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Abstract
We study weighted composition-differentiation operators on the Hardy and Bergman
spaces in the unit disk. We first find necessary and sufficient conditions for weighted
composition-differentiation operators to be Hilbert–Schmidt. We then characterize
convergence of sequences of composition-differentiation operators acting on theHardy
space both in weak operator topology, and in strong operator topology.

Keywords Hardy space · Bergman space · Hilbert–Schmidt operator ·
Composition-differentiation operator · Weak operator topology · Strong operator
topology
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1 Introduction

Let D denote the open unit disk in the complex plane, and let H denote certain func-
tional Hilbert space of analytic functions on the unit disk. For instance, wemay assume
thatH is the classical Hardy space, the Bergman space, the Dirichlet space, and so on.
For an analytic self-mappingϕ on the unit disk, the composition operator Cϕ : H → H
is defined by

Cϕ( f ) = f ◦ ϕ.
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It is well-known [1, Corollary 3.7] that the composition operator is bounded on the
Hardy space H2 (see §2 for definition) and

(
1

1 − |ϕ(0)|2
)1/2

≤ ‖Cϕ‖ ≤
(
1 + |ϕ(0)|
1 − |ϕ(0)|

)1/2

.

For an analytic function ψ , the weighted composition operator Cψ,ϕ : H → H is
given by

Cψ,ϕ( f ) = ψ · f ◦ ϕ.

In the context of analytic functions, it is easy to verify that the differentiation operator
D( f ) = f ′ is not bounded on the Hardy space H2; since {zn}n≥1 is a sequence of unit
vectors in the Hardy space satisfying ‖D(zn)‖ = n. Nevertheless, for many analytic
self-mappings ϕ on the unit disk, the operator Dϕ : H2 → H2 defined by

Dϕ( f ) = f ′ ◦ ϕ

is bounded. We follow Fatehi and Hammond [4] to call Dϕ a composition-
differentiation operator. In [9], Shuichi Ohno established a set of sufficient conditions
that guarantee when the operator Dϕ is bounded or compact. In particular, S. Ohno
proved that if ‖ϕ‖∞ < 1, then Dϕ is a Hilbert–Schmidt operator; and hence bounded
and compact; see [9, Theorem 3.3]. We recall that an operator T on a separable Hilbert
spaceX is said to be Hilbert–Schmidt if for some orthonormal basis en ⊂ X we have

∞∑
n=0

‖T en‖2 < ∞.

According to [9, Corollary 3.2], for a univalent self-map ϕ of the unit disk, the
operator Dϕ on the Hardy space H2 is bounded if and only if

sup
z∈D

1 − |z|
(1 − |ϕ(z)|)3 < ∞.

Moreover, the operator Dϕ on H2 is compact if and only if

lim|z|→1

1 − |z|
(1 − |ϕ(z)|)3 = 0.

Now, let ψ be an analytic function on the unit disk, and define the weighted
composition-differentiation operator Dψ,ϕ : H2 → H2 by the following relation:

Dψ,ϕ( f ) = ψ · f ′ ◦ ϕ.

123



Bulletin of the Iranian Mathematical Society (2022) 48:3637–3658 3639

In Sect. 3, we characterize when the operator Dψ,ϕ is Hilbert–Schmidt. We prove that
the composition-differentiation operator Dψ,ϕ is Hilbert–Schmidt if and only if

sup
0≤r<1

{
1

2π

∫ 2π

0

|ψ (
reiθ

) |2
(1 − ∣∣ϕ (

reiθ
)∣∣2)3 dθ

}
< ∞.

This extends a result of S. Ohno [9, Theorem 3.3] to weighted composition-
differentiation operators. We will also discuss the same problem for other types of
composition-differentiation operators; in particular, the operators (k ∈ N):

Dk
ϕ( f ) = f (k) ◦ ϕ, Dk

ψ,ϕ( f ) = ψ · ( f (k) ◦ ϕ),

D(k)
ϕ ( f ) = ( f (k) ◦ ϕ)ϕ′, D(k)

ψ,ϕ( f ) = ψ · ( f (k) ◦ ϕ)ϕ′.

Wewill find necessary and sufficient conditions for these operators to becomeHilbert–
Schmidt. In particular, we shall see that the operator Dk

ψ,ϕ is Hilbert–Schmidt on H2

if and only if

sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

|ψ (
reiθ

) |2(
1 − ∣∣ϕ (

reiθ
)∣∣2)2k+1 dθ

⎫⎪⎬
⎪⎭ < ∞.

Moreover, the operator D(k)
ψ,ϕ is Hilbert–Schmidt on H2 if and only if

sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

|ψ (
reiθ

)
ϕ′ (reiθ ) |2(

1 − ∣∣ϕ (
reiθ

)∣∣2)2k+1 dθ

⎫⎪⎬
⎪⎭ < ∞.

Similar results are established in the Bergman space (see Sect. 2, for the definition)
too. The analogs of the above conditions in the Bergman space are the following; the
functions ψ and ϕ have to satisfy

∫
D

|ψ(z)|2
(1 − |ϕ(z)|2)2k+2

dA(z) < ∞,

(respectively),

∫
D

∣∣ψ(z)ϕ′(z)
∣∣2

(1 − |ϕ(z)|2)2k+2
dA(z) < ∞,

where dA(z) = dx dy is the area measure on the unit disk.
Our next objective in Sect. 4 is to find the relationships between convergence of

the sequence of operators Dψn ,ϕn in operator topologies from one hand, and the con-
vergence of the sequences of functions ψn and ϕn on the other hand. From historical
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point of view, Howard Schwarz [11] studied the relationship between the convergence
of sequence of composition operators Cϕn , and the convergence of the sequence of
self-maps ϕn . Valetine Matache [7] extended Schwarz’s work by relating the conver-
gence of Cϕn in Hilbert–Schmidt norm to the convergence of the sequence ϕn . Then
appeared Gunatillake’s paper [6] on the relationship between convergence of weighted
composition operators Cψn ,ϕn , and the convergence of {ψn} and {ϕn}. This latter was
extended by Mehrangiz and Khani-Robati [8] to generalized weighted composition
operators on Bloch type spaces. Here we intend to generalize Gunatillake’s result to
weighted composition-differentiation operator Dψ,ϕ in the setting of classical Hardy
spaces. More specifically, let B(H2) denote the Banach algebra of all bounded linear
operators on the Hilbert space H2. It is rather well-known that the dual space ofB(H2)

is too big, so that the weak and weak-star topology of this space is not so clear. For this
reason, it is customary to equip this space with the weak operator topology, the strong
operator topology, and the uniform operator topology. We intend to have a character-
ization of the convergence of Dψn ,ϕn to Dψ,ϕ with respect to operator topologies in
terms of the convergence of ϕn → ϕ and ψn → ψ in the weak and strong operator
topologies of H2.

