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Abstract
We show that for some recursive sequence (cm)m≥1 of integers and for sufficiently

large n, the Galois group of polynomial fn(x) = xn
n! + cn−1

xn−1

(n−1)! + · · · + c1
x
1! + 1,

contains the alternating group An . In case n is a prime number, this group is the full
symmetric group Sn .

Keywords Galois groups · Recursive sequences · Permutation groups · Newton
polygon
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1 Introduction

In [10] Schur by taking the truncated Taylor series of ex , gave an explicit answer
to the question of finding a polynomial of arbitrary degree with rational coefficients
whose Galois group is full symmetric group. Since then many explicit examples have
been constructed (see for example [8]). Coleman [3] with the idea of Newton polygon
gave an elegant proof for the theorem of Schur. This idea can be generalized to many
examples which is the motivation for this article. Indeed the following theorem which
is notmentioned inColemann’s paper but it is the core of that article is our key theorem.

Theorem 1.1 Let

fn(x) = xn

n! + cn−1
xn−1

(n − 1)! + · · · + c1
x

1! + 1,
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where (cm)m≥1 is an integer sequence such that for some prime p in the interval
( n2 , n − 2), the term cp is not divisible by p. Then the Galois group of fn(x) is either
the alternating group An or the full symmetric group Sn.

In order to assure Theorem 1.1 for concrete examples, we search in two kinds of
recursive sequences.

Theorem 1.2 Let fn(x) be as in Theorem 1.1, where either

• the sequence (cm)m≥1 is an infinite integer sequence, defined recursively by

c1 = 1, c2 = r , and cm = r cm−1 + s cm−2, m ≥ 3 (1.1)

for some r , s ∈ Z, such that r2 + 4s �= 0, or
• (cm)m≥0 is an infinite integer sequence, defined recursively by

c0 = 1, c1 = c, and cm = r cm−1 + s cm−2, m ≥ 2 (1.2)

where c is an arbitrary integer and r , s as before.

Then for sufficiently large n, the Galois group of fn(x) is either An or Sn.

For non-linear recurrence of order one, we have a similar result as follows.

Theorem 1.3 Let fn(x) be as in Theorem 1.1, such that cm = φ(cm−1), with initial
value c−1 = 0, where φ is a polynomial of degree d ≥ 2, defined over Z with nonzero
constant term. Then for sufficiently large n, the Galois group of fn(x) is either An or
Sn .

For an arbitrary orbit cm = φm(a) we have a weaker result as follows.

Theorem 1.4 Let fn(x) as before and φ ∈ Z[x] is an irreducible polynomial of degree
d ≥ 2. For a nonzero integer a we consider the sequence cm = φm(a), m ≥ 1. Then
for infinitely many n the Galois group of fn is either An or Sn .

The dichotomy expressed in all theorems is related to the value of discriminant. If
the discriminant of the concerning polynomial is square then it is well-known that the
corresponding Galois group is contained in An . This situation for example occurs in
the Schur’s example, when n is divisible by 4. In fact in this case there exists a simple
formula for the discriminant, namely Dn = (−1)(

n
2)(n!)2−n . Besides this example it

seems hopeless to determine a situation in which the discriminant is square. However
there are some criteria to decide the opposite side. Here we provide two cases:

Corollary 1.5 Let fn be as in the preceding theorems with c1 �= 0. If n is a sufficiently
large prime number, then the Galois group of fn is Sn.

Corollary 1.6 Let fn and (cm)m≥1 be as in the first part of Theorem 1.2, such that
3 � r(r2 + s), then there exists an arithmetic progression such that for each n in this
sequence, the Galois group of fn is Sn.

The article organized as follows. In the following section we review some essential
facts about Newton polygon and we give a proof of Theorem 1.1. Then in Sect. 3 we
prove the main theorems and corollaries.
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2 Newton Polygon and Its Applications

Let K be a local field with discrete valuation νK and let

f (x) = a0 + a1x + · · · an−1x
n−1 + anx

n ∈ K [x]

be a polynomial with a0an �= 0. Then the Newton polygon of f is defined to be the
lower convex hull in R

2 of the points

(0, νK (a0)), . . . , (i, νK (ai ), . . . , (n, νK (an)).

ignoring the points with ai = 0. If we denote the vertices of this polygon by the points
(x0, y0), (x1, y1), . . . , (xs, ys), then f (x) factors over K as

f (x) = f1(x) · · · fs(x),

in which for any 1 ≤ i ≤ s the degree of fi (x) is xi − xi−1 and all the roots of fi (x)

in K̄ have valuations − yi − yi−1

xi − xi−1
(see [1]).

