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Abstract

The topic of this paper are non-self-adjoint second-order differential operators with
constant delay generated by —y” + ¢(x)y(x — 7) where potential ¢ is complex-
valued function, ¢ € L?*[0,]. We study inverse problems of these operators for
T € [2?” n). We investigate the inverse spectral problems of recovering operators
from their two spectra, firstly under Dirichlet—Dirichlet and second under Dirich-
let/Polynomial boundary conditions. We will prove theorem of uniqueness, and we
will give procedure for constructing potential. In the first case, for t € [%, n) :we will
show that Fourier coefficients of a potential are uniquelyO determined by spectra. In
the second case for T € [2?” %) , we will construct integral equation under potential
and we will prove that this integral equation has a unique solution. Also, we will show

that other parameters are uniquely determined by spectra.
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1 Introduction

An intensive development of the spectral theory for various classes of differential and
integral operators as well as for operators in abstract spaces took place in the second half
of twentieth century and twenty-first century. Within this theory inverse spectral prob-
lems take a special place. Inverse spectral problems are problems studying operator
from some of its spectral characteristics. The inverse spectral problem can be regarded
from three aspects: existence, uniqueness and reconstruction of the operators with spe-
cific properties of eigenvalues and eigenfunctions. The Sturm-Liouville-type operators
are generated by second-order differential expression and boundary conditions (see
[7,9] and references therein). In this paper, we study Sturm-Liouville operators with
one constant delay under Dirichlet-Dirichlet and Dirichlet/Polynomial boundary con-
ditions. In the papers [1-3,6,8,13—16] authors study this differential expression under
different types of boundary conditions. Also in many papers authors study boundary
conditions with spectral parameter (see [10-12]). We will show uniqueness and we
will recover the operators from two spectra.

In this paper we generalize the results in the paper [13] and [14].

In this paper, we study two boundary value problems Ly, k = 0, 1, Ly generated
by (1.1),(1.2),(1.3) and L; generated by (1.1),(1.2),(1.4)

—y"(x) +q(x)y(x — 1) = Ay(x), x € [0, 7], (1.1)
y(0) =0, (1.2)
y(m) =0, (1.3)
y' (@) + P)y(r) =0, (1.4)

where X is the spectral parameter, 7 € [ZT”, 71), Function ¢ (x) is a complex-valued

function which we call potential, such that ¢ € L?(0, ), and qg(x) = 0forx e
[0, T]. Function P(A) is normalized polynomial with degree s, s € N and complex
coefficients. We will separately study two cases, the first when t € [% n) and the
second when t € [2?”, 2).

The spectra of Ly and L are countable. We will prove that the potential g and
polynomial P are uniquely determined from the spectra of Lo and L. Let (4,)52 | be
the eigenvalues of Lo and (u,)52 | be the eigenvalues of L.

The inverse problem is to prove that g(x) and P (A) are uniquely determined from

(An)y2; and (u,)52 |, and determine g (x) and P (1) from (1,);2 | and (i,)52 ;.

2 Preliminaries

Let the function Y (x) be the solution of the differential equation (1.1) under initial
condition Y (0) = 0, Y’(0) = 1, then the function ¥ (x) satisfy an integral equation
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Y(x) = l/q(t)Y(t —1)sinz(x —¢)dt + sinzx7 (2.1)
b4 b4

0

where A = z2. We will be solving equation (2.1) using g(x) = 0 for x € [0, 7].
For x € [0, 7], the solution is

X

1 . sin zx sin zx
Y(x)=—- [ q@®)Y( — 1) sinz(x — 1)dr + = .
d Z

0

Z

For x € (t, 27], the solution is

1 ; . . sin zx
Y(x) = —2/q(t) sinz(t — t)sinz(x — £)dt + P (22)
z

T

For x € (27, 37], the solution is

sin zx
Y(x) = 5

X
1
+ — | g(®)sinz(t — t)sinz(x — t)dz
z z2
T

X t—1
1
—|——3/ / q(t)q(t)sinz(x —t)sinz(ty — 7)sinz(t — v — t1)dz;dr.
z
2t T

(2.3)

3 Main Results

3.1 Linear Case, T € [;, 11')

In the case, when 7 € [% 71) we have m € (7, 27], and using (1.3) and (1.4) from Eq.
(2.2), we get

sin z7w 1

Ag(A) =y(r) = + [q(t) sinz(t — 7) sinz(w — t)dt,

Z Z
k14

AL =y () + PA)y(m) =coszm + % / q(t)sinz(t — t)cosz(mr —t)dt +

3.1

P2 (sinzzﬂ " ZLZ /q(t) sinz(t — 1) sinz(wr — t)dt) . (3.2)
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The functions Ag(A), Aj(A) are entire in A of order 1/2. Itis clear that the set of zeros
of functions Ag(A), A1(X) is equivalent to the spectrum of boundary spectral problems
Lo, L, respectively. For the spectrum (4,)7° ; of boundary spectral problems Lg, we
have the asymptotic formula (see [8]):