2 Preliminaries

Let f be an analytic function in the unit disk D. The function f is said to belong to
the Hardy space H2 if

‖ f ‖2 = sup
0≤r<1

1

2π

∫ 2π

0
| f

(
reiθ

)
|2dθ < ∞.

It is easy to see that for an analytic function f (z) = ∑∞
n=0 anz

n , the norm of f in H2

is given by

‖ f ‖2 =
∞∑
n=0

|an|2.

It is well-known (see for instance, [10]) that for f ∈ H2, the radial limit

f ∗(eiθ ) := lim
r→1− f

(
reiθ

)
= lim

r→1− fr
(
eiθ

)

for almost every θ ∈ [0, 2π ] exists. The function f ∗ is known as the radial function
of f . The space H2 is a functional Hilbert space, and its inner product is given by

〈 f , g〉 = 1

2π

∫ 2π

0
f ∗ (

eiθ
)
g∗ (

eiθ
)
dθ.
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Since the evaluation functionals are bounded, the Hardy space is a reproducing kernel
Hilbert space; this means that for each w ∈ D, there is a function

Kw(z) = 1

1 − wz
∈ H2

such that every f ∈ H2 has the following representation

f (w) = 〈 f , Kw〉 = 1

2π

∫ 2π

0
f ∗(eiθ )K ∗

w(eiθ )dθ.

It is also well-known that the functional w �→ f ′(w) is bounded on H2 ( [1, Theorem
2.16]). It then follows from the Riesz representation theorem that there is a function
K (1)

w ∈ H2 such that

f ′(w) = 〈 f , K (1)
w 〉, f ∈ H2.

It turns out that (see §4)

K (1)
w (z) = z

(1 − wz)2
, (z, w) ∈ D × D.

Another functionalHilbert space on the unit disk is theBergman space L2
a consisting

of all analytic functions f in the unit disk for which the integral

1

π

∫
D

| f (z)|2dA(z)

is finite; here dA(z) = dxdy is the usual area measure in the complex plane. The norm
of f is defined by

‖ f ‖L2
a

=
(
1

π

∫
D

| f (z)|2dA(z)

)1/2

.

A computation reveals that for f (z) = ∑∞
n=0 anz

n , we have

‖ f ‖2L2
a

=
∞∑
n=0

|an|2
n + 1

,

from which we conclude that H2 ⊂ L2
a .

We now turn to recall different notions of convergence in the space of bounded
linear operators on a given Hilbert space. Let B(H) denote the algebra of bounded
linear operators on a Hilbert space H. We consider a sequence Tn ∈ B(H). We say
that Tn converges to T in weak operator topology, and write Tn → T (WOT) if for
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each x ∈ H, Tnx → T x weakly. Similarly, we say that Tn converges to T in strong
operator topology, and write Tn → T (SOT) if for each x ∈ H, Tnx → T x (in norm).

In this paper, we are concerned with bounded operators of the form Dψ,ϕ on H2. It
should be emphasized that if ψ is a bounded analytic function on the open unit disk,
and if ϕ is a non-constant self-map of the unit disk such that

‖ϕ‖∞ = sup{|ϕ(z)| : z ∈ D} ≤ r < 1,

then the composition-differentiation operator Dψ,ϕ is bounded; indeed, by a result due
to Fatehi and Hammond ( [4, Proposition 4]) we have

‖Dϕ‖ ≤
(
r + |ϕ(0)|
r − |ϕ(0)|

)1/2 ⌊
1

1 − r

⌋
r

⌊
1

1−r

⌋
−1

, (1)

where �·� denotes the greatest integer function. On the other hand, if ψ is bounded,
then the operator of multiplication by ψ , i.e. Mψ( f ) = ψ f is bounded, and its norm
does not exceed ‖ψ‖∞. Therefore,

Dψ,ϕ( f ) = Mψ Dϕ( f ), f ∈ H2,

is bounded too. We mention that there are instances of bounded operators when
‖ϕ‖∞ = 1. Indeed, if we know that Dϕ maps H2 into itself, it follows from Closed
Graph Theorem that the operator Dϕ and hence the operator Dψ,ϕ is bounded (for a
bounded analytic function ψ). To see this, let fn be a sequence of analytic self-maps
such that fn → f in H2, and Dϕ( fn) → g in H2. But norm convergence implies
pointwise convergence, so that f ′

n(ϕ(z)) → g(z) pointwise. Since f ′
n(z) → f ′(z),

it follows that f ′
n(ϕ(z)) → f ′(ϕ(z)). By the uniqueness of limit, we conclude that

f ′(ϕ(z)) = g(z) from which it follows that Dϕ( fn) → Dϕ( f ).

3 Hilbert–Schmidt operators

This section is devoted to the study of Hilbert–Schmidt composition-differentiation
operators. We start by finding conditions on ψ and ϕ to guarantee that the weighted
composition-differentiation operator Dψ,ϕ is a Hilbert–Schmidt operator. We recall
that an operator T ∈ B(X ) is called Hilbert–Schmidt if for some orthonormal basis
en ⊂ X we have

∑
n ‖T en‖2 < ∞ (here X is a separable Hilbert space). It is well-

known that every Hilbert–Schmidt operator is compact (see [3, page 87]). Assume that
ϕ is an analytic self-map of the unit disk, andψ is an analytic function on the unit disk.
In this section, in addition to Dψ,ϕ( f ) = ψ · f ′ ◦ ϕ, we shall consider the following
weighted composition-differentiation operators on a given functional Hilbert spaceH
(this functional Hilbert space is either the Hardy space H2 or the Bergman space L2

a ,
moreover k ≥ 1 is an integer):

Dk
ϕ( f ) = f (k) ◦ ϕ, Dk

ψ,ϕ( f ) = ψ · ( f (k) ◦ ϕ),
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D(k)
ϕ ( f ) = ( f (k) ◦ ϕ)ϕ′, D(k)

ψ,ϕ( f ) = ψ · ( f (k) ◦ ϕ)ϕ′.

