , (3.3)

then XS + SX ∈ Sn+.
Next, by expanding the right-hand side of (3.3) we obtain

4α (XS + SX) = 2 (X + S)2 − (X + S) |X + S| − |X + S| (X + S) ,
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since |X + S|2 = (X + S)2.
So, for all 0 < α ≤ 1, we get

(X + S) |X + S| + |X + S| (X + S)

= 2 (X + S)2 − 4α (XS + SX)

= 2X2 + 2S2 + (2 − 4α) (XS + SX)

= 2X2 + 2S2 − 2 (XS + SX) + (4 − 4α) (XS + SX)

= 2 (X − S)2 + (4 − 4α) (XS + SX) ∈ Sn+

and then

(X + S) |X + S| + |X + S| (X + S) ∈ Sn+.

Let X + S = PDPT be the spectral decomposition of X + S, where D =
diag (λ1, . . . , λn) , then

(X + S) |X + S| + |X + S| (X + S) = PDPT
∣∣∣PDPT

∣∣∣ +
∣∣∣PDPT

∣∣∣ PDPT

= PD |D| PT + PD |D| PT(since
∣∣∣PDPT

∣∣∣ = P |D| PT)

= 2Pdiag (λi |λi |) PT ∈ Sn+,

then for all i = 1, 2, . . . , n, we have

λi |λi | ≥ 0 ⇒ λi ≥ 0, ∀i = 1, 2, . . . , n,

therefore, X + S ∈ Sn+ which implies that min (0, X + S) = 0, i .e: the eigenvalues
of X + S are all nonnegative
Next, since φα (X , S) = 0 we get

XS + SX = 0.

So, we have shown that

XS + SX = 0 and X + S ∈ Sn+.

Now, it remains to be shown that

X ∈ Sn+, S ∈ Sn+, and 〈X , S〉 = Tr(XS) = 0. (3.4)

The proof of (3.4) can be given by two methods:
Method 1:
Since XS + SX = 0 and X + S ∈ Sn+, then:

XS + SX = 0 ⇒ (X + S)2 = X2 + S2,
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so

X + S =
√
X2 + S2, (|X + S| = X + S, because X + S ∈ Sn+),

hence

X + S −
√
X2 + S2 = 0 ⇔ φFB (X , S) = 0.

It is known that φFB is an NCP function [2], then

X ∈ Sn+, S ∈ Sn+ and 〈X , S〉 = Tr(XS) = 0.

Method 2:
(1) Let X = LDX LT be the spectral decomposition of X , where L is an orthogonal
matrix and DX = diag(λ1 (X) , . . . λn (X)).

Since XS + SX = 0 and X + S ∈ Sn+, we get

LDX L
TS + SLDX L

T = 0 and LDX L
T + S ∈ Sn+, (3.5)

next, since L LT = LT L = In , it follows from relations (3.5) that

DX L
TSL + LTSLDX = 0 and DX + LTSL ∈ Sn+.

Set B = (bi j ) = LTSL . Since DX B + BDX = 0, it follows that

(
λi (X) + λ j (X)

)
bi j = 0 for all i, j = 1, 2, . . . , n,

in particular if we take i = j , we obtain

2λi (X) bii = 0, for all i = 1, 2, . . . , n.

Next, since DX + B ∈ Sn+ then it follows that

λi (X) + bii ≥ 0, for all i = 1, 2, . . . , n.

so, for all i = 1, 2, . . . , n, we have

2λi (X) bii = 0 and λi (X) + bii ≥ 0.

Obviously, this implies

λi (X) ≥ 0, for all i = 1, 2, . . . , n,

then X is positive semidefinite matrix.
(2) In the same way, we prove that S is positive semidefinite matrix.
(3) We have Tr(XS) = 1

2Tr(XS + SX), then Tr(XS) = 0.
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Therefore, we obtain

φα (X , S) = 0 ⇒ X ∈ Sn+, S ∈ Sn+, et 〈X , S〉 = Tr(XS) = 0.

��
Proposition 3.2 (Differentiability of the function φα) The function φα defined by (1.9)
is continuously differentiable everywhere and its derivative is given by:

φ′
α (X , S) (U , V ) = US + SU + XV + V X

− 1

α
P

[
f [1] (D) ◦

(
P (U + V ) PT

)]
PT. (3.6)

for all U , V ∈ Sn, where X + S = PDPT is the spectral decomposition of X + S
and:

[
f [1] (D)

]

i j
=

{
min2(0,λi )−min2(0,λ j)

λi−λ j
if i �= j ∈ {1, . . . , n}

2min (0, λi ) if i = j ∈ {1, . . . , n} . (3.7)

Proof From formula (1.9), we have

φα (X , S) = ψ1 (X , S) − 1

α
ψ2 (X , S) ,

where ψ1 (X , S) = XS + SX and

ψ2 (X , S) = 1

α
Pdiag( f (λ1), . . . f (λn))P

T,

with f (·) = min2(0, ·).
It is clear that ψ1 is continuously differentiable everywhere. Now, by using the

Proposition 2.3 and the fact that f is continuously differentiable everywhere, then
the function ψ2 is continuously differentiable everywhere. Hence φα is continuously
differentiable since it is the sum of two continuously differentiable functions. Now,
we calculate the derivative of φα

(a) It is clear that

ψ ′
1 (X , S) (U , V ) = US + SU + XV + V X ,

for all U , V ∈ Sn .

(b) We compute the derivative of ψ2 in the following way

ψ2 (X , S) = [min(0, X + S)]2
= Pdiag( f (λ1), . . . f (λn))P

T.
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We put

ψ2 (X , S) = (θ ◦ �) (X , S) ,

where

� : Sn × Sn → Sn

(X , S) → � (X , S) = X + S,

and

θ : Sn → Sn

Z → θ (Z) = [ min(0, Z)]2,

then:

ψ ′
2 (X , S) (·, ·) = θ ′ (� (X , S)) ◦ (

�′ (X , S) (·, ·)) .

