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Abstract
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tion of constrained minimization problem, variational inequality and split feasibility
problem and common fixed point of two generalized α-nonexpansive mappings. We
obtain few convergence results in the setting of uniformly convex Banach space. We
also present some numerical examples for supporting our main results and to demon-
strate the convergence behaviour of the obtained process.
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1 Introduction

One of the fast growing topic of nonlinear functional analysis is fixed point theory as
its ground of application varies from game theory, engineering and natural sciences.
The nature of many practical problems suggests an iterative approach to the solution
so that in the last few years many iterative processes have been obtained in different
domains to approximate the fixed points of numerous classes of mappings having
applications in convex minimization, differential inclusions, fractals, discontinuous
differential equations, solutions of ordinary and partial differential equation, optimal
control, computing homology ofmaps, variational inequality, split feasibility problem,
digital imaging and economics [1–5]. Ocejo [6] applied Banach fixed point theorem in
Finance,Matta et al. [7], Ege andKaraca [8], Dolhare andNalawade [9] did application
in digital imaging, Yambangwai et al. [10] applied fixed point iteration procedure for
de-blurring of image, Kitisak et al. [11] applied hybrid sub gradient method to signal
recovery problem. Recently, Garodia and Uddin [12,13] obtained two fixed point
iterations and utilized them to solve delay differential equation and split feasibility
problem. Also, owing to the fact that approximating the common fixed points and
minimization problems are inter-related, several researchers have obtained various
results for the same (cf. [14–17]).

Banach Contraction Principle is one of the prime result of fixed point theory. The
early findings in fixed point theory revolve around generalization of Banach Contrac-
tion Principle. The whole mathematics community had to wait for the first fixed point
theorem for nonexpansive mappings for 43 years. Let G̃ be a nonempty convex closed
subset of a uniformly convex Banach space J̃ . Then, a mapping P̃ : G̃ → G̃ is termed
as nonexpansive if ‖P̃ã − P̃ ṽ‖ ≤ ‖ã − ṽ‖ for all ã, ṽ ∈ G̃. If P̃ã = ã, where ã ∈ G̃
then ‘ã’ is called the fixed point of P̃. We will denote the set of fixed points of P̃ by
F̃(P̃). P̃ is called quasi-nonexpansive if F̃(P̃) �= ∅ and ‖P̃ã − q̃‖ ≤ ‖ã − q̃‖ for all
ã ∈ G̃ and q̃ ∈ F̃(P̃). It is worth mentioning that every nonexpansive mapping with
a fixed point is quasi-nonexpansive mapping. In 1965, Browder [18], Göhde [19] and
Kirk [20] gave three basic existence results in respect of nonexpansive mappings.

Following this, many mathematicians have introduced various generalizations and
extensions of nonexpansive mappings. In 2008, Suzuki [21] obtained a new gener-
alization of nonexpansive mappings and called the defining condition as Condition
(C) which is also referred as Suzuki generalized nonexpansive mappings. A mapping
P̃ : G̃ → G̃ defined on a nonempty subset G̃ of a Banach space J̃ is said to satisfy
the Condition (C) if

1

2
‖ã − P̃ã‖ ≤ ‖ã − ṽ‖ ⇒ ‖P̃ã − P̃ ṽ‖ ≤ ‖ã − ṽ‖

for all ã, ṽ ∈ G̃. Suzuki proved that the mappings satisfying the Condition (C) is
weaker than nonexpansive and also obtained few results related to the existence of
fixed points for such mappings.

Later, in 2011, Aoyama and Kohsaka [22] introduced another generalization of
nonexpansive mappings, namely, α-nonexpansive mappings and obtained few con-
vergence results. A mapping P̃ : G̃ → G̃ is said to be α-nonexpansive if there exists
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an α ∈ [0, 1) such that for all ã, ṽ ∈ G̃,

‖P̃ã − P̃ ṽ‖2 ≤ α‖P̃ã − ṽ‖2 + α‖ã − P̃ ṽ‖2 + (1 − 2α)‖ã − ṽ‖2.

Now, every nonexpansive mapping is 0-nonexpansive mapping and every α-
nonexpansivemappingwith a fixed point is quasi-nonexpansive. It isworthmentioning
that nonexpansive mappings are always continuous but mappings satisfying Condition
(C) or α-nonexpansive mappings need not be continuous in general.