Example 2.1 Let e4(x) = x4
4! + x3

3! + x2
2! + x + 1, be the 4-th Taylor polynomial of ex .

Its Newton polygon over Q2 has one side, joining (0, 0) to (4,−3). Hence all roots of
e4(x) have valuation 3

4 over Q2, while over Q3 it has two sides: one side joining (0, 0)
to (3,−1), the other side joining (3,−1) to (4,−1) The corresponding polynomials
have 3 roots of valuation 1

3 and one root with zero valuation, respectively.

The advantage of having information about the roots of f over local fields leads to
the following important lemma:

Lemma 2.2 (Coleman [3]) Let f (x) be a polynomial defined over Q, such that

f (x) = f1(x) · · · fs(x) ∈ Qp[x]

where fi (x) corresponds to the i-th side of its Newton polygon. Let fk(x) for some
1 ≤ k ≤ s, be irreducible overQp. If d divides xk − xk−1, then the order of the Galois
group of the splitting field of f (x) over Q is a multiple of d.

Applying the above lemma to Example 2.1 we find that the order of its Galois group
G, is divisible by 12. On the other hand disc(e4) = 24−2, is square, so G must be the
alternating group A4.

The following theorem of Schur, guarantees that the family of polynomials fn(x)
are irreducible, which is essential in the continuation.

Theorem 2.3 (Schur [9]) Let (cn)≥1 be an integer sequence. Then the polynomial

fn(x) = xn

n! + cn−1
xn−1

(n − 1)! + · · · + c1
x

1! + 1,

is an irreducible polynomial over Q.

123



1922 Bulletin of the Iranian Mathematical Society (2022) 48:1919–1926

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 According to Theorem 2.3, fn(x) is irreducible, so the Galois
group of fn , G, is transitive. Now by the assumption there exists a prime number
p between n/2 and n, such that p � cp, so the Newton polygon of fn(x) over Qp

has two sides: one side joining (0, 0) to (p,−1) and another one joining (p,−1)
to (n,−1). Hence we have fn(x) = fn1(x) fn2(x) over Qp, where fn1 is a monic
polynomial of degree p with roots of valuation 1

p . We claim that fn1(x) is irreducible
over Qp. Indeed if fn1(x) = g(x)h(x) over Qp, with 1 ≤ deg(h) ≤ p − 1, then
h0, the constant term of h equals to the product over a proper subset of the roots of
fn1(x). So its valuation is not integral which is a contradiction with h0 ∈ Qp. Now
from Lemma 2.2, p divides the order of G, the Galois group of fn(x) and by Cauchy’s
theorem G has an element of order p. Since n

2 < p < n−2, this element is a p-cycle.
This implies that G is primitive. Indeed if G is imprimitive, then there exist nontrivial
blocks Xi , i = 1, . . . , d, for some d ≥ 2, which are invariant under G. Since G is
transitive, so for i = 1, . . . , d, the cardinal of Xi , are equal. Therefore |Xi | ≤ n/2
and d ≤ n/2. Now let σ = (a1, a2, . . . , ap) ∈ G be a p-cycle with p > n/2, then
either each ai belongs to distinct X j or all of them belong to a single Xi . Both cases
lead to a contradiction.

Now according to a Theorem of Jordan (see [4, Theorems 5.6.2 and 5.7.2]) a
primitive group having such a p-cycle contains An . ��

The following definition is suitable for our purpose.

Definition 2.4 For an integer sequence (cm)m≥1, a prime p is called favorite if p � cp,
otherwise p is unfavorite.

It is worth mentioning that the index divisibility problem, namely the classification
of those n such that n | cn is an interesting question in Arithmetic Dynamics and it
has been the subject of several papers. For example see [2] and the references therein.

3 Proofs

In this section we prove main results. First we consider the linear case.

