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Abstract
In this paper, we propose a generalized self-adaptive method for solving the multiple-
set split feasibility problem in the framework of certain Banach spaces. Under some
suitable conditions, we prove the strong convergence of the sequence generated by
our method with a new way to select the step-sizes without prior knowledge of the
operator norm. Several numerical experiments to illustrate the convergence behavior
are presented. The results presented in this paper improve and extend the corresponding
results in the literature.

Keywords Metric projection · Banach space · Strong convergence · Self-adaptive
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1 Introduction

Let E and F be two real p-uniformly convex Banach spaces which are also uniformly
smooth. Let Ci , i = 1, 2, . . . , M and Q j , j = 1, 2, . . . , N be nonempty, closed and
convex subsets of E and F , respectively. Let A : E → F be a bounded linear operator
with its adjoint A∗ : F∗ → E∗. We consider the following so-called multiple-set split
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feasibility problem (MSFP):

find x∗ ∈
M⋂

i=1

Ci such that Ax∗ ∈
N⋂

j=1

Q j . (1.1)

We denote by � :=
( ⋂M

i=1 Ci

)
∩ A−1

( ⋂N
j=1 Q j

)
the solution set of Problem (1.1).

This problem was first introduced in finite-dimensional Hilbert spaces by Censor et
al. [10]. The MSFP has broad applicability in many areas of mathematics and the
physical and engineering sciences, for example, it can be applied in fields of image
reconstruction and signal processing (see [33]) and in the inverse problem of intensity-
modulated radiation therapy (IMRT) in the field of medical care (see [10,13,14]).
Moreover, this problem is a generalization of convex feasibility problem (CFP) and
as a generalization of the split feasibility problem. In particular, if M = N = 1, then
the MSFP becomes the following well-known split feasibility problem (SFP) [12]:

find x∗ ∈ C such that Ax∗ ∈ Q. (1.2)

There are many modification methods have been proposed for solving the MSFP and
the SFP in different styles (see for instance [6,9,16,19,29–32,34–46,50]).

A one efficient method for solving the SFP in Hilbert spaces is known as Byrne’s
CQ algorithm [9] which is defined in the followingmanner: for given x1 ∈ C , compute
the sequences {xn} generated iteratively by

xn+1 = PC (xn − τn A∗(I − PQ)Axn), ∀n ≥ 1, (1.3)

where PC and PQ are the metric projections onto C and Q, respectively. It was proved
that the sequence {xn} defined by (1.3) converges weakly to a solution of the SFP
provided the step-size τn ∈ (0, 2

‖A‖2 ).
Note that the choice of the step-size τn of above work and other corresponding

results depend on the operator norm ‖A‖. In general, the implementation of such
algorithms is not an easy work in practice. As a result the implementation of the
iteration process inefficient when the computation of the operator norm is not explicit.
To overcome this difficulty, López et al. [21] constructed a new choice to select the
following step-size so that without prior knowledge of the operator norm:

τn = ρn f (xn)

‖∇ f (xn)‖2 , (1.4)

where f (x) = 1
2‖(I −PQ)Ax‖2 with its gradient∇ f (x) = A∗(I −PQ)Ax and {ρn} ⊂

(0, 4) satisfies lim infn→∞ ρn(4 − ρn) > 0. They established the weak convergence
of the Byrne’s CQ algorithm (1.3) to a solution of SFP with the step-size τn defined
by (1.4).

Let C and Q be nonempty, closed and convex subsets of E and F , respectively.
Schöpfer et al. [34] first introduced the following algorithm for solving SFP in Banach
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spaces: for given x1 ∈ E and

xn+1 = �C J E∗
q (J E

p (xn) − τn A∗ J F
p (I − PQ)Axn), ∀n ≥ 1, (1.5)

where �C is the generalized projection onto C , PQ is the metric projection onto
Q. They considered more general Bregman distance functions for its solution and
proved that the sequence {xn} generated by (1.5) converges weakly to a solution of
the SFP provided the duality mappings are weak-to-weak continuous and the step-

size τn satisfies 0 < τn <
(

q
cq‖A‖q

) 1
q−1

, where 1
p + 1

q = 1 and cq is the uniform

smoothness coefficient of E (see [48]). Clearly, the algorithm (1.5) covers the Byrne’s
CQ algorithm as a special case.

To obtain the strong convergence result, Shehu [35] proposed the following algo-
rithm for solving the SFP in p-uniformly convex Banach spaces which are also
uniformly smooth: for given u, x1 ∈ E and

xn+1 = �C J E∗
q (αn J E

p (u) + (1 − αn)(J E
p (xn) − τn A∗ J F

p (I − PQ)Axn)), ∀n ≥ 1,
(1.6)

where {αn} and {βn} are sequences in (0, 1) and the step-size τn satisfies 0 < a ≤
τn ≤ b <

( q
κq‖A‖q

) 1
q−1 for some a, b > 0. He proved that the sequence {xn} generated

by (1.6) converges strongly to a solution of the SFP under some mild conditions.
Very recently, Alsulami and Takahashi [6] introduced an algorithm for solving the

SFP between Hilbert space and strictly convex, reflexive and smooth Banach space.
To be more precise, they obtained the following result.

Theorem 1.1 Let H be a Hilbert space and E be a strictly convex, reflexive and smooth
Banach space. Let JE be the duality mapping on E. Let C and Q be nonempty, closed
and convex subsets of H and E, respectively. Let PC and PQ be the metric projections
of H onto C and E onto Q, respectively. Let A : H → E be a bounded linear operator
with its adjoint A∗ such that A 
= 0. Suppose that the solution set � of the SFP (1.2)
is nonempty. Let {un} be a sequence in H such that un → u. For given x1 ∈ H, let
{xn} be a sequence generated by

xn+1 = βn xn + (1− βn)(αnun + (1− αn)PC (xn − τ A∗ JE (I − PQ)Axn)), ∀n ≥ 1,
(1.7)

where {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy the following conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < a ≤ βn ≤ b < 1 for some a, b ∈ (0, 1);
(iii) 0 < τ‖A‖2 < 2, where τ > 0.

Then {xn} converges strongly to x∗ ∈ �, where x∗ = P�u.

There are some open questions which are posed as follows:

(1) Can we extend Theorem 1.1 for solving the MSFP in two Banach spaces?
(2) It is possible to remove the conditions 0 < τ‖A‖2 < 2 and 0 < a ≤ βn?
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In this paper, we propose a new iterative method to answer two above open ques-
tions.We prove the strong convergence of the sequence generated by ourmethod under
some suitable conditions. Finally, we give some numerical examples to illustrate for
the main result and showing its performance in finite and infinite dimensional spaces.