5  costn [T
Ay =0+ — qg(t)dt + o(1), (n — o).
T

For the spectrum (u,);2, of boundary spectral problems Lj, using well-known

method (see [8]), based on Rouche‘s theorem, we have asymptotic formula which
depends on the degree of the polynomial P ()). When degree of the polynomial P (1)
is equal to 1, s = 1 we have asymptotic formula

m

/q(t)dt — ; +o(1), (n —> o0).

T

,  costn
Mn =n" +

When degree of the polynomial P (A) is different from 1, s > 1, we have asymptotic
formula

e

/q(t)dt 4+ o(1), (n — 00).

T

costn

Mn:n2+

Using Hadamard’s factorization theorem we conclude that spectra uniquely determine
functions Ag(A), Aq(A). We introduce notation

Fo(z) = zA0(1), Fi(2) = zA1(1).
The delay 7 and the integral || Tn q(t)dt = I are uniquely determined from the spectrum

O‘n)f,i] (see [1]).

Lemma 3.1 The spectra (Mn)f,ozl and ()Ln)zozl of boundary value problem L1 and L
uniquely determine polynomial P ().).

Proof Function F| (z) is uniquely determined by spectrum (14,,);2 ; and function Fy(z)
is uniquely determined by spectrum (A,)52 ;.
Let P(L) = A + ps,ﬂns_l 4+ ---+ po, pi € C.We have

b/

Fi1(z) =zcoszm + / q(t)sinz(t — t)cosz(mw — t)dt

T

-2

H(@ + ps—12P 4+ po) Fo(2).

Now, we put z = 2m + %,m € N and we have

F2+] 2—i—12SF2—i-1
1m2 mzom2
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= /q(t) sin <<2m + %) (t— r)) cos ((2m + %) (r — t)) dr
’ 1 25—2 1
+<Ps—1<2m+§> —i—---—i—po)Fo(Zm—i—z).

Since

1
lim F <2m + 7)
m—00 2

— im |14+ 1 Ifq(t)sin<(4m+1)(t—f)>sin((4m+1)(ﬂ—l))dl —1
m— 00 2m+§r 2 2

(Ps—z (2m+%)zx_4+--~+po> Fo (2m+%)

we conclude lim )
m—>00 (2m + % )

= 0, and from this equation,

we have

2
py_1 = lim Fi(2m+3) = @em+ 1) Fo(2m+ 1)

m— 00 (2m + %)23*2 ’

Now, when we showed that coefficient p;_1 is known from spectra (u,);°, and
(An)y2;, we have

F@m+3) = (@m+ )% + pes @+ 52 7) Fom + )

ps—2 = lim 254
1 S
We repeat this procedure and we have all coefficients ps_1, ..., p1 are determined by

spectra (f1,)oo  and (A,)02 ;.
Now, we will show that coefficient py is determined by spectra (1,)52  and (A,)52 ;.
First we transform product trigonometric functions to sum and we have

g

/q(t) sinz(t — t)cosz(mwr — t)dt =

T

sinz(mw — 1)
Sl Ay
2

T b
+w / 4 () sin 2¢rdr — w / g(t) cos 2z1d,
T T
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if we put z = 2m + %, m € N, from Riemann—Lebesgue lemma we have

" - @m+1D)(r—1)
4 1)(r — 4 1 —t sin —————
lim q(t) sin (4m + 1)( 12 cos (4m + Dz )dt — 2 I =0.
m—00 2 2 2

T

Finally, we have

- (dm+1)(r—1)
.M (2m+%)—sm+11
po = lim 1 —
oo Fo (2m + 3)
1 2s 1 2s—2 1 2
((2m+§) +p5_1<2m+§) +~-~+p1<2m+§>>,
and polynomial function P (1) is ordered by spectra (1,);2 ; and (A,)72 O

T w
Since g(x) = 0 for x € [0, 7), we have ay = fq(t)dt = fq(t)dt = I; and
coefficient ag is ordered by spectrum (A,)7> I Now we will prove that the other

coefficients a,, = fq(t) cos2mtdt and b, = f q () sin 2mtdt of the potential g are
0 0
also uniquely determined by spectra.