It is clear that the derivative of � at (X , S) is

�′ (X , S) : Sn × Sn → Sn

(U , V ) → �′ (X , S) (U , V ) = U + V ,

for the derivative of θ (Z) :

θ ′ (Z) : Sn → Sn

K → θ ′ (Z) (K ) ,

we have

θ (Z) = [ min(0, Z)]2 = Pdiag ( f (λ1 (Z)) , . . . , f (λn (Z)))

= Pdiag
(
min (0, λ1 (Z))2 , . . . ,min (0, λn (Z))2

)
PT,

where Z = PDZ PT and DZ = diag (λ1 (Z) , . . . , λn (Z)) , i = 1, . . . , n.
According to Proposition 2.3, the derivate of θ is given by

θ ′ (Z) (K ) = P
[
f [1] (DZ ) ◦

(
PK PT

)]
PT.

Next, using the chain rule formula, we obtain

ψ ′
2 (X , S) (·, ·) = θ ′ (� (X , S)) ◦ (

�′ (X , S) (·, ·)) ,
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that is

ψ ′
2 (X , S) (U , V ) = θ ′

Z
︷ ︸︸ ︷
(X + S)

K
︷ ︸︸ ︷
(U + V ).

Hence, the derivative of ψ2 is given by

ψ ′
2 (X , S) (U , V ) = P

[
f [1] (D) ◦

(
P (U + V ) PT

)]
PT,

where X + S = PDP is the spectral decomposition of X + S and

[
f [1] (D)

]

i j
=

{
min2(0,λi )−min2(0,λ j)

λi−λ j
, if i �= j ∈ {1, . . . , n}

2min (0, λi ) if i = j ∈ {1, . . . , n} .

Finally, the derivate of the function φα is given by

φ′
α (X , S) (U , V ) = US + SU + XV + V X

− 1

α
P

[
f [1] (D) ◦

(
P (U + V ) PT

)]
PT

for all U , V ∈ Sn . ��
Remark 3.3 We can give the matrix function f [1] (D) by the form

[
f [1] (D)

]

i j
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if λi ≥ 0 and λ j ≥ 0
−λ2j

λi−λ j
if λi > 0 and λ j < 0

λ2i
λi−λ j

if λi < 0 and λ j > 0

λi + λ j if λi < 0 and λ j < 0,

∀i, j ∈ {1, 2, . . . , n} ,

then we obtain

[
f [1] (D)

]

i j
=

{= 0 if X + S � 0(λi ≥ 0 and λ j ≥ 0)
< 0 if not

(
i.e. λi < 0 or λ j < 0

) .

4 On the Applicability of Newton’s Method for Solving the SDNCP

Solving the SDNCP(F) problem comes back to solving the smooth equation
Hα (X , S) = 0, where

Hα (X , S) =
(

φα (X , S)

F(X) − S

)
, (4.1)

and φα (X , S) is defined by (1.9).
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Since the functions φα and F are continuously differentiable then Hα is a contin-
uously differentiable function. Moreover, based on Proposition 3.2, the derivative (or
Jacobian) operator H ′

α (X , S) of Hα at (X , S) is given by:

H ′
α (X , S) (U , V ) =

⎛

⎜
⎝

(
US + SU + XV + V X

− 1
α
P

[
f [1] (D) ◦ (

P (U + V ) PT
)]

PT

)

(
F

′
(X)U − V

)

⎞

⎟
⎠ , (4.2)

for all U , V ∈ Sn , where X + S = PDPT is the spectral decomposition of X + S.

To solve the equation Hα(X , S) = 0 by Newton’s method, we must study the
invertibility property of H ′

α (X , S) at all (X , S) in Sn ×Sn near the solution. We need
the following lemma:

Lemma 4.1 (i) The operator of Lyapunov L A : Sn → Sn, defined by

L A(X) = X A + AX ,

is monotone (resp. strongly monotone) operator if A � 0 (resp. A � 0).
(ii) If X , S � 0, then LX , LS and LS ◦ LX are strongly monotone and LX and LS are

self-adjoint.
(iii) Let B : Sn → Sn be the operator defined by

B (U ) = − 1

α
P

[
f [1] (D) ◦

(
P (U ) PT

)]
PT,

where X + S = PDPT is the spectral decomposition of X + S. Then B = 0 if
X + S � 0, and B is strongly monotone operator if not.

Proof For the proof of (i) and (ii) see Lemma 4.2 in [2].
(iii) According to Remark 3.3, it follows that

(1) If X + S � 0, then

[
f [1] (D)

]

i j
= 0,

for all i, j = 1, 2, . . . , n. So,

B = 0.

(2) If X + S � 0, then

[
f [1] (D)

]

i j
< 0,

for all i, j = 1, 2, . . . , n.
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We have

B is strongly monotone ⇔ 〈U , B(U )〉 > 0,

so, for all U ∈ Sn (U �= 0), we have

〈U , B (U )〉 =
〈
U ,− 1

α
P

[
f [1] (D) ◦

(
PU PT

)]
PT

〉

= Tr

(
U

(
− 1

α
P

[
f [1] (D) ◦

(
PU PT

)]
PT

))

= − 1

α
Tr

(
U P

[
f [1] (D) ◦

(
PU PT

)]
PT

)
.

Now, since

Tr(X) = Tr(PTX P), ∀P ∈ On,

then

〈U , B (U )〉 = − 1

α
Tr

(
PT

(
U P

[
f [1] (D) ◦

(
PU PT

)]
PT

)
P
)

= − 1

α
Tr

((
PTU P

)
f [1] (D) ◦

(
PU PT

))
.

From the commutativity of the Hadamard product, we get

〈U , B (U )〉 = − 1

α
Tr

((
PTU P

)2 ◦ f [1] (D)

)

= − 1

α

n∑

i, j=1

((
PTU P

)2

i j

(
f [1] (D)

)

i j

)
> 0.

Then, the operator B is strongly monotone. ��
Proposition 4.2 (Invertibility of the derivative operator H ′

α (X , S) for the monotone
case) Suppose that F is a monotone function.