2 Preliminaries

Let E and E∗ be real Banach spaces and the dual space of E , respectively. We write
〈x, j〉 for the value of a functional j in E∗ at x in E . We shall use the notations xn → x
means that {xn} converges strongly to x and xn⇀x means that {xn} converges weakly
to x . Let SE = {x ∈ E : ‖x‖ = 1} and BE = {x ∈ E : ‖x‖ ≤ 1}. The modulus of
convexity of E is the function δE : [0, 2] → [0, 1] defined by

δE (ε) = inf
{
1 − ‖x+y‖

2 : x, y ∈ BE , ‖x − y‖ ≥ ε
}
.

Let 1 < q ≤ 2 ≤ p < ∞ with 1
p + 1

q = 1. The space E is called uniformly convex
if δE (ε) > 0 for all ε ∈ (0, 2] and p-uniformly convex if there is a cp > 0 such that
δE (ε) ≥ cpε

p for all ε ∈ (0, 2]. The modulus of smoothness of E is the function
ρE : R+ := [0,∞) → R

+ defined by

ρE (τ ) = sup
{ ‖x+τ y‖+‖x−τ y‖

2 − 1 : x, y ∈ SE

}
.

The space E is called uniformly smooth if limτ→0
ρE (τ )

τ
= 0 and called q-uniformly

smooth if there exists a cq > 0 such that ρE (τ ) ≤ cqτ q for all τ > 0. It is known that
every p-uniformly convex (q-uniformly smooth) space is uniformly convex (uniformly
smooth) space and E is p-uniformly convex (q-uniformly smooth) if and only if its
dual E∗ is q-uniformly smooth (p-uniformly convex) (see [1]). Furthermore, L p (or
�p) and the Sobolev spaces are min{p, 2}-uniformly smooth for every p > 1 while
Hilbert space is uniformly smooth (see [48]).

Definition 2.1 A continuous strictly increasing function ϕ : R+ → R
+ is said to be a

gauge function if ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.

Definition 2.2 Themapping Jϕ : E → 2E∗
associatedwith a gauge functionϕ defined

by

Jϕ(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖ϕ(‖x‖), ‖ f ‖ = ϕ(‖x‖)}, x ∈ E

is called the duality mapping with gauge ϕ, where 〈·, ·〉 denotes the duality pairing
between E and E∗.
In the particular case ϕ(t) = t , the duality mapping Jϕ = J is called the normalized
duality mapping. In the case ϕ(t) = t p−1, where p > 1, the duality mapping Jϕ = Jp

is called the generalized duality mapping which is defined by

Jp(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖p, ‖ f ‖ = ‖x‖p−1}.
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It follows from the definition that Jϕ(x) = ϕ(‖x‖)
‖x‖ J (x) and Jp(x) = ‖x‖p−2 J (x), p >

1. It is well-known that if E is uniformly smooth, the generalized dualitymapping Jp is
norm-to-norm uniformly continuous on bounded subsets of E (see [27]). Furthermore,
Jp is one-to-one, single-valued and satisfies Jp = J−1

q , where Jq is the generalized
duality mapping of E∗ (see [15,26] for more details).

Lemma 2.3 [48] Let E be a q-uniformly smooth Banach space. Then there exists a
constant cq > 0 which is called the q-uniform smoothness coefficient of E such that

‖x − y‖q ≤ ‖x‖q − q〈y, Jq(x)〉 + cq‖y‖q ,

for all x, y ∈ E.

Let C be a nonempty, closed and convex subset of a strictly convex, smooth and
reflexive Banach space E . Then we know that for any x ∈ E , there exists a unique
element z ∈ C such that

‖x − z‖ ≤ inf
y∈C

‖x − y‖.

The mapping PC : E → C defined by z = PC x is called the metric projection of
E onto C . It is well-known that PC x is the unique minimizer of the norm distance,
which can be characterized by the variational inequality:

〈y − PC x, Jϕ(x − PC x)〉 ≤ 0, ∀y ∈ C . (2.1)

For a gauge function ϕ, the function � : R+ → R
+ defined by

�(t) =
∫ t

0
ϕ(s)ds

is a continuous, convex and strictly increasing differentiable function on R
+ with

�′(t) = ϕ(t) and limt→∞ �(t)
t = ∞. Therefore, � has a continuous inverse function

�−1.
Let E be a real smooth Banach space. The Bregman distance Dϕ : E × E → R

+
[7] is defined by

Dϕ(x, y) = �(‖y‖) − �(‖x‖) − 〈y − x, Jϕ(x)〉

for all x, y ∈ E . We note that Dϕ(x, y) ≥ 0 and Dϕ(x, y) = 0 if and only of x = y.
In general, the Bregman distance is not a metric due to the fact that it is not symmetric.
The Bregman distance has the following important properties:

Dϕ(x, y) + Dϕ(y, x) = 〈x − y, Jϕ(x) − Jϕ(y)〉

and
Dϕ(x, y) + Dϕ(y, z) − Dϕ(x, z) = 〈x − y, Jϕ(z) − Jϕ(y)〉
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for all x, y, z ∈ E .
In the case ϕ(t) = t p−1, p > 1, we have �(t) = ∫ t

0 ϕ(s)ds = t p

p . So we have the
distance Dϕ = Dp is called the p-Lyapunov function which was studied in [8] and it
is given by

Dp(x, y) = ‖x‖p

p
− 〈x, Jp(y)〉 + ‖y‖p

q
,

where 1
p + 1

q = 1. If p = 2, then the Bregman distance becomes the Lyapunov

function φ : E × E → R
+ [2,3] defined as

φ(x, y) = ‖x‖2 − 2〈x, J y〉 + ‖y‖2.

Let E be a strictly convex, smooth and reflexive Banach space. Following [2,11], we
make use of the function Vp : E × E∗ → R

+ which is given by

Vp(x, x̄) = ‖x‖p

p
− 〈x, x̄〉 + ‖x̄‖q

q

for all x ∈ E and x̄ ∈ E∗. Then Vp is nonnegative and Vp satisfies the following
properties:

Vp(x, x̄) = Dp(x, Jq(x̄)), ∀x ∈ E, x̄ ∈ E∗ (2.2)

and

Vp(x, x̄) + 〈Jq(x̄) − x, ȳ〉 ≤ Vp(x, x̄ + ȳ), ∀x ∈ E, x̄, ȳ ∈ E∗. (2.3)

Moreover, Vp is convex in the second variable. Then for all z ∈ E ,

Dp

(
z, Jq

( M∑

i=1

ti Jp(xi )
))

≤
M∑

i=1

ti Dp(z, xi ),

where {xi }M
i=1 ⊂ E and {ti }M

i=1 ⊂ (0, 1) with
∑M

i=1 ti = 1.
The Bregman projection, denoted by �

ϕ
C , is defined as the unique solution of the

following minimization problem:

�
ϕ
C x = argminy∈C Dϕ(x, y), x ∈ E .