Theorem 3.2 Let (A,);2, and (jun);2, be the spectra of boundary spectral problems
Li, k = 0, 1, respectively, then potential q is uniquely determined by (7,);> | and
(Un)pey if 5 < T <.

Proof From (3.1) and (3.2), we have

T
1
Fo(z) = sinzm + — / q(t)sinz(t — t)sinz(wr — r)dr
Z

T
T

Fi(z) = zcoszm + P(zz) sin z7w + / q(t)sinz(t — t)cosz(mw — t)dt

T

2 b4
—i—P(Z ) /q(t) sinz(t — 7) sinz(w — t)dr.

Using transformations product of trigonometric functions to sum and addition formu-
las, we have

T T
Fy(z) = sinzm — cosz(er) / q(t)dr + COSZ(2;4_”/51(00% 2ztdt
b4 b4

@ Springer



Bulletin of the Iranian Mathematical Society (2022) 48:1829-1843 1835

by
+EEED [ gy sin 2z,
2z
T

and
. T . T
Fi(z) = zcoszm + P(zz) sin zmw + W /q(t)dt — W / q(t) cos2ztdt
T T

b g
P 2 —
+cos zZ(mr+ 1) /q(t) sin2zrdi — (z7)cosz(mr — 1) [q(t)dt
2 2z
T T

T T
P2 P ()i
+w/q(z)cos2zzd1+ w/q(t)siﬂzldﬁ
2z 2z

T T

Now we put z = m,m € N and using g(x) = 0 for x € [0, ), we have

Fo(m) +

T
cosm(m — 1) /q(t)dt _ cosm(mw + r)a n sinm(mw + T)bm,
T

2m 2m " 2m

. _ v 2 — 7
Fi(m) — m(—1)" — —Smm(; r)/ g(d + 2 )COZS,Z(” 2 /q(t)dt

_ (P(mz)cosm(n +1) sinm(mw +t)>a

2m 2
Pm?) sinm(w + 1 cosm(m + 1
n (m=) ( )+ ( ) by,
2m 2

This is linear system of two variables a,, and b,, with determinant D = # # 0, and
which has unique solution

Ccos

2m

mt r .
am = ((_1)’"F0(m) + /q(t)dt) (2m cosmt + P(m )s1nmt)

: T 2 .
) ((—1)"% m) —m + 2 / g(di + W / q(z)dz) sinmr
T m

T

b T
sinmt P(m?) cosmt
/q(t)dt—i— L/q(t)dz‘
2 2m
T

T

by, = 2cosmt ((—l)mFl(m) —m+

—2 (P(m?) cosmt — m sinmr) ((—1)’"F0(m) + = /q(t)dz) .
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Since 7, f " g (t)dt, polynomial P (1) and functions Fy, F) are determined from spectra
(An ) 2, and (,un)n 1» coefficients a,, and b, are also determined from this spectra.
Since g € L2[0, 7], we have

m=-+00
q(x) — Z CmCZImx’
m=—o0
where is ¢, = %am - %bm, and we finally conclude that potential g is uniquely
determine from spectra (A,)7° ; and (14,,)52 ;. O

3.2 Nonlinear Case, 7 € [ ;[, g)

In the case when t € [%” %) we have 7 € (27, 37], and using (1.3) and (1.4) from
Eq. (2.3), we get

sin z7w
Ao(A) = y(r) =

T
1
+= f q(t)sinz(t — v)sinz(mw — t)dt
¢ T
T

13/ / q(t)q(t) sinz(mw —t)sinz(t; — ) sinz(t — v — t1)drdr.

(3.3)

T

A1) = y'(m) + PV y(w) = cos zm + 1 / q(t)cosz(mwr —t)sinz(t — t)dt
Z

T
TI—T

+l2 / / q(t)q(t1)cosz(m —t)sinz(t; — t)sinz(t — v — t1)drde
z

2t T

sin z7w P(zz)

+P(%) q(t)sinz(t — t)sinz(wr — t)dr
T -7
P / /
q(t)q(t1)sinz(wr —t)sinz(f) — ) sinz(t — t — t1)drdr.
21 T

(3.4)
The functions Ag(A), A1(A) are entire in A of order 1/2. It is clear that the set of zeros
of functions Ag(}), A1()) is equivalent to the spectrum of boundary spectral prob-

lems Lo, L1, respectively. Like in previous case specification of the spectra uniquely
determines functions Ag(X), A1(L). We introduce notation

Fo(z) = zA0(0), F1(z) =zA1 ()
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and

T

T -1
4l =/q(t)dt, 12=/61(l)/qm)dt1dt-
2t T

T
Similar to the first case we have that delay 7 and the integral /] are uniquely ordered
from the spectrum (1,)5 , (see [1]).
oo

Lemma 3.3 The spectra (jin),- | and (Xn)gozl of boundary value problem L1 and L
uniquely determine polynomial P ().