3.1 Linear Sequences

The main idea to prove Theorem 1.2 is to show that the set of favorite primes of the
sequence (cm)m≥1 has not zero density, more precisely we have:

Lemma 3.1 Let (cm)m≥0 be as in (1.2) and � = r2 + 4s be the discriminant of its
characteristic polynomial. If p > 2 is a prime number such that p � c and (�

p ) = 1,
then p is favorite.

Proof Letα andβ be twodistinct roots of x2−r x−s = 0, the characteristic polynomial
of (cm) modulo p. By the assumption � is a nonzero quadratic residue modulo p.
Hence α, β ∈ Fp. The general term of the sequence is given by
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cm = c − β

α − β
αm − c − α

α − β
βm .

We have α p ≡ α (mod p) and β p ≡ β (mod p). Therefore

cp ≡ c − β

α − β
α − c − α

α − β
β ≡ c (mod p).

Since p � c, so p � cp and hence p is a favorite prime.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 The first part is straightforward. We show that almost all primes
are favorite with respect to the sequence (cm)m≥1. Since � �= 0, we can take a prime
p which is not a divisor of �. Let α, β ∈ Fp2 are the distinct roots of x

2 −r x − s = 0,
then the general term of (cm) can be written as

cm = 1

α − β
(αm − βm).

Therefore cp = (α − β)p−1 = �
p−1
2 �≡ 0 (mod p). Hence every prime p > �, is

favorite. Now we apply Theorem 1.1 and the proof of the first part is complete.
For the second part, from Lemma 3.1, if (�

p ) = 1, then p is favorite. According to

the quadratic reciprocity law, those primes such that (�
p ) = 1, form some arithmetic

progressions. Now Dirichlet’s theorem implies that the density of such primes is at
least 1/ϕ(�), where ϕ is the Euler’s totient function. Hence for large enough n always
there exists such prime between n/2 and n − 2. Once again we apply Theorem 1.1
and the result follows. ��

3.2 Nonlinear Sequences

With the same strategy as in the proof of Theorem 1.2 we would like to show that the
set of favorite primes for the sequence (φm(0))m≥1 has positive density. We need the
following proposition. Although the statement of proposition was not conjectured by
Schur, but it is known as Schur’s conjecture in the literature. For a proof see [7].

Proposition 3.2 Let φ(x) be an integral polynomial, which is a permutation polyno-
mial over Fp for infinitely many primes p. Then φ(x) is a composition of linear and
Dickson polynomials.

Proof of Theorem 1.3 If the set of unfavorite primes of the sequence (cm)m≥1 is finite,
then the result follows from Theorem 1.1, otherwise for infinitely many primes p we
have φ p(0) ≡ 0 (mod p). For all but finitely many of such primes we have p � φ(0).
Therefore if for some k, we have p | φk(0), then p | k, so the set {φi (0) (mod p)}pi=1
is a complete set of residue modulo p. This implies that for such primes, φ(x) is a
permutation polynomial over Fp. Hence by Proposition 3.2, φ(x) is a composition
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of Dickson and linear polynomials. Now we choose primes p in the arithmetic pro-
gressions dk + 1, where d ≥ 2 is the degree of φ. Since (d, p − 1) > 1, so φ(x)
can not be a composition of a linear polynomial and Dd(0, x) = xd . On the other
hand it is well-known that the Dickson polynomial Dd(a, x) with a �= 0 of degree d
is a permutation polynomial in Fp if and only if p2 − 1 and d are coprime (see [6],
p.396). Therefore primes of the form dk+1 are favorite for the sequence (φm(0))m≥1.
Now Dirichlet’s theorem on arithmetic progression implies that for sufficiently large
n, between n/2 and n − 2 always there exists a prime of the form dk + 1. ��

For a nonzero orbit (φm(a))m≥1, if the set of unfavorite primes is finite then in a
similar fashion one can deduce that for sufficiently large n the Galois group of fn(x)
contains the alternating group An . However if the set of unfavorite primes is infinite,
then unlike the zero orbit one can not deduce that φ(x) is a permutation polynomial.
Instead we apply the Chebotarev density theorem.