It can be characterized by the variational inequality [20]:

〈z − �
ϕ
C x, Jϕ(x) − Jϕ(�

ϕ
C x)〉 ≤ 0, ∀z ∈ C .

Moreover, we have

Dϕ(y,�
ϕ
C x) + Dϕ(�

ϕ
C x, x) ≤ Dϕ(y, x), ∀y ∈ C . (2.4)
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When ϕ(t) = t , we have �
ϕ
C coincides with the generalized projection which studied

in [2].Whenϕ(t) = t p−1, where p > 1, we have�
ϕ
C becomes the Bregman projection

with respect to p and denoted by �C .

Lemma 2.4 [28] Let E be a smooth and uniformly convex real Banach space. Suppose
that x ∈ E, if {Dp(x, xn)} is bounded, then the sequence {xn} is bounded.

Lemma 2.5 [25] Let E be a smooth and uniformly convex Banach space. Suppose that
{xn} and {yn} are two sequences in E. Then limn→∞ Dp(xn, yn) = 0 if and only if
limn→∞ ‖xn − yn‖ = 0.

Lemma 2.6 [22] Let {an} and {cn} be nonnegative real sequences such that

an+1 ≤ (1 − δn)an + bn + cn, ∀n ≥ 1,

where {δn} is a sequence in (0,1) and {bn} is a real sequence. Assume that
∑∞

n=1 cn <

∞. Then the following results hold:

(i) If bn
δn

≤ M for some M ≥ 0, then {an} is a bounded sequence.

(ii) If
∑∞

n=1 δn = ∞ and lim supn→∞ bn
δn

≤ 0, then limn→∞ an = 0.

Lemma 2.7 [23] Let {�n} be a nonnegative real sequence that does not decrease at
infinity in the sense that there exists a subsequence {�nk } of {�n} which satisfies
�nk < �nk+1 for all k ∈ N. For each n ≥ n0, define an integer sequence {τ(n)} as
follows:

τ(n) = max{n0 ≤ k ≤ n : �k < �k+1}.

Then the following results hold:

(i) τ(n) → ∞ as n → ∞;
(ii) max{�τ(n), �n} ≤ �τ(n)+1 for all n ≥ n0.

3 Main Result

In this section, we propose a new self-adaptive algorithm to solve the multiple-set
split feasibility problem in Banach spaces E and prove a convergence theorem of
the generated sequences by the proposed method. Throughout this paper, we denote
by J E

p and J E∗
q the duality mappings of E and its dual space, respectively, where

1 < q ≤ 2 ≤ p < ∞ with 1
p + 1

q = 1.

Theorem 3.1 Let E be a p-uniformly convex and uniformly smooth Banach space and
F be a reflexive, strictly convex and smooth Banach space. Let Ci , i = 1, 2, . . . , M and
Q j , j = 1, 2, . . . , N be nonempty, closed and convex subsets of E and F, respectively.
Let A : E → F be a bounded linear operator and A∗ : F∗ → E∗ be an adjoint of A.
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Suppose that the solution set � of the MSFP (1.1) is nonempty. Let {un} be a sequence
in E such that un → u. For given x1 ∈ E, let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn,1 = J E∗
q (J E

p (xn) − τn,1∇ f (xn)),

vn,2 = J E∗
q (J E

p (vn,1) − τn,2∇ f (vn,1)),

...

vn,N = J E∗
q (J E

p (vn,N−1) − τn,N ∇ f (vn,N−1)),

yn = J E∗
q (an,0 J E

p (vn,N ) + ∑M
i=1 an,i J E

p (�Ci vn,N )),

xn+1 = J E∗
q (βn J E

p (xn) + (1 − βn)(αn J E
p (un) + (1 − αn)J E

p (yn))), ∀n ≥ 1,

where {αn} ⊂ (0, 1), {an,i }M
i=1 ⊂ (0, 1), {βn} ⊂ [0, 1), f (vn, j ) = 1

p ‖(I −
PQ j+1)Avn, j‖p for j = 1, 2, . . . , N − 1 and f (xn) = 1

p ‖(I − PQ1)Axn‖p with
the step-sizes τn,1 and τn, j , j = 1, 2, . . . , N − 1 are chosen self-adaptively as

τn,1 =
{

ρn f p−1(xn)
‖∇ f (xn)‖p , if f (xn) 
= 0;
0, otherwise

and

τn, j+1 =
{

ρn f p−1(vn, j )

‖∇ f (vn, j )‖p , if f (vn, j ) 
= 0;
0, otherwise,

respectively, where {ρn} ⊂ (
0, ( pq

cq
)

1
q−1

)
. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0;

(C3)
∑M

i=0 an,i = 1 and lim infn→∞ an,i > 0 for i = 1, 2, . . . , M;
(C4) lim supn→∞ βn < 1.

Then {xn} converges strongly to x∗ = ��u, where �� is the Bregman projection from
E onto �.

Proof For each j = 1, 2, . . . , N −1,we note that∇ f (vn, j ) = A∗ J F
p (I −PQ j+1)Avn, j

(see [17, Proposition 5.7]). Let z ∈ �, that is, z ∈ ⋂M
i=1 Ci and Az ∈ ⋂N

j=1 Q j . Then
for each j = 1, 2, . . . , N − 1, we have from (2.1) that

‖vn, j − z‖‖∇ f (vn, j )‖ ≥ 〈vn, j − z,∇ f (vn, j )〉
= 〈vn, j − z, A∗ J E

p (I − PQ j+1)Avn, j 〉
= 〈Avn, j − Az, J E

p (I − PQ j+1)Avn, j 〉
≥ 〈Avn, j − Az, J E

p (I − PQ j+1)Avn, j 〉
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+〈Az − PQ j+1 Avn, j , J E
p (I − PQ j+1)Avn, j 〉

= 〈Avn, j − PQ j+1 Avn, j , J E
p (I − PQ j+1)Avn, j 〉

= ‖(I − PQ j+1)Avn, j‖p = p f (vn, j ). (3.1)