Then for all S � 0 and X � 0, the derivative operator H ′
α (X , S) defined by

formula (4.2) is strongly monotone (so, invertible).

Proof H ′
α (X , S) is invertible operator⇔[

H ′
α (X , S) (U , V ) =0 ⇒ (U , V ) = (0, 0)

]
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H ′
α (X , S) (U , V ) = 0 ⇔

⎛

⎜
⎝

(
US + SU + XV + V X

− 1
α
P

[
f [1] (D) ◦ (

P (U + V ) PT
)]

PT

)

[
F

′
(X)U − V

]

⎞

⎟
⎠ =

(
0
0

)

⇔
(
LS (U ) + LX (V ) + B (U ) + B (V )

F
′
(X)U − V

)
=

(
0
0

)

⇔
{
LS (U ) + LX (V ) + B (U ) + B (V ) = 0

V = F
′
(X)U .

we replace V = F
′
(X)U in the first equation:

LS (U ) + LX

(
F

′
(X)U

)
+ B (U ) + B

(
F

′
(X)U

)
= 0

⇔ LS (U ) +
(
LX ◦ F

′
(X)

)
(U ) + B (U ) +

(
B ◦ F

′
(X)

)
(U ) = 0

⇔
A

︷ ︸︸ ︷(
LS +

(
LX ◦ F

′
(X)

)
+ B +

(
B ◦ F

′
(X)

))
(U ) = 0.

To show that the operator H ′
α (X , S) is strongly monotone (invertible), just show that

the operator A is strongly monotone.
We have S � 0 and X � 0, then S + X � 0. So, by Lemma 4.1 we have

B (U ) = 0 and
(
B ◦ F

′
(X)

)
(U ) = 0,

hence,

A = LS + LX ◦ F
′
(X),

since LX is strongly monotone, we put D = L−1
X (U ), then U = LX (D)

A(U ) = (LS + LX ◦ F
′
(X))(U )

= (LS ◦ LX + LX ◦ F ′(X) ◦ LX )(D)

= LS ◦ LX (D) + LX ◦ F ′(X) ◦ LX (D).

Now, by using Lemma 4.1 (property (i) and (ii)) we have LX , LS and LS ◦ LX are
strongly monotone and LX and LS are self-adjoint.
To show that A is strongly monotone we need to show that LX ◦ F ′(X) ◦ LX ) is at
least monotone. Then for all D ∈ Sn (D �= 0), we have

〈LX ◦ F ′(X) ◦ LX )(D), (D)〉 = 〈F ′(X) ◦ LX )(D), LX (D)〉,
(since LX is self-adjoint)

= 〈F ′(X)(LX (D)), LX (D)〉.
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By the fact that F ′(X) is a monotone operator, we have

〈F ′(X)(LX (D)), LX (D)〉 ≥ 0,

then, LX ◦ F ′(X) ◦ LX is monotone.
So, A is strongly monotone (sum of strongly monotone and monotone operator), so
it is invertible. Consequently, the operator H ′

α (X , S) is strongly monotone, so it is
invertible. ��

Remark 4.3 If S � 0or X � 0, the derivative operator H ′
α (X , S)maybenot invertible.

The following counter-example shows it.
Let F : S2 → S2 be the function defined by

F(X) =
(
2x11 x12
x12 x322 + x22

)
.

By using theorem 2.5 in [3], we have

F ′(X)U =
(
2u11 u12
u12

(
3x222 + 1

)
u22

)
, for all U =

(
u11 u12
u12 u22

)
∈ S2.

It is clear that F is a strongly monotone function since F ′(X) is a strongly monotone
operator that is〈

F ′(X)U ,U
〉
> 0, for all U ∈ S2.

Let X0 =
(−1 0

0 2

)
and S0 =

(
2 0
0 −3

)
which are indefined matrices.

X0 + S0 =
(
1 0
0 −1

)
= PDPT, where P = I2 and D =

(
1 0
0 −1

)
.

Let (U , V ) =
((

u11 u12
u12 u22

)
,

(
v11 v12
v12 v22

))
, then

H ′
α (X0, S0) (U , V ) =

⎛

⎜
⎝

(
US + SU + XV + V X

− 1
α
P

[
f [1] (D) ◦ (

P (U + V ) PT
)]

PT

)

(
F

′
(X)U − V

)

⎞

⎟
⎠ ,

then for α = 1,

H ′
α (X0, S0) (U , V ) =

⎛

⎜⎜
⎝

(
4u11 − 2v11 1.5v12 − 0.5u12

1.5v12 − 0.5u12 2v22 − 8u22

)

(
2u11 − v11 u12 − v12
u12 − v12 13z − v22

)

⎞

⎟⎟
⎠ ,
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then

H ′
α (X0, S0) (U , V ) =

M
︷ ︸︸ ︷⎛

⎜⎜⎜⎜⎜⎜
⎝

4 0 0 −2 0 0
0 −0.5 0 0 1.5 0
0 0 −8 0 0 2
2 0 0 −1 0 0
0 1 0 0 1 0
0 0 13 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜
⎝

u11
u12
u22
v11
v12
v22

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Since det (M) = 0, then the operator H ′ (X0, S0) is not invertible for X0 and S0.

Remark 4.4 Sincewecannot guarantee the invertibility of H ′
α (Xk, Sk) at each iteration

k, we can’t apply Newton’s method for solving the equation Hα (X , S) = 0. To avoid
the inversion and the computation of the Jacobian of Hα at each iteration, we propose
to use a quasi-Newton method in Hilbertian space as defined in [1].