Proof Similar like in first case. |

Now we transform the products of trigonometric functions into sums/differences
and we have

b4
— 1 i -2
Fo(z) = sinzm — Mh + —/q(l) cosz(mw + 1 —2t)dr — wh
2z 2z 472
T
1 T -1
+47 / / q(t)q(u) (sinz(wr — 2u) — sinz(w — 2t + 2t) + sin z(w — 2t 4 2u)) dudt,
74
2t T
b4
sinz(wr — 1) 1 .
Fi(z) = zcoszm + fh ~35 q(t)sinz(w + v — 21)dt
T
1 T I—T
+Z / / q(t)q(u) (cos z(w — 2u) — cos z(w — 2t + 2t) + cos z(w — 2t + 2u)) dudt
74
2t T
cosz(m — 21) P(z?)

e L+ P(Z%) sinzw + >

b
/q(t) cosz(m + 1 — 2t)dt
T

_ P(z3) cosz(mr — 1) I P(z%)sinz(w — 27) I

2z 472
T -t
P . .
+ 42 / / q(t)g)(sinz(wr — 2u) — sinz(w — 2t 4+ 271)

2t T

+sinz(mw — 2t + 2u))dudt.

We define functions K : [0, 7] — R,q : [0, 7] — R

gt + ) [ qdu — q(0) [T, q@du — [T g — Ng@du, 1 € [v.7 — 1]
0, else

K(t) = {

sy [alt+3). 1el5m—3]
q(t)_= 0, else

It is obvious that K (1) € L?[0, =] and §(r) € L?[0, 7].
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Using the following formulas as well as analogous formulas with cosine function
function

T -1 T—T b
f / q(t)q ) sinz(wr — 2u)dudr = / sinz(mw — 2t)q(t) / q (u)dudt,
2t T T 1471
T -7 T—T t
/ / q(t)qu)sinz(wr — 2t + 2t)dudt = / sinz(w —2t)q(t + 1) / q(u)dudt,
2t T T T
T I—T nT—T T
/ / q(t)qu)sinz(wr — 2t + 2u)dudt = / sinz(wr — 2t) / qu)q(u — t)dudt,
2t T T t+t

and notation

T—% T—%
a.(z) = / g(t)cosz(m —20)dr, day(z) = / q(t)sinz(mr — 2r)dt,
b 3

ke(2) = / K(t)cosz(m —2t)dr, ks(z) = / K@) sinz(wr — 2t)dt,
T T
we have

Fy(z) = sinzm + é(ﬁc(z) — Ijcosz(m — 'L’)) — L(ks(z) + Isinz(m — 21)),

422
(3.5)
Fi1(z) = zcoszm — %(cﬁ(z) — Iy sinz(m — r)) — i(kC(Z) + I cos z(m — 21))
2
+P(Z%)sinzw + P@&) (c?}(z) — Iy cosz(m — ‘L'))

2

_PE) <ks (z2) + I sinz(w — 2t)>. (3.6)
472

One can easily show that | Tn_r K (¢)dt = —I. Using this formula and integration by
parts from (3.5) and (3.6), we have

1/ 1 1 .
Fo(z) =sinzm + — | ac(z) — I1cosz(m — 1) | — — K2 (2) — 5 hsinz(r —21),
2z 2z 2z
(3.7
and

1/ . 1 .
Fi(z) = zcoszm — §<a_y(z) — Iy sinz(w — t)) + EK:(Z) + P(zz)smzn

P2 P(z%)

2
Pl )(é}(z)—llcosz(n—r)>— 2(2)12sinz(n—2r)— 2
z z

2z

+

K2(2), (3.8)
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where is

T—T P
K (z) = / / K (s)ds cos z(mr — 2t)dt,

T—T

t
K () = / / K (s)ds sin z(;r — 2t)dt.