Note that in case k = 1 or k = 2, it is easier to use the notations

D′
ϕ( f ) = ( f ′ ◦ ϕ)ϕ′, D′

ψ,ϕ( f ) = ψ · ( f ′ ◦ ϕ)ϕ′,
D′′

ϕ( f ) = ( f ′′ ◦ ϕ)ϕ′, D′′
ψ,ϕ( f ) = ψ · ( f ′′ ◦ ϕ)ϕ′.

Some authors (see for instance [9]) denote the operator D′
ϕ( f ) by

DCϕ f (z) = f ′(ϕ(z))ϕ′(z).

Our first theorem generalizes a similar result proved in [9] for Dϕ .

Theorem 3.1 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then Dψ,ϕ is a Hilbert–Schmidt operator on H2 if and
only if

sup
0≤r<1

{
1

2π

∫ 2π

0

|ψ (
reiθ

) |2
(1 − ∣∣ϕ (

reiθ
)∣∣2)3 dθ

}
< ∞.

Proof For the orthonormal basis {zn} for H2, we have

∞∑
n=0

‖Dψ,ϕ(zn)‖2 =
∞∑
n=1

sup
0≤r<1

{
1

2π

∫ 2π

0

∣∣∣∣ψ
(
reiθ

)
nϕ

(
reiθ

)n−1
∣∣∣∣
2

dθ

}

= sup
0≤r<1

{
1

2π

∫ 2π

0
|ψ

(
reiθ

)
|2

∞∑
n=0

(n + 1)2
∣∣∣ϕ(reiθ )

∣∣∣2n dθ
}

≤ sup
0≤r<1

{
1

2π

∫ 2π

0

2|ψ(reiθ )|2
(1 − ∣∣ϕ(reiθ )

∣∣2)3 dθ
}

.

Therefore,
∑∞

n=0 ‖Dψ,ϕ(zn)‖2 is finite if

sup
0≤r<1

{
1

2π

∫ 2π

0

|ψ (
reiθ

) |2
(1 − ∣∣ϕ (

reiθ
)∣∣2)3 dθ

}
< ∞.

For the reverse implication note that

∞ >

∞∑
n=0

‖Dψ,ϕ(zn)‖2 =
∞∑
n=1

sup
0≤r<1

{
1

2π

∫ 2π

0

∣∣∣∣ψ
(
reiθ

)
nϕ

(
reiθ

)n−1
∣∣∣∣
2
dθ

}

≥ sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

|ψ
(
reiθ

)
|2

(
1 − ∣∣ϕ (

reiθ
)∣∣2)3 dθ

⎫⎪⎬
⎪⎭ .

��
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Corollary 3.2 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D′

ψ,ϕ is a Hilbert–Schmidt operator on H2 if and only
if

sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

∣∣ψ (
reiθ

)
ϕ′ (reiθ )∣∣2(

1 − ∣∣ϕ (
reiθ

)∣∣2)3 dθ

⎫⎪⎬
⎪⎭ < ∞.

Proof We just note that in this case

D′
ψ,ϕ(zn)

(
reiθ

)
= ψ

(
reiθ

)
· nϕ

(
reiθ

)n−1 · ϕ′ (reiθ) .

The rest calculations remain unchanged. ��
Theorem 3.3 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D2

ψ,ϕ is a Hilbert–Schmidt operator on H2 if and only
if

sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

|ψ (
reiθ

) |2(
1 − ∣∣ϕ (

reiθ
)∣∣2)5 dθ

⎫⎪⎬
⎪⎭ < ∞. (2)

Proof First, assume that (2) holds true. We note that

D2
ψ,ϕ(zn)

(
reiθ

)
= ψ

(
reiθ

)
· n(n − 1)ϕ

(
reiθ

)n−2
.

Using the series expansion

∞∑
n=0

(n + 1)2(n + 2)2xn = 4x2 + 16x + 4

(1 − x)5
, |x | < 1,

we conclude that

∞∑
n=0

‖D2
ψ,ϕ(zn)‖2 =

∞∑
n=2

sup
0≤r<1

{
1

2π

∫ 2π

0

∣∣∣∣ψ
(
reiθ

)
n(n − 1)ϕ

(
reiθ

)n−2
∣∣∣∣
2

dθ

}

= sup
0≤r<1

{
1

2π

∫ 2π

0

∣∣∣ψ (
reiθ

)∣∣∣2
∞∑
n=0

(n + 2)2(n + 1)2
∣∣∣ϕ (

reiθ
)∣∣∣2n dθ

}

= sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

|ψ (
reiθ

) |2 (
4|ϕ (

reiθ
) |4 + 16|ϕ (

reiθ
) |2 + 4

)
(
1 − ∣∣ϕ (

reiθ
)∣∣2)5 dθ

⎫⎪⎬
⎪⎭
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≤ sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

24|ψ (
reiθ

) |2(
1 − ∣∣ϕ (

reiθ
)∣∣2)5 dθ

⎫⎪⎬
⎪⎭ < ∞.