In 2017, Pant and Shukla [23] introduced the class of generalized α-nonexpansive
mappings. A mapping P̃ : G̃ → G̃ is said to be generalized α-nonexpansive if there
exists an α ∈ [0, 1) such that

1

2
‖ã − P̃ã‖ ≤ ‖ã − ṽ‖ ⇒ ‖P̃ã − P̃ ṽ‖ ≤ α‖P̃ã − ṽ‖ + α‖P̃ ṽ − ã‖ + (1 − 2α)‖ã − ṽ‖

for all ã, ṽ ∈ G̃. They established few existence and convergence theorems for the
newly introduced class of mappings. Clearly, every mapping satisfying the Condition
(C) is a generalized α-nonexpansive mapping.

Motivated by the recent development, we propose a new iteration process to
approximate common fixed points of two generalized α-nonexpansive mappings. Let
P̃, S̃ : G̃ → G̃ be two generalized α-nonexpansive mappings, then we define our
process as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũ1 ∈ G̃

w̃k = (1 − ηk)ũk + ηk P̃ũk
ṽk = (1 − θk)S̃ũk + θkw̃k

ũk+1 = (1 − ρk)S̃w̃k + ρk P̃ ṽk, k ∈ N

(1.1)

where {ηk}, {θk} and {ρk} are sequences in (0, 1).
The main aim of this paper is to obtain an iteration method for approximating

common fixed points of two generalized α-nonexpansive mappings and to obtain
some weak and strong convergence results in Banach space. We also present non
trivial numerical examples to illustrate the convergence behaviour and advantages of
the proposed method. In the last section, we discuss about the solution of constrained
minimization problem, variational inequality and split feasibility problem using our
newly introduced iterative algorithm.

2 Preliminaries

In this section, we collect some basic definitions and needed results.
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Definition 2.1 A Banach space J̃ is called as uniformly convex if for each ε ∈ (0, 2]
and for ũ, ṽ ∈ J̃ with ‖ũ‖ ≤ 1, ‖ṽ‖ ≤ 1 and ‖ũ − ṽ‖ > ε there is a δ > 0 , such that

∥
∥
∥
ũ + ṽ

2

∥
∥
∥ < 1 − δ.

Definition 2.2 A Banach space J̃ is called to satisfy the Opial’s condition if for any
sequence {ũk} in J̃ with ũk⇀ũ where ũ ∈ J̃ implies that

lim sup
k→∞

‖ũk − ũ‖ < lim sup
k→∞

‖ũk − ṽ‖

for all ṽ ∈ J̃ with ṽ �= ũ.

A mapping P̃ : G̃ → G̃ is demiclosed at ṽ ∈ J̃ if for each sequence {ũk} in G̃ and
each ũ ∈ J̃ , ũk⇀ũ and P̃ũk → ṽ imply that ũ ∈ G̃ and P̃ũ = ṽ.

Let G̃ be a nonempty convex closed subset of a Banach J̃ , and let {ũk} be a bounded
sequence in J̃ . For ũ ∈ J̃ we write:

r(ũ, {ũk}) = lim sup
k→∞

‖ũ − ũn‖.

The asymptotic radius of {ũk} relative to G̃ is given by

r(G̃, {ũk}) = inf{r(ũ, {ũk}) : ũ ∈ G̃},

and the asymptotic center A(G̃, {ũk}) of {ũk} is defined as:

A(G̃, {ũk}) = {ũ ∈ G̃ : r(ũ, {ũk}) = r(G̃, {ũk})}.

It is well known that, A(G̃, {ũk}) consists of exactly one unique point when J̃ is
uniformly convex.

Now, we list an important lemma which was given by Schu [24].

Lemma 2.3 Let J̃ be a uniformly convex Banach space and {t̃k} be any sequence such
that 0 < p ≤ t̃k ≤ q < 1 for some p, q ∈ R and for all k ≥ 1. Let {ũk} and
{ṽk} be any two sequences of J̃ such that lim sup

k→∞
‖ũk‖ ≤ r , lim sup

k→∞
‖ṽk‖ ≤ r and

lim sup
k→∞

‖t̃k ũk + (1 − t̃k)ṽk‖ = r for some r ≥ 0. Then, lim
k→∞ ‖ũk − ṽk‖ = 0.

Now, we recall some important results involving generalized α-nonexpansive map-
pings.

Lemma 2.4 [23] Let G̃ be a nonempty subset of a Banach space J̃ and P̃ : G̃ → G̃ a
generalized α-nonexpansive mapping. Then,

(i) F̃(P̃) is closed. Further, if J̃ is strictly convex and G̃ is convex, then F̃(P̃) is
convex.