Proof of Theorem 1.4 We show that the set of favorite primes for the sequence (φm(a))

is infinite. Suppose in contrary all but finitely many primes are unfavorite. It means
that φ p(a) ≡ 0 (mod p) for almost all p. In particular φ(x) has a solution in Fp for
almost all p. Since φ(x) is irreducible over Z, so its Galois group G is a transitive
group. Since deg(φ) > 1, hence by Jordan’s theorem [5] there exists an element σ ∈ G
acting on the set of roots ofφ without fixed point.We consider the conjugacy classC of
σ in G. By Chebotarev density theorem the density of primes p, such that Frobp ∈ C

is |C|
|G| . For this set of primes of positive density the cycle structure of Frobp has no

fixed point. But by Dedekind’s theorem the length of each cycle corresponds to the
degree of factors of φ(x) (mod p). It means that for such primes p, the factorization
of φ(x) (mod p) has no linear factors which contradicts our assumption on φ. Hence
the set of favorite primes is infinite. Now from Theorem 1.1 for each favorite prime p
and n in the interval (p, 2p), the Galois group of fn(x), contains An . ��

3.3 Corollaries

In this final subsection we determine some cases in which the Galois group of fn(x)
is exactly Sn . As we have discussed in the Introduction, we need to show that the
discriminant of fn(x) is not square. In order to obtainCorollary 1.5we use the resultant
matrix. For Corollary 1.6 we use the fact that if the discriminant of fn(x) is square
then in any reduction modulo p it must be a quadratic residue.

Proof of Corollary 1.5 Let

gn(x) = n! fn(x) = xn + ncn−1 x
n−1 + · · · + n!c1 x + n!.

We show that if n > c1 is an odd prime number then the exponent of n in D = disc(gn)
is an odd number, so D is not square and therefore the discriminant of fn is not square
as well.
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Since gn is monic, so we have D = (−1)
n(n−1)

2 Res(gn, g′
n), where Res denotes the

resultant:

Res(gn, g
′
n) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 n 0 · · · 0
ncn−1 1 · · · 0 n(n − 1)cn−1 n · · · 0

...
...

. . . 1
...

...
. . . n

n! n!c1 · · · ... n!c1 n!c2 · · · ...

0 n! . . .
... 0 n!c1 . . .

...
...

...
. . . n!c1

...
...

. . . n!c2
0 0 · · · n! 0 0 · · · n!c1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we call the above matrix with R = (ri j )m×m , where m = 2n − 1. Then the entries
of the first n − 1 columns of R are the coefficients of gn in the echelon form and the
entries of the next n columns are the coefficients of g′

n . By definition we have

det(R) =
∑

π∈Sm
sgn(π)r1π(1) · · · rmπ(m)

= r11r22 · · · rmm +
∑

π∈Smπ �=id

sgn(π)r1π(1) · · · rmπ(m)

= cn1(n!)n +
∑

π∈Smπ �=id

sgn(π)r1π(1) · · · rmπ(m).

We note that n | ri j , unless i = j , with 1 ≤ i ≤ n − 1, so the second term in
above is divisible by nn+1, while the exponent of n in the first term is n. Hence
ordn(det(R)) = n. and det(R) is not square.

Proof of Corollary 1.6 We reduce gn = n! fn(x) modulo prime 3. For n = 3k + 2, we
find that

gn(x) ≡ xn−2(x2 + ncn−1x + n(n − 1)cn−2) ≡ xn−2(x2 − cn−1x − cn−2) (mod 3).

In order to show that the discriminant of fn is not square it is enough to show that,

disc(x2 − cn−1x − cn−2) ≡ c2n−1 + cn−2 (mod 3),

is not a quadratic residue in F3, namely c2n−1 + cn−2 ≡ −1 (mod 3). We would like
to show that this situation occurs when n belongs to some arithmetic progression.

By assumption r2 + s, the characteristic polynomial, is not zero in F3. Thus as
we have seen in the proof of Theorem 1.2, the general term of cm (mod 3) is given
by cm = 1

α−β
(αm − βm), where α, β ∈ F9. From this expression it is clear that

c8m+k ≡ ck (mod 3). Now if r ≡ 1 (mod 3), then

c28m+2 + c8m+1 ≡ −1 (mod 3)
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andwe are done.Otherwisewe have the two following sequences according to s ≡ 1, 0
(mod 3) respectively:

• 1,−1, −1 , 0 ,−1, 1 , 1 , 0 · · ·
• 1 , −1 , 1,−1, · · ·

Those consecutive terms in the boxes which satisfying the desired condition, make
arithmetic progressions, and the proof is finished. ��
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