Conversely, if D2
ψ,ϕ is a Hilbert–Schmidt operator, then

∞ >

∞∑
n=0

‖D2
ψ,ϕ(zn)‖2 =

∞∑
n=2

sup
0≤r<1

{
1

2π

∫ 2π

0

∣∣∣∣ψ
(
reiθ

)
n(n − 1)ϕ

(
reiθ

)n−2
∣∣∣∣
2
dθ

}

= sup
0≤r<1

⎧⎨
⎩

1

2π

∫ 2π

0

|ψ
(
reiθ

)
|2

(
4|ϕ

(
reiθ

)
|4 + 16|ϕ

(
reiθ

)
|2 + 4

)

(1 − ∣∣ϕ (
reiθ

)∣∣2)5 dθ

⎫⎬
⎭

≥ sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

4|ψ
(
reiθ

)
|2

(
1 − ∣∣ϕ (

reiθ
)∣∣2)5 dθ

⎫⎪⎬
⎪⎭ ,

which implies that (2) is satisfied. ��
Corollary 3.4 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D′′

ψ,ϕ is a Hilbert–Schmidt operator on H2 if and only
if

sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

∣∣ψ (
reiθ

)
ϕ′ (reiθ )∣∣2(

1 − ∣∣ϕ (
reiθ

)∣∣2)5 dθ

⎫⎪⎬
⎪⎭ < ∞.

Proof In this case note that

D′′
ψ,ϕ(zn)(reiθ ) = ψ(reiθ ) · n(n − 1)ϕ(reiθ )n−2ϕ′(reiθ ).

The rest calculations remain unchanged. ��
Theorem 3.5 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D3

ψ,ϕ is a Hilbert–Schmidt operator on H2 if and only
if

sup
0≤r<1

{
1

2π

∫ 2π

0

|ψ(reiθ )|2
(1 − ∣∣ϕ(reiθ )

∣∣2)7 dθ
}

< ∞. (3)

Proof For the sake of simplicity, let us assume that ψ ≡ 1. We first assume that (3)
holds true. Since

D3
ϕ(zn)(reiθ ) = n(n − 1)(n − 2)ϕ(reiθ )n−3,

123



3646 Bulletin of the Iranian Mathematical Society (2022) 48:3637–3658

we can write

∞∑
n=0

‖D3
ϕ(zn)‖2 =

∞∑
n=3

sup
0≤r<1

{
1

2π

∫ 2π

0

∣∣∣n(n − 1)(n − 2)ϕ(reiθ )n−3
∣∣∣2 dθ

}

= sup
0≤r<1

{
1

2π

∫ 2π

0

∞∑
n=0

(n + 1)2(n + 2)2(n + 3)2
∣∣∣ϕ(reiθ )

∣∣∣2n dθ
}

.

Note that

∞∑
n=0

(n + 1)2(n + 2)2(n + 3)2xn = 36(x3 + 9x2 + 9x + 3)

(1 − x)7
, |x | < 1, (4)

so that

∞∑
n=0

‖D3
ϕ(zn)‖2 = sup

0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

36
(
|ϕ(reiθ )|6 + 9|ϕ(reiθ )|4 + 9|ϕ(reiθ )|2 + 3

)
(
1 − ∣∣ϕ(reiθ )

∣∣2)7 dθ

⎫⎪⎬
⎪⎭

≤ sup
0≤r<1

⎧⎪⎨
⎪⎩

1

2π

∫ 2π

0

(36)(22)(
1 − ∣∣ϕ(reiθ )

∣∣2)7 dθ
⎫⎪⎬
⎪⎭ < ∞.

On the other hand,

∞ >

∞∑
n=0

‖D3
ϕ(zn)‖2 = sup

0≤r<1

{
1

2π

∫ 2π

0

36
(|ϕ(reiθ )|6 + 9|ϕ(reiθ )|4 + 9|ϕ(reiθ )|2 + 3

)
(1 − ∣∣ϕ(reiθ )

∣∣2)7 dθ

}

≥ sup
0≤r<1

{
1

2π

∫ 2π

0

(36)(3)(
1 − ∣∣ϕ(reiθ

)∣∣2)7 dθ
}

.

��
Corollary 3.6 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D(3)

ψ,ϕ is a Hilbert–Schmidt operator on H2 if and only
if

sup
0≤r<1

{
1

2π

∫ 2π

0

|ψ(reiθ )ϕ′(reiθ )|2
(1 − ∣∣ϕ(reiθ )

∣∣2)7 dθ

}
< ∞.

Proof We just note that

D(3)
ϕ (zn)(reiθ ) = n(n − 1)(n − 2)ϕ(reiθ )n−3ϕ′(reiθ ).

��
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The above pattern can be extended to higher order weighted composition-
differentiation operators. We just state the following two results.

Theorem 3.7 Let ϕ be an analytic self-map of the unit disk, ψ be an analytic function
on the unit disk, and k be a non-negative integer. Then Dk

ψ,ϕ is a Hilbert–Schmidt

operator on H2 if and only if

sup
0≤r<1

{
1

2π

∫ 2π

0

|ψ(reiθ )|2
(1 − ∣∣ϕ(reiθ )

∣∣2)2k+1
dθ

}
< ∞.

Corollary 3.8 Let ϕ be an analytic self-map of the unit disk, ψ be an analytic function
on the unit disk, and k be a non-negative integer. Then D(k)

ψ,ϕ is a Hilbert–Schmidt

operator on H2 if and only if

sup
0≤r<1

{
1

2π

∫ 2π

0

|ψ(reiθ )ϕ′(reiθ )|2
(1 − ∣∣ϕ(reiθ )

∣∣2)2k+1
dθ

}
< ∞.

Remark 3.9 If k = 0 and ψ is the constant function 1, then Dk
ψ,ϕ = Cϕ , so that Cϕ is

a Hilbert–Schmidt operator on H2 if and only if

sup
0≤r<1

{
1

2π

∫ 2π

0

1

1 − ∣∣ϕ(reiθ )
∣∣2 dθ

}
< ∞.

This result is of course known (see [12, page 227, Ex. 4]).

The Bergman space
As is well-known, the Bergman spaces are special cases of weighted Hardy spaces;
we mean by a weighted Hardy space, a space of analytic functions on the unit disk
such that the monomials {zn}n≥0 constitute an orthonormal basis for the space. If
‖zn‖ = β(n), then

‖ f ‖2 =
∥∥∥∥∥

∞∑
n=0

anz
n

∥∥∥∥∥
2

=
∞∑
n=0

|an|2β(n)2.