(ii) If F̃(P̃) �= ∅, then P̃ is quasi-nonexpansive.
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(iii)

‖ũ − P̃ ṽ‖ ≤ 3 + α

1 − α
‖ũ − P̃ũ‖ + ‖ũ − ṽ‖

for all ũ, ṽ ∈ G̃.

Lemma 2.5 [23] Let P̃ be a generalized α-nonexpansive mapping defined on a
nonempty closed subset G̃ of a Banach space J̃ with the Opial property. If a sequence
{ũk} converges weakly to w̃ and lim

k→∞ ‖P̃ũk − ũk‖ = 0, then P̃w̃ = w̃. That is, I − P̃

is demiclosed at zero.

3 Convergence Results

First, we prove few lemmas which will be useful in obtaining convergence results.

Lemma 3.1 Let P̃ and S̃ be two generalized α-nonexpansive mappings which are
defined on a nonempty convex closed subset G̃ of a Banach space J̃ with F̃(P̃) ∩
F̃(S̃) �= ∅. Let {ũk} be the iterative sequence defined by the iteration process (1.1).
Then, lim

k→∞ ‖ũk − q̃‖ exists for all q̃ ∈ F̃(P̃) ∩ F̃(S̃).

Proof Let q̃ ∈ F̃(P̃) ∩ F̃(S̃). By Lemma 2.4(ii), P̃ and S̃ are quasi-nonexpansive
mappings, so we have

‖w̃k − q̃‖ = ‖(1 − ηk)ũk + ηk P̃ũk − q̃‖
≤ (1 − ηk)‖ũk − q̃‖ + ηk‖P̃ũk − q̃‖
≤ (1 − ηk)‖ũk − q̃‖ + ηk‖ũk − q̃‖
= ‖ũk − q̃‖

(3.1)

and

‖ṽk − q̃‖ = ‖(1 − θk)Sũk + θkw̃k − q̃‖
≤ (1 − θk)‖S̃ũk − q̃‖ + θk‖w̃k − q̃‖
≤ (1 − θk)‖ũk − q̃‖ + θk‖ũk − q̃‖
= ‖ũk − q̃‖.

(3.2)

Using (3.1) and (3.2), we obtain

‖ũk+1 − q̃‖ = ‖(1 − ρk)S̃w̃k + ρk P̃ ṽk − q̃‖
≤ (1 − ρk)‖S̃w̃k − q̃‖ + ρk‖P̃ ṽk − q̃‖
≤ (1 − ρk)‖w̃k − q̃‖ + ρk‖ṽk − q̃‖
≤ (1 − ρk)‖ũk − q̃‖ + ρk‖ũk − q̃‖
= ‖ũk − q̃‖

(3.3)

Thus, {‖ũk − q̃‖} is non-increasing and bounded for all q̃ ∈ F̃(P̃)∩ F̃(S̃)which gives
that lim

k→∞ ‖ũk − q̃‖ exists for all q̃ ∈ F̃(P̃) ∩ F̃(S̃). �
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Lemma 3.2 Let J̃ , G̃, P̃, S̃ and {ũk} be as in Lemma 3.1. Then, F̃(P̃) ∩ F̃(S̃) �= ∅ if
and only if {ũk} is bounded and lim

k→∞ ‖P̃ũk − ũk‖ = 0 = lim
k→∞ ‖S̃ũk − ũk‖.

Proof Suppose F̃(P̃) ∩ F̃(S̃) �= ∅ and let q̃ ∈ F̃(P̃) ∩ F̃(S̃). Then, by Lemma 3.1,
lim
k→∞ ‖ũk − q̃‖ exists. Let

lim
k→∞ ‖ũk − q̃‖ = r . (3.4)

From inequalities (3.1) and (3.2), we have

lim sup
k→∞

‖ṽk − q̃‖ ≤ r (3.5)

and

lim sup
k→∞

‖w̃k − q̃‖ ≤ r . (3.6)

Now, from (3.1) and (3.3), we have

‖ũk+1 − q̃‖ ≤ (1 − ρk)‖w̃k − q̃‖ + ρk‖ṽk − q̃‖
≤ (1 − ρk)‖ũk − q̃‖ + ρk‖ṽk − q̃‖

which gives

‖ũk+1 − q̃‖ ≤ ‖ũk − q̃‖ − ρk‖ũk − q̃‖ + ρk‖ṽk − q̃‖.