Recall that, quasi-Newton’s method for solving nonlinear equation

G(Z) = 0,

whereG :X → Y is a Frechet-differentiable function andX ,Y are twoHilbert spaces,
is defined by:

Zk+1 = Zk − B−1
k (G (Zk)) ,

where the operators Bk are invertibles and approximate G ′ (Zk) at each iteration k.
In this paper, we use the Broyden’s method [1], to update Bk at each iteration, where

the update formula is:

Bk+1 = Bk + (Yk − Bk (Wk)) ⊗ Wk

〈Wk,Wk〉 ,

where Wk = Zk+1 − Zk, Yk = G (Zk+1) − G (Zk) and ⊗ is the dyadic product
operator defined by

(A ⊗ C) (·) = 〈C, (·)〉 A, A ⊗ C ∈ L (X ,Y) . (4.3)

Remark 4.5 The notation ⊗ is used in the literature for the Kronecker product, but
here it is used for the dyadic (or tensor) operator defined by (4.3).

Note also that for all A, B ∈ Sn , the dyadic operator A ⊗ C is a linear operator,
but the Kronecker product of matrices A and B, (Kron(A, B) in Matlab notation) is a
matrix of order n2 × n2. The relation between the dyadic operator and the Kronecker
product is given in [1, Prop. 13].

In the space of symmetric matrices (X = Y = Sn), the dyadic operator is given
by

(A ⊗ C) (M) = 〈C, M〉 A = Tr(CM)A, ∀M ∈ Sn
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The following theorem shows that Broyden’s method converges superlinearly to the
solution of the equation of G(Z) = 0.

Theorem 4.6 (See [1] and references therein) Let G :X → Y a continuously differ-
entiable function in D ⊂ X , where D is a convex, open set. Assume that Z∗ ∈ D
is a zero point of G that G ′(Z∗) ∈ L(X ,Y) is inversible and that G ′(·) satisfies the
Lipchitz condition:

∥∥G(Z) − G ′(Z∗)
∥∥ ≤ L

∥∥Z − Z∗∥∥ ,

for each Z ∈ D.
Then, if Z0 ∈ D and B0 ∈ L(X ,Y) are near Z∗ and G ′(Z∗) respectively, we have:
(1) the sequence {Zk} defined by the Broyden’s method is well-defined and converges
superlinearly to the solution Z∗.
(2) Furthermore, B−1

k exists for each k and the sequences {‖Bk‖} and
{∥∥∥B−1

k

∥∥∥
}
are

bounded.

In practical implementation, we use the Broyden’s method in the form

{
Bk (Wk) = −G (Zk)

Zk+1 = Zk + Wk .

Now, we apply the Broyden’s method to solve the equation Hα (X , S) = 0 defined by
(4.1). This method is defined by

{
Bk (Uk, Vk) = −Hα (Xk, Sk)

(Xk+1, Sk+1) = (Xk, Sk) + (Uk, Vk) ,

where Bk is updated by the following formula :

Bk+1 = Bk + (Yk − Bk (Wk)) ⊗ Wk

〈Wk,Wk〉 ,

where Wk = (Xk+1, Sk+1) − (Xk, Sk) and Yk = Hα (Xk+1, Sk+1) − Hα (Xk, Sk) .

Lemma 4.7 The operator Bk can be define by the formula

Bk+1 (·, ·) = Bk (·, ·) + βk (〈Uk, ·〉 + 〈Vk, ·〉) (φα (Xk+1, Sk+1) ,F(Xk+1) − Sk+1) ,

(4.4)

where βk = 1
〈Uk ,Uk 〉+〈Vk ,V k 〉 .

Proof We have

Bk+1 = Bk + (Yk − Bk (Wk)) ⊗ Wk

〈Wk,Wk〉 ,
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and Bk (Wk) = −Hα (Xk, Sk), then

Bk+1 = Bk + (Yk + Hα (Xk, Sk)) ⊗ Wk

〈Wk,Wk〉 ,

where Yk = Hα (Xk+1, Sk+1) − Hα (Xk, Sk) and Wk = (Uk, Vk) .

Hence, we obtain

Bk+1 = Bk + Hα(Xk+1, Sk+1) ⊗ (Uk, V k)

〈Uk,Uk〉 + 〈Vk, V k〉 ,

but Hα (Xk+1, Sk+1) = (φα (Xk+1, Sk+1) , F(Xk+1) − Sk+1), then

Bk+1 = Bk + 1

〈Uk,Uk〉 + 〈Vk,Vk〉 (φα (Xk+1, Sk+1) , F(Xk+1) − Sk+1) ⊗ (Uk, Vk) .

Let (U , V ) ∈ Sn × Sn, by the definition of the dyadic product operator we have

((φα (Xk+1, Sk+1) , F(Xk+1) − Sk+1) ⊗ (Uk, Vk)) (U , V )

= 〈(Uk, Vk) , (U , V )〉 (φα (Xk+1, Sk+1) , F(Xk+1) − Sk+1) ,

then Bk+1 (U , V ) = Bk (U , V ) + 〈Uk ,U 〉+〈Vk ,V 〉
〈Uk ,Uk 〉+〈Vk ,V k 〉

(
φα (Xk+1, Sk+1) , F(Xk+1)

− Sk+1
)
,

we put β = 1
〈Uk ,Uk 〉+〈Vk ,V k 〉 , then

Bk+1 (U , V ) = Bk (U , V ) + β (〈Uk,U 〉 + 〈Vk,V 〉) (φα (Xk+1, Sk+1) , F(Xk+1)

− Sk+1
)
. ��

The following algorithm represents the quasi-Newton method applied to the equation
Hα (X , S) = 0.

Algorithm 1: (Quasi-Newton’s method for SDNLCP(F))

Step 1: Initialization
Input a parameter α ∈ (0, 1] and a tolerance ε > 0. Set k = 0.
Initialize X0, S0 ∈ Sn and B0 ∈ L

(Sn × Sn) be invertible.
Step 2: Stopping criteria

If ‖Hα (Xk , Sk )‖F < ε, stop. Otherwise go to Step 3.
Step 3: Compute the matrices Uk , Vk ∈ Sn

Find the solution (Uk , Vk ) ∈ Sn of the linear system:
Bk (Uk , Vk ) = −Hα (Xk , Sk ) .

Step 4: Updating formula.
Compute Bk+1 ∈ L

(Sn × Sn) by using formula (4.4).

Set
(
Xk+1, Sk+1

) = (Xk , Sk ) +
(
Uk , V k

)
.