We see that ‖∇ f (vn, j )‖ > 0, when f (vn, j ) 
= 0. This implies that ‖∇ f (vn, j )‖ 
= 0
for each j = 1, 2, . . . , N − 1. Hence, τn, j+1 is well defined. In the same manner,
we also have τn,1 is well defined. For each j = 1, 2, . . . , N − 1, it follows from
Lemma 2.3 and (3.1) that

Dp(z, vn, j+1) = Dp(z, J E∗
q (J E

p (vn, j ) − τn, j+1∇ f (vn, j )))

= Vp(z, J E
p (vn, j ) − τn, j+1∇ f (vn, j ))

= ‖z‖p

p
− 〈z, J E

p (vn, j )〉 + τn, j+1〈z,∇ f (vn, j )〉

+ 1

q
‖J E

p (vn, j ) − τn, j+1∇ f (vn, j )‖q

≤ ‖z‖p

p
− 〈z, J E

p (vn, j )〉 + τn, j+1〈z,∇ f (vn, j )〉

+ 1

q
‖J E

p (vn, j )‖q − τn, j+1〈vn, j ,∇ f (vn, j )〉

+cqτ
q
n, j+1

q
‖∇ f (vn, j )‖q

= ‖z‖p

p
− 〈z, J E

p (vn, j )〉 + 1

q
‖vn, j‖p − τn, j+1〈vn, j − z,∇ f (vn, j )〉

+cqτ
q
n, j+1

q
‖∇ f (vn, j )‖q

= Dp(z, vn, j ) − τn, j+1 p f (vn, j ) + cqτ
q
n, j+1

q
‖∇ f (vn, j )‖q

= Dp(z, vn, j ) − ρn p f p(vn, j )

‖∇ f (vn, j )‖p
+ ρ

q
n cq

q

f p(vn, j )

‖∇ f (vn, j )‖p

= Dp(z, vn, j ) − ρn

(
p − ρ

q−1
n cq

q

) f p(vn, j )

‖∇ f (vn, j )‖p
. (3.2)

In the same manner, we can see that

Dp(z, vn,1) ≤ Dp(z, xn) − ρn

(
p − ρ

q−1
n cq

q

) f p(xn)

‖∇ f (xn)‖p
. (3.3)
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It follows from (3.2) and (3.3) that

Dp(z, vn,N )

≤ Dp(z, vn,N−1) − ρn

(
p − ρ

q−1
n cq

q

) f p(vn,N−1)

‖∇ f (vn,N−1)‖p

...

≤ Dp(z, vn,1) − ρn

(
p − ρ

q−1
n cq

q

) f p(vn,1)

‖∇ f (vn,1)‖p
− . . .

−ρn

(
p − ρ

q−1
n cq

q

) f p(vn,N−1)

‖∇ f (vn,N−1)‖p

≤ Dp(z, xn) − ρn

(
p − ρ

q−1
n cq

q

) f p(xn)

‖∇ f (xn)‖p
− ρn

(
p − ρ

q−1
n cq

q

) f p(vn,1)

‖∇ f (vn,1)‖p

− . . . − ρn

(
p − ρ

q−1
n cq

q

) f p(vn,N−1)

‖∇ f (vn,N−1)‖p

= Dp(z, xn) − ρn

(
p − ρ

q−1
n cq

q

)[ f p(xn)

‖∇ f (xn)‖p
+

N−1∑

j=1

f p(vn, j )

‖∇ f (vn, j )‖p

]
. (3.4)

From (2.4) and (3.4), we see that

Dp(z, yn) = Dp(z, J E∗
q (an,0 J E

p (vn,N ) +
M∑

i=1

an,i J E
p (�Ci vn,N )))

≤ an,0Dp(z, vn,N ) +
M∑

i=1

an,i Dp(z,�Ci vn,N )

≤ an,0Dp(z, vn,N ) +
M∑

i=1

an,i Dp(z, vn,N ) −
M∑

i=1

an,i Dp(�Ci vn,N , vn,N )

= Dp(z, vn,N ) −
M∑

i=1

an,i Dp(�Ci vn,N , vn,N )

≤ Dp(z, xn) − ρn

(
p − ρ

q−1
n cq

q

)[ f p(xn)

‖∇ f (xn)‖p
+

N−1∑

j=1

f p(vn, j )

‖∇ f (vn, j )‖p

]

−
M∑

i=1

an,i Dp(�Ci vn,N , vn,N ), (3.5)

which implies by the assumption of {ρn} that

Dp(z, yn) ≤ Dp(z, xn).
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Put wn = J E∗
q (αn J E

p (un) + (1 − αn)J E
p (yn)) for all n ≥ 1, we have

Dp(z, wn) = Dp(z, J E∗
q (αn J E

p (un) + (1 − αn)J E
p (yn)))

≤ αn Dp(z, un) + (1 − αn)Dp(z, yn)

≤ αn Dp(z, un) + (1 − αn)Dp(z, xn).

It follows that

Dp(z, xn+1) = Dp(z, J E∗
q (βn J E

p (xn) + (1 − βn)J E
p (wn)))

≤ βn Dp(z, xn) + (1 − βn)Dp(z, wn)

≤ βn Dp(z, xn) + (1 − βn)(αn Dp(z, un) + (1 − αn)Dp(z, xn))

= (1 − (1 − βn)αn)Dp(z, xn) + (1 − βn)αn Dp(z, un).

Since {un} is bounded, we also have {Dp(z, un)} is bounded. By induction, we have
{Dp(z, xn)} is bounded. Hence, by Lemma 2.6, we have {xn} is bounded, so are {vn, j }
and {yn} for each j = 1, 2, . . . , N −1. Let x∗ = ��u. From (2.3) and (3.5), we have

Dp(x∗, wn) = Dp(x∗, J E∗
q (αn J E

p (un) + (1 − αn)J E
p (yn)))

= Vp(x∗, αn J E
p (un) + (1 − αn)J E

p (yn))

≤ Vp(x∗, αn J E
p (un) + (1 − αn)J E

p (yn) − αn(J E
p (un) − J E

p (x∗))
+αn〈wn − x∗, J E

p (un) − J E
p (x∗)〉

= Vp(x∗, αn J E
p (x∗) + (1 − αn)J E

p (yn))

+αn〈wn − x∗, J E
p (un) − J E

p (x∗)〉
= αn Dp(x∗, x∗) + (1 − αn)Dp(x∗, yn)

+αn〈wn − x∗, J E
p (un) − J E

p (x∗)〉

≤ (1 − αn)

{
Dp(x∗, xn) − ρn

(
p − ρ

q−1
n cq

q

) [
f p(xn)

‖∇ f (xn)‖p

+
N−1∑

j=1

f p(vn, j )

‖∇ f (vn, j )‖p

⎤

⎦

−
M∑

i=1

an,i Dp(�Ci vn,N , vn,N )

}
+ αn〈wn − x∗, J E

p (un) − J E
p (x∗)〉.