If β(n) = 1 for each n, we get the Hardy space, and if β(n) = (n + 1)−1/2 we get the
Bergman space consisting of functions f that are analytic in the unit disk and satisfy

‖ f ‖2L2
a

= 1

π

∫
D

| f (z)|2dA(z) < ∞,
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where dA(z) = dxdy is the usual area measure. It is easy to see that for f (z) =∑∞
n=0 anz

n , we have

‖ f ‖2L2
a

=
∞∑
n=0

|an|2
n + 1

.

An easy computation shows that the sequence {√n + 1 zn}∞n=0 constitutes an orthonor-
mal basis for the Bergman space L2

a . It should be mentioned that the operator
Cϕ( f ) = f ◦ ϕ is bounded on L2

a and its norm satisfies (see [12, Theorem 10.3.2])

‖Cϕ‖L2
a

≤
(
1 + |ϕ(0)|
1 − |ϕ(0)|

)1/2

.

The subscript L2
a reflects the norm of operator acting on L2

a . Therefore, for ψ ∈ H∞,
the operator Dψ,ϕ is bounded as long as Dϕ maps the Bergman space into itself;
however there are instances in which this operator is unbounded.

We are now in a position to characterize weighted composition-differentiation oper-
ators on the Bergman space that are Hilbert–Schmidt.

Theorem 3.10 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then Dψ,ϕ is a Hilbert–Schmidt operator on L2

a if and only
if

∫
D

|ψ(z)|2
(1 − |ϕ(z)|2)4 dA(z) < ∞.

Proof Let ϕ satisfy the above condition, and {√n + 1 zn} be an orthonormal basis for
L2
a . Using the elementary expansion

∞∑
n=0

(n + 1)2(n + 2)xn = 4x + 2

(1 − x)4
, |x | < 1,

we have

∞∑
n=0

‖Dψ,ϕ(
√
n + 1 zn)‖2L2

a
=

∞∑
n=1

∫
D

∣∣∣ψ(z)n
√
n + 1ϕ(z)n−1

∣∣∣2 dA(z)

=
∫
D

|ψ(z)|2
∞∑
n=0

(n + 1)2(n + 2) |ϕ(z)|2n dA(z)

=
∫
D

|ψ(z)|2 (
4|ϕ(z)|2 + 2

)
(1 − |ϕ(z)|2)4 dA(z)

≤ 6
∫
D

|ψ(z)|2
(1 − |ϕ(z)|2)4 dA(z) < ∞.
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On the other hand, if Dψ,ϕ is Hilbert–Schmidt on L2
a , then we have

∞ >

∞∑
n=0

∥∥∥Dψ,ϕ(
√
n + 1 zn)

∥∥∥2
L2
a

=
∞∑
n=1

∫
D

∣∣∣ψ(z)n
√
n + 1ϕ(z)n−1

∣∣∣2 dA(z)

=
∫
D

|ψ(z)|2 (
4|ϕ(z)|2 + 2

)
(1 − |ϕ(z)|2)4 dA(z)

≥ 2
∫
D

|ψ(z)|2
(1 − |ϕ(z)|2)4 dA(z).

��
Corollary 3.11 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D′

ψ,ϕ is a Hilbert–Schmidt operator on L2
a if and only

if

∫
D

|ψ(z)ϕ′(z)|2
(1 − |ϕ(z)|2)4 dA(z) < ∞.

Proof It is enough to notice that

D′
ψ,ϕ(

√
n + 1 zn) = ψ(z)n

√
n + 1ϕ(z)n−1ϕ′(z).

��
Theorem 3.12 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D2

ψ,ϕ is a Hilbert–Schmidt operator on L2
a if and only

if

∫
D

|ψ(z)|2
(1 − |ϕ(z)|2)6 dA(z) < ∞. (5)

Proof Let ψ and ϕ satisfy the condition (5). Then, using

∞∑
n=0

(n + 1)2(n + 2)2(n + 3)xn = 36x2 + 72x + 12

(1 − x)6
, |x | < 1, (6)

we have

∞∑
n=0

∥∥∥D2
ψ,ϕ(

√
n + 1 zn)

∥∥∥2 =
∞∑
n=2

∫
D

∣∣∣ψ(z)n(n − 1)
√
n + 1ϕ(z)n−2

∣∣∣2

=
∫
D

|ψ(z)|2
∞∑
n=0

(n + 1)2(n + 2)2(n + 3)|ϕ(z)|2n
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=
∫
D

|ψ(z)|2 36|ϕ(z)|4 + 72|ϕ(z)|2 + 12

(1 − |ϕ(z)|2)6 .

This implies that

∫
D

12|ψ(z)|2
(1 − |ϕ(z)|2)6 dA(z) ≤

∞∑
n=0

∥∥∥D2
ψ,ϕ(

√
n + 1 zn)

∥∥∥2

≤
∫
D

120|ψ(z)|2
(1 − |ϕ(z)|2)6 dA(z),

from which the result follows. ��

Corollary 3.13 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D(2)

ψ,ϕ is a Hilbert–Schmidt operator on L2
a if and only

if

∫
D

|ψ(z)ϕ′(z)|2
(1 − |ϕ(z)|2)6 dA(z) < ∞.

Theorem 3.14 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D3

ψ,ϕ is a Hilbert–Schmidt operator on L2
a if and only

if

∫
D

|ψ(z)|2
(1 − |ϕ(z)|2)8 dA(z) < ∞. (7)

Proof We write

∞∑
n=0

∥∥∥D3
ψ,ϕ(

√
n + 1 zn)

∥∥∥2 =
∞∑
n=3

∫
D

∣∣∣ψ(z)n(n − 1)(n − 2)
√
n + 1ϕ(z)n−3

∣∣∣2

=
∫
D

|ψ(z)|2
∞∑
n=0

(n + 1)2(n + 2)2(n + 3)2(n + 4)|ϕ(z)|2n .

Multiplying (4) through x4, differentiating with respect to x , and dividing both sides
by x3, we obtain

∞∑
n=0

(n + 1)2(n + 2)2(n + 3)2(n + 4)xn = 36(110x3 + 72x2 + 54x + 12)

(1 − x)8
, |x | < 1.