Set k = k + 1 and go to Step 2.
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Remark 4.8 Since we must choose the operator B0 invertible (to guarantee that Bk is
invertible for each iteration k), one possible choice is B0 = I (the identity operator in
L (Sn × Sn)) or B0 = H ′

α (X0, S0) for S0 � 0 and X0 � 0 (cf. Proposition 4.2).

Now, we will show the convergence of the Broyden’s method for the equation
Hα (X , S) = 0 defined by (4.1).

Theorem 4.9 (The convergence of Broyden’s method for the function Hα) Let Hα :
Sn × Sn → Sn × Sn be the function defined by (4.1). Suppose that Eq. (4.1) admits
a strict solution denoted by (X∗, S∗) , i.e. (X∗ � 0, S∗ � 0 and Hα (X∗, S∗) = 0).
If (X0, S0) ∈ Sn × Sn and B0 ∈ L (Sn × Sn) are chosen near (X∗, S∗) and
H ′

α (X∗, S∗) respectively such that B0 is invertible, then:
(1) the sequence {(Xk, Sk)} defined by the Broyden’s method is well-defined and con-

verges super-linearly to the solution (X∗, S∗) .

(2) the operator B−1
k exists for all k ≥ 0, and the sequences {‖Bk‖} and

{∥∥∥B−1
k

∥∥∥
}

are bounded.

Proof The proof is based on Theorem 4.6. We have
(1) H ′

α (X∗, S∗) ∈ L (Sn × Sn) is an invertible operator, since H ′
α (X∗, S∗) is

invertible for any X∗ � 0 and S∗ � 0 (Proposition 4.2).
(2) H ′

α (X , S) is a Lipchitz operator for all (X , S) ∈ Sn × Sn , since H ′
α (X , S) is

a Lipchitz operator everywhere. ��

4.1 Smoothing Newton’s Method for Solving SDNCP(F)

In this subsection,we develop the smoothingNewton’smethod for solving SDNCP(F)

problem.
Solving theSDNCP(F) problemby smoothingNewton’smethod comesback to solving
the smooth equation Hμ (X , S) = 0 where Hμ : Sn × Sn × R → Sn × Sn is defined
by

Hμ (X , S) =
(

φ
μ
FB (X , S)

F(X) − S

)
(4.5)

=
(
X + S − √

X2 + S2 + 2μ2 I
F(X) − S

)
. (4.6)

Smoothing Newton’s method applied to the equation Hμ (X , S) = 0 is defined by

(Xk+1, Sk+1) = (Xk, Sk) − (
H ′

μk
(Xk, Sk)

)−1 (
Hμk (Xk, Sk)

)

where H ′
μk

(Xk, Sk) is the derivative operator of Hμk at (Xk, Sk) .

In practical implementation, we use the smoothing Newton’s method in the form

{
H ′

μk
(Xk, Sk) (Uk, Vk) = −Hμk (Xk, Sk)

(Xk+1, Sk+1) = (Xk, Sk) + (Uk, Vk) .
(4.7)

123



Bulletin of the Iranian Mathematical Society (2022) 48:3909–3936 3927

So, at each iteration k of the smoothing Newton’s method we need to solve the system
of linear equations defined in (4.7), where (μk) is a decreasing sequence of positive
numbers that tends to 0.
From [13, Lemma 2(c)], The derivative of φ

μ
FB defined by (1.7) is given by

(
φ

μ
FB

)′
(X , S) (U , V ) = U + V − L−1

C [XU +UX + SV + V S] (4.8)

whereC = √
X2 + S2 + 2μ2 I and LC is a Lyapunov operator associated toC defined

by

LC (X) = CX + XC

Consequently the derivative of Hμ is given by

H ′
μ (X , S) (U , V ) =

((
φ

μ
FB

)′
(X , S) (U , V )

F ′(X)U − V

)

=
(
U + V − L−1

C [XU +UX + SV + V S].
F ′(X)U − V

)
. (4.9)

In [13, Lemma 7], it is proved that if F is monotone then the operator H ′
μ (X , S) is

nonsingular for all (X , S) ∈ Sn × Sn and μ ∈ R++.

Now, for each iteration, the system of linear equations defined in (4.7 ) equivalent to

Uk + Vk − L−1
Ck

[XkUk +Uk Xk + SkVk + Vk Sk] = − φ
μk
FB (Xk, Sk) (4.10)

and

F ′(Xk)Uk − Vk = −(F(Xk) − Sk). (4.11)

By applying LCk to (4.10), we obtain

LCk (Uk + Vk) − [XkUk +Uk Xk + SkVk + VkSk] = − LCk

(
φ

μk
FB (Xk, Sk)

)

then

LCk−Xk (Uk) + LCk−Sk (Vk) = − LCk

(
φ

μk
FB (Xk, Sk)

)
(4.12)

and by (4.11), we have

Vk = F ′(Xk)Uk + F(Xk) − Sk (4.13)

substituting (4.13) in (4.12), we have

LCk−Xk (Uk) + LCk−Sk

(
F ′(Xk)Uk

)

= − LCk

(
φ

μk
FB (Xk, Sk)

) − LCk−Sk (F(Xk) − Sk) . (4.14)
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Algorithm 2: (Smoothing Newton’s method for SDNLCP(F))

Step 1: Initialization
Input a tolerance ε > 0. Set k = 0.
Initialize X0, S0 ∈ Sn and μ0 > 0.

Step 2: Stopping criteria
If

∥∥Hμk (Xk , Sk )
∥∥
F < ε, stop. Otherwise go to Step 3.

Step 3: Compute (Uk , Vk ) as follows:
Find the solution Uk ∈ Sn of linear system (4.14)
Compute the matrix Vk ∈ Sn by the relation (4.13)

Step 4: Updating formula.

Set
(
Xk+1, Sk+1

) = (Xk , Sk ) +
(
Uk , V k

)
.

Set k = k + 1 and go to Step 2.