It follows that

Dp(x∗, xn+1)

≤ βn Dp(x∗, xn) + (1 − βn)Dp(x∗, wn)
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≤ (1 − (1 − βn)αn)Dp(x∗, xn)

−(1 − αn)(1 − βn)ρn

(
p − ρ

q−1
n cq

q

)[ f p(xn)

‖∇ f (xn)‖p
+

N−1∑

j=1

f p(vn, j )

‖∇ f (vn, j )‖p

]

−(1 − αn)(1 − βn)

M∑

i=1

an,i Dp(�Ci vn,N , vn,N )

+αn(1 − βn)〈wn − x∗, J E
p (un) − J E

p (u)〉
+αn(1 − βn)〈wn − x∗, J E

p (u) − J E
p (x∗)〉. (3.6)

Put �n = Dp(x∗, xn) for all n ≥ 1. From (3.6), we have

(1 − αn)(1 − βn)ρn

(
p − ρ

q−1
n cq

q

)[ f p(xn)

‖∇ f (xn)‖p
+

N−1∑

j=1

f p(vn, j )

‖∇ f (vn, j )‖p

]

+(1 − αn)(1 − βn)

M∑

i=1

an,i Dp(�Ci vn,N , vn,N )

≤ �n − �n+1 + αn(1 − βn)〈wn − x∗, J E
p (un)

−J E
p (u)〉 + αn(1 − βn)〈wn − x∗, J E

p (u) − J E
p (x∗)〉. (3.7)

We now show that �n → 0 as n → ∞ by the following two possible cases:

Case 1. Suppose that there exists n0 ∈ N such that �n+1 ≤ �n for all n ≥ n0. Then
we have

�n − �n+1 → 0.

By our assumptions, we have

lim
n→∞

[ f p(xn)

‖∇ f (xn)‖p
+

N−1∑

j=1

f p(vn, j )

‖∇ f (vn, j )‖p

]
= 0

and

lim
n→∞

M∑

i=1

an,i Dp(�Ci vn,N , vn,N ) = 0.

Since {‖∇ f (xn)‖p} and {‖∇ f (vn, j )‖p} for all j = 1, 2, . . . , N − 1 are bounded, we
have

lim
n→∞ f (xn) = lim

n→∞ ‖(I − PQ1)Axn‖ = 0
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and

lim
n→∞ f (vn, j ) = lim

n→∞ ‖(I − PQ j+1)Avn, j‖ = 0 for each j = 1, 2, . . . , N − 1.

(3.8)

Moreover, we also have

lim
n→∞ Dp(�Ci vn,N , vn,N ) = 0 for each i = 1, 2, . . . , M

and hence

Dp(yn, vn,N ) ≤ an,0Dp(vn,N , vn,N ) +
M∑

i=1

an,i Dp(�Ci vn,N , vn,N )

→ 0.

By Lemma 2.5, we have

lim
n→∞ ‖vn,N − �Ci vn,N ‖ = 0 for each i = 1, 2, . . . , M (3.9)

and

lim
n→∞ ‖yn − vn,N ‖ = 0.

From (3.8), we see that

‖J E
p (vn, j+1) − J E

p (vn, j )‖ = τn, j+1‖∇ f (vn, j )‖
≤ τn, j+1‖A∗‖‖(I − PQ j+1)Avn, j‖p−1

→ 0

for each j = 1, 2, . . . , N − 1. In a similar way, we can see that

‖J E
p (vn,1) − J E

p (xn)‖ = τn,1‖∇ f (xn)‖
≤ τn,1‖A∗‖‖(I − PQ1)Axn‖p−1

→ 0.

Since J E∗
q is norm-to-norm uniformly continuous on bounded subsets of E∗, we have

lim
n→∞ ‖vn, j+1 − vn, j‖ = 0 for each j = 1, 2, . . . , N − 1 (3.10)

and

lim
n→∞ ‖vn,1 − xn‖ = 0. (3.11)
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From (3.10) and (3.11), we have

‖yn − xn‖ ≤ ‖yn − vn,N ‖ + ‖vn,N − vn,N−1‖ + . . . + ‖vn,1 − xn‖
→ 0. (3.12)

It follows that

‖xn − vn,N ‖ ≤ ‖xn − yn‖ + ‖yn − vn,N ‖
→ 0. (3.13)

From (3.12), we see that

Dp(wn, xn) ≤ αn Dp(un, xn) + (1 − αn)Dp(yn, xn)

→ 0

and hence

lim
n→∞ ‖xn − wn‖ = 0. (3.14)

Since {xn} is bounded, without loss of generality, we may assume there exists a subse-
quence {xnk } of {xn} such that xnk ⇀v ∈ E as k → ∞. Also, we have a subsequence
{vnk ,N } of {vn,N } such that vnk ,N ⇀v ∈ E as k → ∞.

We next show that v ∈ �. From (2.1) and (3.9), we have

Dp(v,�Ci v) ≤ 〈v − �Ci v, J E
p (v) − J E

p (�Ci v)〉
= 〈v − vnk ,N , J E

p (v) − J E
p (�Ci v)〉

+〈vnk ,N − �Ci vnk ,N , J E
p (v) − J E

p (�Ci v)〉
+〈�Ci vnk ,N − �Ci v, J E

p (v) − J E
p (�Ci v)〉

≤ 〈v − vnk ,N , J E
p (v) − J E

p (�Ci v)〉
+〈vnk ,N − �Ci vnk ,N , J E

p (v) − J E
p (�Ci v)〉

→ 0.