This implies that
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∞∑
n=0

∥∥∥D3
ψ,ϕ(

√
n + 1 zn)

∥∥∥2

=
∫
D

|ψ(z)|2
∞∑
n=0

36(110|ϕ(z)|6 + 72|ϕ(z)|4 + 54|ϕ(z)|2 + 12)

(1 − |ϕ(z)|2)8 .

Since 0 ≤ |ϕ(z)| ≤ 1, it follows that the operator D3
ψ,ϕ is Hilbert–Schmidt if and only

if (7) holds true. ��
Corollary 3.15 Let ϕ be an analytic self-map of the unit disk, and ψ be an analytic
function on the unit disk. Then D(3)

ψ,ϕ is a Hilbert–Schmidt operator on L2
a if and only

if

∫
D

∣∣ψ(z)ϕ′(z)
∣∣2

(1 − |ϕ(z)|2)8 dA(z) < ∞.

The above pattern can be used repeatedly to establish the following results.

Theorem 3.16 Let ϕ be an analytic self-map of the unit disk,ψ be an analytic function
on the unit disk, and k be a non-negative integer. Then Dk

ψ,ϕ is a Hilbert–Schmidt

operator on L2
a if and only if

∫
D

|ψ(z)|2
(1 − |ϕ(z)|2)2k+2

dA(z) < ∞.

Corollary 3.17 Let ϕ be an analytic self-map of the unit disk,ψ be an analytic function
on the unit disk, and k be a non-negative integer. Then D(k)

ψ,ϕ is a Hilbert–Schmidt

operator on L2
a if and only if

∫
D

∣∣ψ(z)ϕ′(z)
∣∣2

(1 − |ϕ(z)|2)2k+2
dA(z) < ∞.

Remark 3.18 If k = 0 and ψ is the constant function 1, then Dk
ψ,ϕ = Cϕ , so that Cϕ

is a Hilbert–Schmidt operator on L2
a if and only if

∫
D

1

(1 − |ϕ(z)|2)2 dA(z) < ∞.

This result is of course known (see [12, page 227, Ex. 5]).

4 Convergence in operator topologies

We begin by computing the adjoint of the composition-differentiation operator Dψ,ϕ .
The following lemma is known; but for the convenience of reader, we include a proof
here.
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Lemma 4.1 [5]. Let Dψ,ϕ be a bounded operator on H2. Then D∗
ψ,ϕ(Kw) =

ψ(w)K (1)
ϕ(w), where K (1)

w (z) is the reproducing kernel corresponding to differentia-

tion functional w �→ f ′(w) on H2.

Proof Letw ∈ D be fixed. It is well-known that the functionalw �→ f ′(w) is bounded
on H2 (see [1, Theorem 2.16]). It then follows from Riesz representation theorem that
there is a function K (1)

w ∈ H2 such that

f ′(w) = 〈 f , K (1)
w 〉, f ∈ H2.

On the other hand, we have already seen that

f (w) = 〈 f , Kw〉 = 1

2π

∫ 2π

0
f ∗(eiθ ) 1

1 − we−iθ
dθ.

This implies that

f ′(w) = 1

2π

∫ 2π

0
f ∗(eiθ ) e−iθ

(1 − we−iθ )2
dθ,

from which, by the uniqueness of kernel function, we obtain

K (1)
w (z) = z

(1 − wz)2
, (z, w) ∈ D × D. (8)

We now assume that f ∈ H2, and write

〈 f , D∗
ψ,ϕ(Kw)〉 = 〈Dψ,ϕ( f ), Kw〉

= 〈ψ · f ′ ◦ ϕ, Kw〉
= ψ(w)〈 f ′ ◦ ϕ, Kw〉
= ψ(w)〈 f , K (1)

ϕ(w)〉
= 〈 f , ψ(w)K (1)

ϕ(w)〉,

from which the result follows. ��
Assume that a sequence of self-maps ϕn on the unit disk satisfies ‖ϕn‖∞ < r < 1,

and that ψn is a sequence of bounded analytic functions on the unit disk satisfying

lim
n→∞

‖ψn‖∞
(r − |ϕn(0)|)1/2 = 0.

It then follows from ‖Dψn ,ϕn‖ ≤ ‖ψn‖∞‖Dϕn‖ and (1) that

‖Dψn ,ϕn‖ → 0, n → ∞,
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while ϕn may not be convergent. To avoid this, we often consider sequences of oper-
ators Dψn ,ϕn with nonzero limits.

Lemma 4.2 Let ϕn be a sequence of analytic self-mappings of the unit disk such that
for each n we have ‖ϕn‖∞ < 1, and let ψn be a sequence in H2 such that Dψn ,ϕn is
bounded. Assume that Dψn ,ϕn converges in the weak operator topology to a nonzero
operator T . Then we have
(a) ψn converges weakly to a nonzero function ψ ,
(b) ϕn converges weakly to an analytic self-mapping of D,
(c) T is a weighted composition-differentiation operator on H2.

Proof For part (a), consider g(z) = z. By assumption, Dψn ,ϕn (g) → T (g) weakly (in
H2). This means that ψng′(ϕn) → T (g) weakly; or ψn → T (g) weakly. To prove
that T (g) is a nonzero function, assume on the contrary that T (g) = 0. Let f be a
polynomial, then Dψn ,ϕn ( f ) → T ( f ) weakly, which implies that for every w ∈ D,

Dψn ,ϕn ( f )(w) → T ( f )(w),

or equivalently,

lim
n→∞ ψn(w) f ′(ϕn(w)) = T ( f )(w).

Sinceψn(w) → 0, and the sequence f ′(ϕn(w)) is bounded, it follows that T ( f )(w) =
0. Since the polynomials are dense in H2,we conclude that for everyh ∈ H2,T (h) = 0
which contradicts our assumption on T . Thus (a) is proved.
As for part (b), we note that for each nonzero z and each w in the unit disk we have

〈Kz, T
∗(Kw)〉 = lim

n→∞〈Kz, D
∗
ψn ,ϕn

(Kw)〉.