5 Numerical Experiments

In this section, some numerical experiments are given to show the performance
of Algorithm 1 and the Smoothing Newton’s method (SNM for short) for solving
SDNCP(F). We used a personal computer with 8.0 GB for random memory and
Intel(R) core(TM) i7-4600M CPU 2.90 GHz to perform all numerical experiments.
We used Windows 8 as operating system and Matlab R2017a to write the com-
puter codes. For all examples, the stop criterion used in Algorithm 1 and SNM is
er1 := ‖Hα(X , S)‖F < ε = 10−10 and er2 := ‖Hμ(X , S)‖F < 10−10 respectively
or if the number of iterations is greater than 1000.

Example 5.1 Let F : S4 → S4 be the function defined by

F(X) =

⎛

⎜⎜
⎝

2x11 − 2 x12 x13 x14
x12 x322 + x22 − 2 x23 x24
x13 x23 x333 − 1 x34
x14 x24 x34 x44 − 1

⎞

⎟⎟
⎠ , for all X = (xi j ) ∈ S4.

We can verify that the exact solution of the SDNCP(F) associated to this function is
(X∗, S∗) = (I4, 04). Furthermore, for all X = (xi j ), U = (ui j ) ∈ S4, we have

F ′(X)U =

⎛

⎜⎜
⎝

2u11 u12 u13 u14
u12 (3x222 + 1) u22 u23 u24
u13 u23 3x233 u33 u34
u14 u24 u34 u44

⎞

⎟⎟
⎠

Hence, for all U ∈ S4 such that U �= 04, we have

〈< F ′(X)U ,U 〉 = Tr(F ′(X)U .U )

= 2
4∑

j=1

u21 j + 2(u223 + u224 + u234) + (3x222 + 1)u222

+3x233u
2
33 + u244 > 0.
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Table 1 Iterations, CPU time
and ‖Hα(Xk , Sk )‖ for different
initial guesses

X0 S0 k (iterations) CPU time er1(k)

1.5 I4 0.01 ∗ ones(4) 15 0.1203 2.553477e−10

4 ∗ I4 2 ∗ I4 41 0.110084 5.1362e−11

10 ∗ hilb(4) 0.01 ∗ hilb(4) 50 0.1746 8.3595e−12

Table 2 Iterations, CPU time
and er2(k) for different initial
guesses

X0 S0 k (iterations) CPU time er2(k)

1.5 I4 0.01 ∗ ones(4) 9 0.0978 8.7635e−12

4 ∗ I4 2 ∗ I4 9 0.0245 8.7633e−12

10 ∗ hilb(4) 0.01 ∗ hilb(4) 9 0.0695 1.4394e−11

So, F is strongly monotone function since F ′(X) is strongly monotone operator.
We apply Algorithm 1 and SNM to solve the SDNCP(F), with α = 1, B0 =

H ′(X0, S0), μk = (0.85)k , for different choices of initial guess (X0, S0). The number
of iterations k , CPU time in seconds and the values er1(k) := ‖Hα(Xk, Sk)‖ and
er2(k) := ‖Hμk (Xk, Sk)‖ are listed in Tables 1 and 2.

The values of approximate solutions (Xk, Sk) corresponding to different initial
guesses (X0, S0) finded using Algorithm 1 are shown in Table 3 (Fig. 1).

Table 3 Approximate solution (Xk , Sk ) for different initial guesses

X0 S0 k (iterations) Xk Sk

1.5 ∗ I4 0.01 ∗ ones(4) 15 I4 + 10−12D1 10−12Z1

4 ∗ I4 2 ∗ I4 41 I4 + 10−11D2 10−11Z2

10 ∗ hilb(4) 0.01 ∗ hilb(4) 50 I4 + 10−11D3 10−11Z3

Fig. 1 Convergence of Algorithms 1 and SNM for some choices of (X0, S0)
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where

D1 =

⎛

⎜⎜
⎝

0.0184 −0.1242 0.0267 0.0033
−0.1242 −0.0251 −0.0424 −0.1572
0.0267 −0.0424 0.0386 −0.0059
0.0033 −0.1572 −0.0059 −0.0303

⎞

⎟⎟
⎠ ,

Z1 =

⎛

⎜⎜
⎝

0.0369 −0.1242 0.0267 0.0033
−0.1242 −0.2131 −0.0424 −0.1572
0.0267 −0.0424 0.1208 −0.0059
0.0033 −0.1572 −0.0059 −0.0303

⎞

⎟⎟
⎠ ;

D2 =

⎛

⎜⎜
⎝

0.291 0 0 0
0 0.1453 0 0
0 0 −0.1158 0
0 0 0 −0.0631

⎞

⎟⎟
⎠ ,

Z2 =

⎛

⎜⎜
⎝

0.0581 0 0 0
0 −0.1726 0 0
0 0 0.1740 0
0 0 0 −0.0631

⎞

⎟⎟
⎠ ;

D3 =

⎛

⎜⎜
⎝

0.0144 −0.1070 0.0951 0.0106
−0.1070 −0.0256 0.0051 −0.0339
0.0951 0.0051 0.0315 0.0316
0.0106 −0.0339 0.0316 0.0037

⎞

⎟⎟
⎠ ,

Z3 =

⎛

⎜⎜
⎝

0.0288 −0.1070 0.0951 0.0106
−0.1070 −0.1310 0.0051 −0.0339
0.0951 0.0051 0.0714 0.0316
0.0106 −0.0339 0.0316 0.0037

⎞

⎟⎟
⎠ .

Example 5.2 Let n be a positive integer and let a1, b1, a2, b2, . . . , an, bn be a fixed
real parameters such that

a2i = 0, a2i+1 > 0, b2i > 0, and b2i+1 = 0.

We define a function F : Sn → Sn by

F(X) = diag(P1(X), . . . , Pn(X))

where for all X = (xi j ) ∈ Sn ,

Pi (X) = x2i i − ai xii + bi , i ∈ {1, 2, . . . , n}.