This gives v ∈ Ci for i = 1, 2, . . . , M and so v ∈ ⋂M
i=1 Ci . Form (3.10) and (3.13),

for each j = 1, 2, . . . , N − 1, we have

‖xn − vn, j‖ ≤ ‖xn − vn,N ‖ + ‖vn,N − vn,N−1‖ + . . . + ‖vn, j+1 − vn, j‖
→ 0.
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Since xnk ⇀v, we also have vnk , j⇀v as k → ∞. For each j = 1, 2, . . . , N − 1, we
note that

‖Av − PQ j+1 Av‖p

= 〈Av − PQ j+1 Av, J F
p (Av − PQ j+1 Av)〉

= 〈Av − Avnk , j , J F
p (Av − PQ j+1 Av)〉

+〈Avnk , j − PQ j+1 Avnk , j , J F
p (Av − PQ j+1 Av)〉

+〈PQ j+1 Avnk , j − PQ j+1 Av, J F
p (Av − PQ j+1 Av)〉

≤ 〈Av − Avnk , j , J F
p (Av − PQ j+1 Av)〉

+〈Avnk , j − PQ j+1 Avnk , j , J F
p (Av − PQ j+1 Av)〉. (3.15)

By the continuity of A, we have Avnk , j⇀Av and Avnk , j − PQ j+1vnk , j → 0. Letting
k → ∞ in (3.15), we have ‖Av − PQ j+1 Av‖ = 0 for each j = 1, 2, . . . , N − 1. In
a similar way, we can see that ‖Av − PQ1 Av‖ = 0. Hence, we have Av ∈ Q j for
j = 1, 2, . . . , N and so Av ∈ ⋂N

j=1 Q j . Therefore, v ∈ �.
We next show that

lim sup
n→∞

〈wn − x∗, J E
p (u) − J E

p (x∗)〉 ≤ 0.

To get this inequality, we can choose a subsequence {wnk } of {wn} such that

lim sup
n→∞

〈wn − x∗, J E
p (u) − J E

p (x∗)〉 = lim
k→∞〈wnk − x∗, J E

p (u) − J E
p (x∗)〉.

Since xnk ⇀v and by (3.14), we also have wnk ⇀v. Then we have

lim sup
n→∞

〈wn − x∗, J E
p (u) − J E

p (x∗)〉 = 〈v − x∗, J E
p (u) − J E

p (x∗)〉 ≤ 0.

(3.16)

Since un → u, it follows that limn→∞〈wn − x∗, J E
p (un)− J E

p (u)〉 = 0. This together
with (3.6) and (3.16), we conclude by Lemma 2.6 that �n → 0 as n → ∞. Therefore,
xn → x∗ as n → ∞.

Case 2. Suppose that there exists a subsequence {�ni } of {�n} such that �ni < �ni +1
for all i ∈ N. Then by Lemma 2.7, we can define an integer sequence {τ(n)} for all
n ≥ n0 by

τ(n) = max{k ≤ n : �k < �k+1}.

123



1884 Bulletin of the Iranian Mathematical Society (2022) 48:1869–1893

Moreover, {τ(n)} is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and
�τ(n) ≤ �τ(n)+1 for all n ≥ n0. From (3.7), we can show that

lim
n→∞ ‖(I − PQ1)Axτ(n)‖ = 0,

lim
n→∞ ‖(I − PQ j+1)Avτ(n), j‖ = 0 for each j = 1, 2, . . . , N − 1

and

lim
n→∞ ‖vτ(n),N − �Ci vτ(n),N ‖ = 0 for each i = 1, 2, . . . , M .

By the similar argument as in Case 1, we can show that

lim sup
n→∞

〈wτ(n) − x∗, J E
p (u) − J E

p (x∗)〉 ≤ 0.

Also, from (3.6) and the assumptions of {ατ(n)} and {βτ(n)}, we have

�τ(n) ≤ 〈wτ(n) − x∗, J E
p (uτ(n)) − J E

p (u)〉 + 〈wτ(n) − x∗, J E
p (u) − J E

p (x∗)〉.
(3.17)

Hence, lim supn→∞ �τ(n) ≤ 0 and so limn→∞ �τ(n) = 0. Again from (3.6), we see
that

�τ(n)+1 − �τ(n) ≤ ατ(n)(1 − βτ(n))〈wτ(n) − x∗, J E
p (uτ(n)) − J E

p (u)〉
+ατ(n)(1 − βτ(n))〈wτ(n) − x∗, J E

p (u) − J E
p (x∗)〉

→ 0.

This together with (3.17) implies that limn→∞ �τ(n)+1 = 0. Thus, we have

0 ≤ �n ≤ max{�τ(n), �n} ≤ �τ(n)+1 → 0,

which implies that Dp(x∗, xn) → 0. Therefore, xn → x∗ ∈ �. We thus complete the
proof. ��
Remark 3.2 We note that Theorem 3.1 improves and extends the main results of López
et al. [21] and Alsulami and Takahashi [6] in the following ways:

(i) Our result extends the result of López et al. [21] (from SFP in Hilbert spaces to
MSFP in Banach spaces) and Alsulami and Takahashi [6] (from SFP between Hilbert
and Banach spaces to MSFP in two Banach spaces).

(i i) The step-sizes of our method are very different from Alsulami and Takahashi
[6] because they do not depend on the operator norm of the bounded linear operators,
while the step-size of those work depends on the operator norm.

(i i i) Our result is proved with a new assumption on the control condition {βn}.
However, the assumption that lim infn→∞ βn > 0 of our result can be removed.
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Taking βn = 0 for all n ≥ 1, we obtain the followingHalpern-type iteration process
in Banach spaces immediately.

Corollary 3.3 Let E be a p-uniformly convex and uniformly smooth Banach space and
F be a reflexive, strictly convex and smooth Banach space. Let Ci , i = 1, 2, . . . , M and
Q j , j = 1, 2, . . . , N be nonempty, closed and convex subsets of E and F, respectively.
Let A : E → F be a bounded linear operator and A∗ : F∗ → E∗ be the adjoint of
A. Suppose that � 
= ∅. Let {un} be a sequence in E such that un → u. For given
x1 ∈ E, let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn,1 = J E∗
q (J E

p (xn) − τn,1∇ f (xn)),

vn,2 = J E∗
q (J E

p (vn,1) − τn,2∇ f (vn,1)),

...

vn,N = J E∗
q (J E

p (vn,N−1) − τn,N ∇ f (vn,N−1)),

yn = J E∗
q (an,0 J E

p (vn,N ) + ∑M
i=1 an,i J E

p (�Ci vn,N )),

xn+1 = J E∗
q (αn J E

p (un) + (1 − αn)J E
p (yn)), ∀n ≥ 1,

where {αn} ⊂ (0, 1), {an,i }M
i=1 ⊂ (0, 1), f (vn, j ) = 1

p ‖(I − PQ j+1)Avn, j‖p for

j = 1, 2, . . . , N − 1 and f (xn) = 1
p ‖(I − PQ1)Axn‖p with the step-sizes τn,1 and

τn, j , j = 1, 2, . . . , N − 1 are chosen self-adaptively as

τn,1 =
{

ρn f p−1(xn)
‖∇ f (xn)‖p , if f (xn) 
= 0;
0, otherwise

and

τn, j+1 =
{

ρn f p−1(vn, j )

‖∇ f (vn, j )‖p , if f (vn, j ) 
= 0;
0, otherwise,

respectively, where {ρn} ⊂ (
0, ( pq

cq
)

1
q−1

)
. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0;

(C3)
∑M

i=0 an,i = 1 and lim infn→∞ an,i > 0 for i = 1, 2, . . . , M.