We now use Lemma 4.1 together with (1) to obtain

T ∗(Kw)(z) = lim
n→∞ ψn(w)K (1)

ϕn(w)(z) = lim
n→∞ ψ(w)

z

(1 − ϕn(w)z)2
. (9)

Let E = {ζ ∈ D : ψ(ζ ) �= 0}. Since ψ is a nonzero analytic function, it follows that
E is topologically "big" inD; meaning that it has accumulation points in the unit disk.
Since the sequence

ψ(w)
z

(1 − ϕn(w)z)2

is convergent, it follows that for each w ∈ E , the sequence ϕn(w) converges, say to
ϕ. On the other hand, ‖ϕn‖∞ < 1, so that ϕn forms a normal family. This implies that
a subsequence of ϕn converges to an analytic function h on every compact subset of
the unit disk. Thus h and ϕ must agree on the whole disk, that is, ϕn → ϕ uniformly
on compact subsets of D. It is clear that |ϕ(w)| ≤ 1 for each w ∈ D. Note also
that uniform boundedness of ϕn implies that this sequence is norm bounded in H2.
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Therefore, ϕn → ϕ weakly in H2. The last thing to be proved is that ϕ is a self
mapping of the unit disk. To this end, let w ∈ E . Since we have from (9)

T ∗(Kw)(z) = ψ(w)
z

(1 − ϕ(w)z)2
, (10)

and T ∗(Kw) ∈ H2, we get |ϕ(w)| < 1. In case that w /∈ E , the function ψ does not
vanish in a punctured closed disk around w, so that on the boundary of this small disk
we have again |ϕ| < 1, and by the maximum principle |ϕ(w)| < 1.
Finally, for part (c), it follows from (10) that

〈T ∗(Kw), Kz〉 = ψ(w)〈K (1)
ϕ(w), Kz〉,

and hence

T (Kz)(w) = 〈T (Kz), Kw〉 = 〈ψ(w)Kz, K
(1)
ϕ(w)〉 = ψ(w)K ′

z(ϕ(w)).

Since the span of the reproducing kernel functions is dense in H2, we have T ( f )(w) =
ψ(w) f ′(ϕ(w)), or T ( f ) = Dψ,ϕ( f ), which is the desired result. ��

The following theorem describes the conditions under which the sequence of
bounded operators Dψn ,ϕn converges to Dψ,ϕ in the weak operator topology.

Theorem 4.3 Let {ϕn}n≥1 and ϕ be analytic self-maps of the unit disk such that
‖ϕn‖∞ < 1, and let {ψn}n≥1 and ψ be elements in H2. Assume that each Dψn ,ϕn

is bounded, and that Dψ,ϕ is a bounded nonzero operator on H2. Then Dψn ,ϕn con-
verges to Dψ,ϕ in weak operator topology if and only if
(a) ψn converges weakly to ψ in H2,
(b) ϕn converges weakly to ϕ in H2,
(c) supn ‖Dψn ,ϕn‖ < ∞.

Proof Assume that Dψn ,ϕn converges to Dψ,ϕ in weak operator topology. For (a), put
f (z) = z. It follows that Dψn ,ϕn ( f ) → Dψ,ϕ( f ) weakly; or ψn → ψ weakly.
For (b), let E ⊂ D be the set on which ψ does not vanish. Consider g(z) =

z2/2. Since Dψn ,ϕn (g) → Dψ,ϕ(g) weakly, it follows that ψnϕn → ψϕ weakly. In
particular, this convergence is pointwise. Therefore, on E whereψ is nonzero,ϕn → ϕ

pointwise. On the other hand, by part (b) of the preceding lemma, ϕn → h weakly,
where h is an analytic self-map of the unit disk. Therefore, ϕn(z) → h(z) for each
z ∈ D. This implies that h = ϕ on E , and hence on the whole disk (E is a big set!).

The last part is clear from the Banach-Steinhaus theorem; for each f ∈
H2, Dψn ,ϕn ( f ) is weakly convergent, hence pointwise bounded (the bound depends
on f ). Banach-Steinhaus theorem now implies that Dψn ,ϕn is uniformly bounded.

To prove the converse statement, assume that parts (a), (b), and (c) hold true. Clearly,
ϕn → ϕ pointwise, and ψn → ψ pointwise. For z, w ∈ D, we have

ψ(w)
z

(1 − ϕ(w)z)2
= lim

n→∞ ψn(w)
z

(1 − ϕn(w)z)2
,
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and hence

〈Dψ,ϕ(Kz), Kw〉 = lim
n→∞〈Dψn ,ϕn (Kz), Kw〉.

We recall that a sequence Tn ∈ B(H) converges to T in weak operator topology if
supn ‖Tn‖ < ∞ and for every x, y in a dense subset ofHwe have 〈Tnx, y〉 → 〈T x, y〉
(see [2, Chap. IX, Proposition 1.3(b)]). Invoking this statement, and noting that the
reproducing kernel functions {Kz : z ∈ D} is dense in H2, and the sequence of
operators Dψn ,ϕn is bounded, by part (c), we conclude that Dψn ,ϕn → Dψ,ϕ in weak
operator topology. ��
Remark 4.4 If we consider the sequence Dϕn in which supn ‖ϕn‖∞ ≤ r < 1, and if
we assume that ϕn → ϕ weakly, then from the estimate (1)

‖Dϕn‖ ≤
(
r + |ϕn(0)|
r − |ϕn(0)|

)1/2

� 1

1 − r
�r � 1

1−r �−1,

we conclude that supn ‖Dϕn‖ is bounded, so that the condition (c) is redundant.

In the following we turn to the convergence of Dψn ,ϕn in strong operator topology.
Note that the weak convergence of ϕn → ϕ and the weak convergence ofψn → ψ are
not sufficient for the convergence of Dψn ,ϕn → Dψ,ϕ in the strong operator topology.
For example, letψn = ϕn = zn/2. It is clear that both of this sequences converge to the
zero function weakly (elements of an orthonormal basis in a Hilbert space converge
to zero weakly). Therefore, by Theorem 4.3, Dψ,ϕ → 0 (WOT). Now let f (z) = z,
then for each m �= n, we have

‖Dψn ,ϕn ( f ) − Dψm ,ϕm ( f )‖ = √
2/2,

which means that Dψn ,ϕn is not convergent in strong operator topology.