T

Using [ " K(1)dt = —1I», we have

t T—T
/K(s)ds =—-0 — / K (s)ds,
T t
and
T—T t T—T T—T
Kl(z) = / /K(s)ds cosz(mr — 2t)dt = / (—12 — / K(s)) ds cos z(mr — 2t)drt
T T t

T—T T—T

T
=T
=-D / cosz(mw — 2t)dt — / / K (s)ds cos z(r — 2t)dt
1

T
Isinz(mr — 2t
_ e
K (z) = K] (2),

where is

T—TmT—T

Ki(z) =— / / K (s)ds cos z(r — 2¢t)dt,
T t

T—TmT—T

Ki(z) =— / / K (s)ds sin z(w — 2t)dt.
T t

Now we transform (3.7) and (3.8) and we have

1 1
Fo(z) = sinzm + —(c'fc(z) — Iy cosz(mw — 7:)) - —K!(2), (3.9
2z 2z

and
(. . L. 2 .
Fl(z)=zcoszn—§ as(z) — I1sinz(m — 1) +§Ks (z) + P(z%)sinzm
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2 2
+P(Z ) <a~c(z) — I cosz(mw — 'L’)> _ PG )Kj(z)- (3.10)
2z 2z
We define function A(z)

A(z) = 2zFy(z) — 2zsinzmw + I; cos z(w — T).
Function A(z) is determined by spectrum ()»n)floz | and from (3.10), we have
A(z) = ae(z) — KX (2). (3.11)

Also, we define function Bj(z)

P(z?)

Bi(z) = —2F(z) + 2zcoszm + Iy sinz(m — 1) + 2P(z2) sin zmw — Iy cosz(mr — 1),

this function is ordered by spectrum (j4,);;° ; and we have

P 2
Bi(2) = &) — KX () — (ZZ ) AG).
Finally, we define function
2
B = B0 + 22 a0,

Z

which is determined by spectra (1,);° ; and (1,);,2 |, and
B(z) = as(z) — K (2). (3.12)
We define function K* : [0, 7] — R

T—T
K*a) = | i K(s)ds, t € (r,m — 1)
0, else

Put z =m,m € N into (3.11) and (3.12), we have

T
T—73 T T

(—1)™ A(m) = / K(s)ds cos2midi (3.13)
t

I —

_
q(t) cos 2mtdr — /
T

T
T—7 T—TT—T

(="' B(m) = / Z[(t)sin2mtdt—/ /K(s)dssiantdt. (3.14)
t

z T
2
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From (3.11), we have

T—% T—Tm—T

lim A(z) = /q(t)dt //K(s)dsdt (3.15)

We multiply Eq. (3.13) by 2e?"! Eq. (3.14) by =-e%™ and Eq. (3.15) by 1 and then
sum them, using definition of function g(r) and K*(¢) we get the integral equation

g —K*(t) = f@),1 €[0, ], (3.16)

where

f=— hm A(z) + — > (=D"AGm) +i(=1)" B(m))e*™".

meZ\O

Theorem 3.4 Let ()52 and (wy)52 | be the spectra of boundary spectral problems
Ly, k = 0, 1, respectively, then potential q is uniquely determined by (7,);> | and

(), if % <v <5

Proof The potential ¢ satisfies integral equation (3.16), we will show uniqueness of
solution of this equation.

e Fort € (m —7,m — %), since K*(t) = 0,1 € (m — 7, — %], integral equation
(3.16) have a form:

g = f(@)

Function f is determmed by (Ax)52, and (1), then potential ¢ (x) is deter-
mined for x € (7w — 2, .

e Fort € (5, 7],since K*(t) = 0,1 € (5, ], integral equation (3.16) have a form:

q() = f(@.

Function f is determined by ()»n)fio  and ()52
for x € [z, 37’].
e Fort € (t,m — 7], from (3.16), we have equation

—1» then potential ¢ is determined

G — / K(s)ds = £(0).
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One can easily show that arguments of the potential g appearing in the function

T—T T—T s

/K(s)ds= / q(s+r)/q(u)du—q(s)/q(u)du—fq(u—s)q(u)du ds
t T

t s+t s+t

belong to the intervals [27, 7] C [ — % w]and [T, 7 — 7] C [T, 3—’]. Then the

T—T
function f K (s)ds is known. Therefore from (3.16) for ¢t € (r, 7 — 7], we get
t

T—T

q@) = / K(s)ds 4 f(1).

t

Function f is determined by ()L,,)Zozl and (M,,)ﬁozl , then potential g (x) is deter-

mined for x € (37’, T —1]

m}

When % <Tt< %, we have same integral equation like 3.13, but in the case when

T <1< 2?” not satisfied [27,7] C [7 — 5, 7] and [, 7 — 7] C [z, 3%], and

we cannot prove Theorem 3.4 on this way. Moreover, in the case when % <1< 2?”

theorem of uniqueness not true. For this conclusion, the main arguments are the results
published in the papers [4] and [5]. In the case when % <t< 2?” then critical interval
(37’ - r) not equal to &.
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