By a simple verification, the exact solution of SDNCP(F) associated to function F is
(X∗, S∗), where

X∗ = diag(a1, 0, a3, 0, . . . , an), S∗ = diag(0, b2, 0, b4, . . . , bn).
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Using the definition of differentiability, we can prove that for all X = (xi j ), U =
(ui j ) ∈ Sn , we have

F ′(X)U = diag((2x11 − a1) u11, . . . , (2xnn − an) unn).

Now, we take for example

a2i = 0, a2i+1 = 2i + 1

2i + 2
, b2i = 2i + 1

2i
, and b2i+1 = 0.

WeapplyAlgorithm1 and SNM to solve the SDNCP(F), withα = 0.85,μk = 1
2k+1 ,

(X0, S0) = (In, In) (for both Algorithm 1 and SNM) and B0 = H ′(X0, S0) for
different values of dimension n. The number of iterations k , CPU time in seconds and
the values er1(k) := ‖Hα(Xk, Sk)‖ and er2(k) := ‖Hμ(Xk, Sk)‖ are listed in Table 4.
(Fig 2).
In the case n = 8, the approximate solution (X32, S32) is

X32 = diag(5.0,−4.21 × 10−14, 0.750, 3.73 × 10−13, 0.83,

−7.28 × 10−13, 0.875, 6.78 × 10−13);

and

S32 = diag(2.18 × 10−13, 1.50,−1.30 × 10−12, 1.25,

Table 4 Performance of
Algorithm 1 and SNM for
n = 8, 20, 40, 60

Algorithm 1 SNM
k CPU time (s) er1(k) k CPU time (s) er2(k)

n = 8 36 0.1941 5.4697e−11 23 0.0994 7.4825e−11

n = 20 46 2.22 7.8560e−11 25 1.46 6.2815e−11

n = 40 46 38.58 9.3522e−11 26 32.34 5.8101e−11

n = 60 48 353.16 5.5015e−11 28 289.11 8.7176e−11

Fig. 2 Convergence of Algorithm 1 and SNM for (X0, S0) = (In , In) where n = 20, 60
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Table 5 Performance of Algorithm 1 and SNM for λ = 0.55, 0.70, 1.25

Algorithm 1 SNM
k CPU time (s) er1(k) k CPU time (s) er2(k)

λ = 0.55 36 7.95 4.6963e − 11 27 8.31 4.8189e − 11

λ = 0.70 25 5.60 4.7850e − 11 26 8.05 9.6569e − 11

λ = 1.25 26 5.78 2.7463e − 11 25 7.56 4.7523e − 11

Fig. 3 Convergence of Algorithms 1 and NM for (X0, S0) = (λ ∗ diag(a), I30) where λ = 0.7, 1.25

−2.87 × 10−12, 1.16, 5.46 × 10−12, 1.125).

Note that, in this case (n = 8), the exact solution of SDNCP(F) is

X∗ = diag

(
1

2
, 0,

3

4
, 0,

5

6
, 0,

7

8
, 0

)
, S∗ = diag

(
0,

3

2
, 0,

5

4
, 0,

7

6
, 0,

9

8

)
.

Now, we repeat the same experiment with fixed dimension n = 30 and (X0, S0) =
(λ ∗ diag(a), In) where λ ∈ {0.55, 1, 1.25}, we get the results showing in Table 5
(Figs. 2, 3).

Example 5.3 Let Q ∈ Sn+ , n ≥ 1. We define a function F : Sn → Sn by F(X) =
X2 − Q. It is clear that (X∗, S∗) = (Q

1
2 , 0n) is the exact solution of SDNCP(F)

associated to function F , where Q
1
2 is the square root of the matrix Q.

The function F is derivable on Sn , and for all (X ,U ) ∈ Sn × Sn , we have

F ′(X)U = XU +UX .

According toLemma4.1, F ′(X) is stronglymonotone. So F is also stronglymonotone.
Now, we consider the following two choices of the matrix Q

Q1 = diag(1, 2, . . . , 10), Q2 = M2;
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where

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3 2 2 1 2 2 2 2 2 2
2 2 2 1 2 2 2 2 2 2
2 2 3 1 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1
2 2 2 1 3 2 2 2 2 2
2 2 2 1 2 3 2 2 2 2
2 2 2 1 2 2 3 2 2 2
2 2 2 1 2 2 2 3 2 2
2 2 2 1 2 2 2 2 3 2
2 2 2 1 2 2 2 2 2 3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ S10+ .

We remark that when Q = Q1, the exact solution of the SDNCP(F) is

(X∗, S∗) = (diag(1,
√
2,

√
3, . . . ,

√
10), 010);

and when Q = Q2, then the exact solution of the SDNCP(F) is (X∗, S∗) = (M, 010).
We apply Algorithm 1 to solve the SDNCP(F), with n = 10, for the two
choices Q = Q1 and Q = Q2 and different values of parameter α ∈ 
 :=
{0.10, 0.25, 0.50, 0.75, 1}.

First case : Q = Q1. In the case, we take the initial guess (X0, S0) = (2∗ I10, 0.1∗
I10) and B0 = H ′(X0, S0) . We get the results listed in Table 6.

From Table 6, we remark that for all α ∈ 
, we need 20 iterations to get desired
approximate solution (X20, S20), where

X20 = diag(1.0, 1.4142, 1.7321, 2.0, 2.2361, 2.4495, 2.6458, 2.8284, 3.0, 3.1623),

S20 = 10−10 diag(−0.0533, 0.1041,−0.0285, 0.0153,

−0.0165, 0.0244,−0.0039,−0, 0,−0).

However, the optimal value of α from 
, which makes Algorithm more faster is 0.5.
Second case : Q = Q2. In the case, we take the initial guess (X0, S0) = (2 ∗

M, 0.1 ∗ I10) and B0 = H ′(X0, S0).