Lemma 4.5 Let {ϕn}n≥1 andϕ be analytic self-maps of the unit disk such that ‖ϕn‖∞ <

1, and let {ψn}n≥1 and ψ be elements in H2 where ψ is nonzero. Assume that each
Dψn ,ϕn and Dψ,ϕ are bounded operators on H2. If Dψn ,ϕn converges to Dψ,ϕ in strong
operator topology, then we have
(a) ψn converges to ψ in H2,
(b) ϕn converges to ϕ in H2.

Proof For part (a), set f (z) = z, then by assumption

‖Dψn ,ϕn ( f ) − Dψ,ϕ( f )‖ → 0,

which is the same as saying ψn → ψ in H2.
For (b), we have to prove that ‖ϕn − ϕ‖ → 0 as n → ∞. Let g(z) = z2/2, it then

follows from the assumption that

‖ψnϕn − ψϕ‖ → 0.

123



3656 Bulletin of the Iranian Mathematical Society (2022) 48:3637–3658

From part (a) and the fact that ‖ϕn‖∞ < 1 we conclude that

‖(ψn − ψ)ϕn‖ → 0.

Since

‖(ϕn − ϕ)ψ‖ ≤ ‖(ψ − ψn)ϕn‖ + ‖(ψnϕn − ψϕ)‖,

it follows that

‖(ϕn − ϕ)ψ‖ → 0, n → ∞. (11)

Put xn := ‖ϕn − ϕ‖, and let xnk be an arbitrary subsequence of xn . By (11) we have

‖(ϕnk − ϕ)ψ‖ → 0,

from which it follows that a subsequence of (ϕnk − ϕ)ψ converges to zero at almost
every point of the unit disk:

(ϕnk j
(z) − ϕ(z))ψ(z) → 0, a.e.

Since the analytic function ψ is not identically zero, it can not vanish on a set with
accumulation point in D, so that it does not vanish almost everywhere in D, implying
that

ϕnk j
(z) − ϕ(z) → 0, a.e.

Since ϕn , and its limit function, are bounded, the Bounded Convergence Theorem
applies;

xnk j = ‖ϕnk j
− ϕ‖ → 0, j → ∞.

We have proved that every subsequence of xn (here xnk ), in its turn has a subsequence
that converges to zero, thus xn converges to zero. ��
Theorem 4.6 Let {ϕn}n≥1 and ϕ be analytic self-maps of the unit disk such that
‖ϕn‖∞ < 1, and let {ψn}n≥1 and ψ be elements in H2 where ψ is nonzero. Assume
that each Dψn ,ϕn and Dψ,ϕ are bounded operators on H2 where Dψ,ϕ is nonzero.
Then Dψn ,ϕn converges to Dψ,ϕ in strong operator topology if and only if
(a) ψn converges to ψ in H2,
(b) ϕn converges to ϕ in H2,
(c) supn ‖Dψn ,ϕn‖ < ∞.

Proof Assume that Dψn ,ϕn converges to Dψ,ϕ in strong operator topology. Parts (a)
and (b) follow from Lemma 4.5. Part (c) is a consequence of Theorem 4.3.
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For the converse, assume that parts (a), (b) and (c) hold true. We first verify that for
every polynomial f ,

‖Dψn ,ϕn ( f ) − Dψ,ϕ( f )‖ → 0, n → ∞. (12)

Note that on the line segment joining ϕn(z) to ϕ(z) we have

f ′(ϕn(z)) − f ′(ϕ(z)) =
∫

f ′′(w)dw,

from which it follows that for each z ∈ D,

| f ′(ϕn(z)) − f ′(ϕ(z))| ≤ ‖ f ′′‖∞|ϕn(z) − ϕ(z)|,

or

‖ f ′ ◦ ϕn − f ′ ◦ ϕ‖ ≤ ‖ f ′′‖∞‖ϕn − ϕ‖. (13)

Again we set

xn = ‖Dψn ,ϕn ( f ) − Dψ,ϕ( f )‖,

and assume that

xnk = ‖Dψnk ,ϕnk
( f ) − Dψ,ϕ( f )‖

is an arbitrary subsequence of xn . We prove that there is a subsequence xnk j that
converges to 0. To this end, we see from part (b),

‖ϕnk − ϕ‖ → 0,

so that (13) implies

‖ f ′ ◦ ϕnk − f ′ ◦ ϕ‖ → 0.

Thus we can find a subsequence, say f ′ ◦ ϕnk j
− f ′ ◦ ϕ, that converges to zero at

almost every point of the unit disk. Moreover, we have

∣∣∣ψ(z)
(
f ′ ◦ ϕnk j

(z) − f ′ ◦ ϕ(z)
)∣∣∣ ≤ 2|ψ(z)|‖ f ′‖∞.

The Dominated Convergence Theorem now implies that

‖ψ( f ′ ◦ ϕnk j
− f ′ ◦ ϕ)‖ → 0, j → ∞. (14)
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On the other hand, by part (a),

‖(ψnk j
− ψ) f ′ ◦ ϕnk j

‖2 ≤ ‖ f ′‖2∞‖ψnk j
− ψ‖2 → 0, j → ∞. (15)

Finally, we write

‖Dψn ,ϕn ( f ) − Dψ,ϕ( f )‖ = ‖ψn f
′ ◦ ϕn − ψ f ′ ◦ ϕ‖

≤ ‖(ψn − ψ) f ′ ◦ ϕn‖ + ‖ψ( f ′ ◦ ϕn − f ′ ◦ ϕ)‖,

from which, using (14) and (15) we conclude that

‖Dψnk j
,ϕnk j

( f ) − Dψ,ϕ( f )‖ → 0, j → ∞.

We recall that by [2, Chap. IX, Proposition 1.3(d)]), a sequence Tn ∈ B(H) converges
to T in strong operator topology if on a dense subset ofH we have ‖Tnx − T x‖ → 0.
This fact together with (12) proves that Dψn ,ϕn → Dψ,ϕ in strong operator topology.

��
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