Then {xn} converges strongly to x∗ = ��u, where �� is the Bregman projection from
E onto �.

We consequently obtain the following result in Hilbert spaces.

Corollary 3.4 Let H1 and H2 be two real Hilbert spaces. Let Ci , i = 1, 2, . . . , M
and Q j , j = 1, 2, . . . , N be nonempty, closed and convex subsets of H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator and A∗ : H2 → H1 be
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the adjoint of A. Suppose that � 
= ∅. Let {un} be a sequence in H1 such that un → u.
For given x1 ∈ H1, let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn,1 = xn − τn,1∇ f (xn),

vn,2 = vn,1 − τn,2∇ f (vn,1),

...

vn,N = vn,N−1 − τn,N ∇ f (vn,N−1),

yn = an,0vn,N + ∑M
i=1 an,i PCi vn,N ,

xn+1 = βn xn + (1 − βn)(αnun + (1 − αn)yn), ∀n ≥ 1,

(3.18)

where {αn} ⊂ (0, 1), {an,i }M
i=1 ⊂ (0, 1), {βn} ⊂ [0, 1), f (vn, j ) = 1

2‖(I −
PQ j+1)Avn, j‖2 for j = 1, 2, . . . , N − 1 and f (xn) = 1

2‖(I − PQ1)Axn‖2 with
the step-sizes τn,1 and τn, j , j = 1, 2, . . . , N − 1 are chosen self-adaptively as

τn,1 =
{

ρn f (xn)

‖∇ f (xn)‖2 , if f (xn) 
= 0;
0, otherwise

and

τn, j+1 =
{

ρn f (vn, j )

‖∇ f (vn, j )‖2 , if f (vn, j ) 
= 0;
0, otherwise,

respectively, where {ρn} ⊂ (0, 4). Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) lim infn→∞ ρn(4 − ρn) > 0;
(C3)

∑M
i=0 an,i = 1 and lim infn→∞ an,i > 0 for i = 1, 2, . . . , M;

(C4) lim supn→∞ βn < 1.

Then {xn} converges strongly to x∗ = P�u, where P� is the metric projection from
H1 onto �.

We obtain the following result for the SFP in Banach spaces.

Corollary 3.5 Let E be a p-uniformly convex and uniformly smooth Banach space and
F be a reflexive, strictly convex and smooth Banach space. Let C and Q be nonempty,
closed and convex subsets of E and F, respectively. Let A : E → F be a bounded
linear operator and A∗ : F∗ → E∗ be the adjoint of A. Suppose that � 
= ∅. Let
{un} be a sequence in E such that un → u. For given x1 ∈ E, let {xn} be a sequence
generated by

{
yn = �C J E∗

q (J E
p (xn) − τn∇ f (xn)),

xn+1 = J E∗
q (βn J E

p (xn) + (1 − βn)(αn J E
p (un) + (1 − αn)J E

p (yn))), ∀n ≥ 1,
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where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1) and f (xn) = 1
p ‖(I − PQ)Axn‖p with the step-size

τn is chosen self-adaptively as

τn =
{

ρn f p−1(xn)
‖∇ f (xn)‖p , if f (xn) 
= 0;
0, otherwise,

where {ρn} ⊂ (
0, ( pq

cq
)

1
q−1

)
. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;

(C2) lim infn→∞ ρn

(
p − ρ

q−1
n cq

q

)
> 0;

(C3) lim supn→∞ βn < 1.

Then {xn} converges strongly to x∗ = ��u, where �� is the Bregman projection from
E onto �.

4 Numerical Examples

In this section, we give some numerical examples to support our main result.

4.1 Numerical Example in Finite Dimensional Spaces

Example 4.1 We consider MSFP (1.1) with Ci ⊂ R
N and Q j ⊂ R

M, which are
defined by

Ci = {x ∈ R
N : 〈aC

i , x〉 ≤ bC
i },

Q j = {x ∈ R
M : 〈aQ

j , x〉 ≤ bQ
j },

where aC
i ∈ R

N , aQ
j ∈ R

M, bC
i , bQ

j ∈ R for all i = 1, 2, . . . , M and all j =
1, 2, . . . , N , and A is a bounded linear operator from R

N into R
M the elements of

the representing matrix of which are randomly generated in the closed interval [5, 10].
Next, we use randomly generated values of the coordinates of aC

i , aQ
j in the closed

interval [3, 5] and of bC
i , bQ

j in the closed interval [1, 10], respectively. It is clear that
� :=

( ⋂M
i=1 Ci

)
∩ A−1

( ⋂N
j=1 Q j

)

= ∅ because 0 ∈ �.

Remark 4.2 In this example, we define the function TOLn by

TOLn = 1

M

M∑

i=1

‖xn − PCi xn‖2 + 1

N

N∑

j=1

‖Axn − PQ j Axn‖2, ∀n ≥ 1.

We use the stopping rule TOLn < err to stop the iterative process. Note that if at the
nth step TOLn = 0, then xn ∈ �, that is, xn is a solution to this problem.
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Table 1 Table of numerical
results for Example 4.1

Stop condition: TOLn < err

err TOLn n Time (s)

10−5 9.996495e − 06 251 0.907

10−6 9.931760e − 07 411 1.383

10−7 9.923342e − 08 541 1.803

10−8 9.528326e − 09 603 1.947

10−9 9.759029e − 010 625 2.099

0 100 200 300 400 500 600 700
10

−10

10
−5

10
0

10
5

10
10

T
O

L

Number of iterations

Fig. 1 The behavior of TOLn with the stop condition TOLn < 10−9

Applying iterative method (3.18) in Corollary 3.4 with N = 40, M = 50, M = 30,

N = 40, βn = 3

4
, αn = 1

n + 1
, ρn = 0.25 and un = u for all n ≥ 1. Take the initial

values u, x1 ∈ R
N where its coordinates are also randomly generated in the closed

interval [10, 50], we arrive at the following table of numerical results (Table 1).
The behavior of TOLn in the case TOLn < 10−9 is described in Fig. 1.