Table 6 Iterations, CPU time
and ‖Hα(Xk , Sk )‖
for different values of α

alpha k (iterations) CPU time er1(k)

0.10 20 0.456582 2.219155e − 10

0.25 20 0.184321 2.219155e − 10

0.50 20 0.146197 2.219155e − 10

0.75 20 0.163383 2.219155e − 10

1.00 20 0.171410 2.219155e − 10
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Table 7 Iterations, CPU time
and ‖Hα(Xk , Sk )‖
for different values ofα.

alpha k (iterations) CPU time ‖Hα(Xk , Sk )‖
0.10 24 0.231196 6.714579e − 10

0.25 24 0.180104 6.714579e − 10

0.50 24 0.209106 6.714579e − 10

0.75 24 0.196145 6.714579e − 10

1.00 24 0.196950 6.714579e − 10

From Table 7, we remark that Algorithm 1 has the same behavior for all α ∈

. We need 24 iterations to get desired approximate solution (X24, S24) = (M +
10−11Z1 , 10−11Z2), where

Z1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−0.0386 −0.0095 0.0303 0.0235 0.0301 0.0303 0.0303 0.0301 0.0302 0.0301
−0.0095 0.2692 −0.0090 −0.0327 −0.0093 −0.0092 −0.0091 −0.0088 −0.0093 −0.0089
0.0303 −0.0090 −0.0387 0.0235 0.0303 0.0300 0.0301 0.0302 0.0301 0.0302
0.0235 −0.0327 0.0235 −0.1474 0.0235 0.0235 0.0235 0.0234 0.0235 0.0236
0.0301 −0.0093 0.0303 0.0235 −0.0388 0.0302 0.0304 0.0302 0.0302 0.0302
0.0303 −0.0092 0.0300 0.0235 0.0302 −0.0390 0.0301 0.0303 0.0304 0.0304
0.0303 −0.0091 0.0301 0.0235 0.0304 0.0301 −0.0389 0.0301 0.0302 0.0302
0.0301 −0.0088 0.0302 0.0234 0.0302 0.0303 0.0301 −0.0387 0.0301 0.0301
0.0302 −0.0093 0.0301 0.0235 0.0302 0.0304 0.0302 0.0301 −0.0386 0.0302
0.0301 −0.0089 0.0302 0.0236 0.0302 0.0304 0.0302 0.0301 0.0302 −0.0390

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

Z2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.0974 −0.0821 −0.1103 −0.0150 −0.1103 −0.1103 −0.1103 −0.1103 −0.1103 −0.1103
−0.0821 −0.0325 −0.0822 −0.0672 −0.0821 −0.0822 −0.0822 −0.0822 −0.0822 −0.0822
−0.1103 −0.0822 0.0974 −0.0150 −0.1103 −0.1103 −0.1103 −0.1103 −0.1103 −0.1103
−0.0150 −0.0672 −0.0150 −0.3824 −0.0150 −0.0150 −0.0150 −0.0150 −0.0150 −0.0150
−0.1103 −0.0821 −0.1103 −0.0150 0.0974 −0.1103 −0.1103 −0.1103 −0.1103 −0.1103
−0.1103 −0.0822 −0.1103 −0.0150 −0.1103 0.0974 −0.1103 −0.1103 −0.1103 −0.1103
−0.1103 −0.0822 −0.1103 −0.0150 −0.1103 −0.1103 0.0974 −0.1103 −0.1103 −0.1103
−0.1103 −0.0822 −0.1103 −0.0150 −0.1103 −0.1103 −0.1103 0.0974 −0.1103 −0.1103
−0.1103 −0.0822 −0.1103 −0.0150 −0.1103 −0.1103 −0.1103 −0.1103 0.0974 −0.1103
−0.1103 −0.0822 −0.1103 −0.0150 −0.1103 −0.1103 −0.1103 −0.1103 −0.1103 0.0974

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Example 5.4 We show here an example in which Algorithm 1 converge while SNM
diverge. Let n be a positive integer. Consider the problem posed in Example 4 such
that Q = (P ′P)2 ∈ Sn+ where P = (pi j )1≤i, j≤n and

pi j = |i − j |
i + j

It is clear that the exact solution of the SDNCP(F) is (X∗, S∗) = (P ′P, 0n). We
apply Algorithm 1 and SNM to solve the SDNCP(F), with initial guess (X0, S0) =
(1.25 ∗ P ′P, 0.1 ∗ In) which is closed to (X∗, S∗) and α = 0.5 and μk = 1

2k+1 . For
different values of n we obtain results showing in Table 8.
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Table 8 Convergence of Algorithm 1 and divergence of SNM for n = 4, 10, 15

Algorithm 1 SNM
k CPU time (s) er1(k) k CPU time (s) er2(k)

n = 4 28 0.1136 4.8611e − 11 − − 2.2189e + 154

n = 10 508 4.62 8.1889e − 11 − − 9.2080e + 159

n = 15 1001 21.10 9.3522e − 9 − − 2.1375e + 155

For n = 4 we get using Algorithm 1 the following approximation (X28, S28) of
exact solution (P ′P, 0n) :

X28 =

⎛

⎜⎜
⎝

0.7211 0.3000 0.1524 0.1825
0.3000 0.2622 0.2143 0.2286
0.1524 0.2143 0.3104 0.3667
0.1825 0.2286 0.3667 0.4915

⎞

⎟⎟
⎠

and

S28 = 10−9 ∗

⎛

⎜⎜
⎝

0.0023 −0.0117 0.0306 −0.0198
−0.0117 0.0404 −0.1048 0.0653
0.0306 −0.1048 0.2031 −0.1177

−0.0198 0.0653 −0.1177 0.0649

⎞

⎟⎟
⎠

6 Conclusion

In this paper, we proposed a new smooth NCP matrix function and studied various
properties of this function. Using these properties, we reformulated the SDNCP(F)
problem as a smooth equation. We proved that Newton’s method can not be applied
to solve this matrix equation since we can not guarantee that its Jacobian operator is
invertible at each iteration. So, we applied a quasi-Newton’s method and proved that
the convergence is superlinear. Also we give some developments of the smoothing
Newton’s method for solving this problem. We concluded this paper by some numer-
ical tests which confirm the theoretical results and demonstrate the efficiency of the
proposed method, and we compared between the both methods.
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