4.2 Numerical Examples in Infinite Dimensional Spaces

Example 4.3 In this example, we take E = F = L2([0, π ]) with the inner product

〈 f , g〉 =
∫ π

0
f (t)g(t)dt

and the norm

‖ f ‖ =
( ∫ π

0
f 2(t)dt

)1/2
,

for all f , g ∈ L2([0, π ]).
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Now, let

Ci = {x ∈ L2([0, π ]) : 〈ai , x〉 = bi },

where ai (t) = sin(2i t), bi = 4i

4i2 − 1
for all i = 1, 2, . . . , M and t ∈ [0, π ],

Q j = {x ∈ L2([0, π ]) : 〈c j , x〉 ≤ d j },

in which c j (t) = exp( j t), d j = exp( jπ) − 1

j
for all j = 1, 2, . . . , N and t ∈ [0, π ].

Let us assume that

A : L2([0, π ]) → L2([0, π ]), (Ax)(t) = x(t)

2
.

We consider the Problem (1.1) with Ci , Q j and A are defined as the above. It is easy to
check that x(t) = cos t + c ∈ ⋂M

i=1 Ci , with c is an arbitrary real number. Moreover,
if the constant c ∈ [0, 1], then we have

∫ π

0
exp( j t)

cos t + c

2
dt ≤

∫ π

0
exp( j t)dt = exp( jπ) − 1

j
,

for all j = 1, 2, . . . , N . So, we obtain that A(cos t + c) ∈ ⋂N
j=1 Q j . Thus, we arrive

that

x(t) = cos t + c ∈
( M⋂

i=1

Ci

)
∩ A−1

( N⋂

j=1

Q j

)
, ∀c ∈ [0, 1].

So, the set of the solutions of the Problem (1.1) is a nonempty set.

When M = 50, N = 100, with the same initial guess elements x1(t) = t2 + 1 and
un(t) = u(t) = t for all n ≥ 1 and t ∈ [0, π ], we now consider the convergence of
iterative method (3.18) with ρn = 0.05, βn = 0.25, αn = 1/n, an,i = 1/(M + 1)
for all n ≥ 1, i = 0, 1, . . . , M , and iterative method (27) in [38, Theorem 4.1] with
ρn = 0.05, βi,n = 1.5, λ j,n = 0.5, αn = 1/n for all n ≥ 1, i = 1, 2, . . . , M , and
j = 1, 2, . . . , N . Note that, we define the function TOLn as in Example 4.1 and use
the stopping rule TOLn < err to stop the iterative process.

The behaviors of the approximation solution xn(t) in Table 2 (with TOLn < 10−3

and TOLn < 10−4) are presented in Figs. 2 and 3.
Finally, we provide some connection between the MSFP and the Fredholm integral

equations.

Example 4.4 Let us consider the Fredholm integral equation of the first kind as con-
sidered in [4],

∫ b

a
K (s, t)x(t)dt = g(s), a ≤ s ≤ b, (4.1)
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Table 2 Table of numerical results for Example 4.3

Stop condition: TOLn < err

Iterative method (3.18) Iterative method (27) in [38]

err TOLn n Time(s) err TOLn n Time (s)

10−3 9.983193e − 04 904 2.112 10−3 9.973428e − 04 1183 2.629

10−4 9.995264e − 05 2856 6.482 10−4 9.956379e − 05 3737 8.328

10−5 9.999619e − 06 9028 20.195 10−5 9.976772e − 06 11744 25.908

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5
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1.5
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x
n
(t)

t

Iterative method (3.18)
Iterative method (27) in [38]

Fig. 2 The behavior of xn(t) with the stop condition TOLn < 10−3
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x
n
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t

Iterative method (3.18)
Iterative method (27) in [38]

Fig. 3 The behavior of xn(t) with the stop condition TOLn < 10−4

where K : [a, b]2 → R is the continuous kernel and g : [a, b] → R is the con-
tinuous free term. Consider the computing L p-solutions of the Problem (4.1): find
x∗ ∈ ⋂M

i=1 Ci , where
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Table 3 Table of numerical
results for Example 4.4

Stop condition: TOLn = ‖xn − x∗(t)‖ < err

err TOLn n Time (s)

10−3 9.996388e − 04 2065 2.036

10−4 9.999633e − 05 20722 20.108

10−5 9.999961e − 06 208106 200.647

Ci = {x ∈ L p([a, b]) : 〈ai , x〉 = bi },

with ai (t) = K (si , t) ∈ Lq([a, b]) and bi = g(si ) ∈ R for i = 1, 2, .., M , while
a = s1 < s2 < ··· < sM = b (see [18,49]). Under some hypothesis, (4.1) has solutions
[24], then approximating an L p-solution of (4.1) equivalent to solving the MSFP with
E = F = L p([a, b]), A = I and Q j = L p([a, b]) for all j = 1, 2, . . . , N .

We consider the following the Fredholm integral equations of the first kind [47,
Example 2]:

π

2
cos s =

∫ π

0
cos(t − s)x(t)dt, 0 ≤ s ≤ π. (4.2)

It follows from [47, Example 2] that the set of solutions of the Problem (4.2) is a
nonempty set. Moreover, x(t) = cos t or x(t) = cos t + sin(2n + 1)t , n = 1, 2, . . .
are solutions of this problem.

We now approximate the solution of the Problem (4.2) in L2([0, π ]) by solving the
MSFP, that is, find x∗ ∈ ⋂M

i=1 Ci , where

Ci = {x ∈ L2([0, π ]) : 〈ai , x〉 = bi },

with ai (t) = cos(t − si ) and bi = π

2
cos si for i = 1, 2, .., M , while 0 = s1 < s2 <

· · · < sM = π.

In this case, the sequence {xn} is defined by (see, iterative method (3.18) in Corol-
lary 3.4) x1, u ∈ L2([0, π ]), and

{
yn = an,0xn + ∑M

i=1 an,i PCi xn,

xn+1 = βn xn + (1 − βn)(αnun + (1 − αn)yn), ∀n ≥ 1.
(4.3)

Applying iterative method (4.3) with an,i = 1/(M + 1), βn = 0.05, αn = 1/n
for all n ≥ 1 and for all i = 0, 1, . . . , M . Take the initial values x1(t) = 1, un(t) =
u(t) = sin 3t for all n ≥ 1 and t ∈ [0, π ], we obtain the following table of numerical
results (Table 3).

Remark 4.5 Note that, in this example when un(t) = u(t) = sin 3t for all n ≥ 1, then
x∗(t) = cos t + sin 3t is the projection of u onto the set of solutions of Problem (4.2).
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