Now, since {ρk} is a sequence in (0, 1), we obtain

‖ũk+1 − q̃‖ − ‖ũk − q̃‖ ≤ ρk(‖ṽk − q̃‖ − ‖ũk − q̃‖) ≤ ‖ṽk − q̃‖ − ‖ũk − q̃‖.

So, we get ‖ũk+1 − q̃‖ ≤ ‖ṽk − q̃‖ and from (3.4), we get

r ≤ lim inf
k→∞ ‖ṽk − q̃‖. (3.7)

Hence, from (3.5) and (3.7), we obtain

lim
k→∞ ‖ṽk − q̃‖ = r . (3.8)

Again, from (3.3), we have

‖ũk+1 − q̃‖ ≤ (1 − ρk)‖w̃k − q̃‖ + ρk‖ṽk − q̃‖.

Since {ρk} is a sequence in (0, 1), let ρ′
k = 1 − ρk where ρ′

k ∈ (0, 1), we get

‖ũk+1 − q̃‖ ≤ (1 − ρ′
k)‖ṽk − q̃‖ + ρ′

k‖w̃k − q̃‖,
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which gives

‖ũk+1 − q̃‖ − ‖ṽk − q̃‖ ≤ ρ′
k(‖w̃k − q̃‖ − ‖ṽk − q̃‖).

So, we obtain

‖ũk+1 − q̃‖ − ‖ṽk − q̃‖ ≤ ‖w̃k − q̃‖ − ‖ṽk − q̃‖,

which gives

‖ũk+1 − q̃‖ ≤ ‖w̃k − q̃‖

and from (3.4), we have

r ≤ lim inf
k→∞ ‖w̃k − q̃‖. (3.9)

Hence, from (3.6) and (3.9), we obtain

lim
k→∞ ‖w̃k − q̃‖ = r . (3.10)

On using the fact that P̃ and S̃ are quasi nonexpansive mappings, we have

lim sup
k→∞

‖P̃ũk − q̃‖ ≤ lim sup
k→∞

‖ũk − q̃‖ = r (3.11)

and

lim
k→∞ ‖S̃ũk − q̃‖ ≤ lim sup

k→∞
‖ũk − q̃‖ = r . (3.12)

Now, on using (3.4), (3.10), (3.11) and Lemma 2.3, we get

lim
k→∞ ‖P̃ũk − ũk‖ = 0. (3.13)

Again, on using (3.4), (3.8), (3.12) and Lemma 2.3, we get

lim
k→∞ ‖Sũk − w̃k‖ = 0. (3.14)

Consider

‖w̃k − ũk‖ = ‖(1 − ηk)ũk + ηk P̃ũk − ũk‖
≤ ηk‖P̃ũk − ũk‖

which on using (3.13) yields

lim
k→∞ ‖w̃k − ũk‖ = 0. (3.15)
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Finally, we have

‖S̃ũk − ũk‖ ≤ ‖S̃ũk − w̃k‖ + ‖w̃k − ũk‖,

so from (3.14) and (3.15), we get

lim
k→∞ ‖S̃ũk − ũk‖ = 0.

Conversely, suppose that {ũk} is bounded and lim
k→∞ ‖P̃ũk− ũk‖ = lim

k→∞ ‖S̃ũk− ũk‖ =
0. Let q ∈ A(G̃, {ũk}), we have

r(P̃q, {ũk}) = lim sup
k→∞

‖ũk − P̃q‖
≤ ( 3+α

1−α
) lim sup

k→∞
‖P̃ũk − ũk‖ + lim sup

k→∞
‖ũk − q‖

= lim sup
k→∞

‖ũk − q‖
= r(q, {ũk}).

This implies that P̃q ∈ A(G̃, {ũk}). Since J̃ is uniformly convex, A(G̃, {ũk}) is
singleton, therefore we get P̃q = q.

Similarly, we can obtain that S̃q = q, which gives q ∈ F̃(P̃) ∩ F̃(S̃). So, F̃(P̃) ∩
F̃(S̃) �= ∅. This completes the proof. �


Now, we prove the weak convergence result involving iteration scheme (1.1).

Theorem 3.3 Let J̃ , G̃, P̃, and S̃ be as in Lemma 3.1, such that J̃ which satisfies the
Opial’s condition, then {ũk} describes as in (1.1) converges weakly to a common fixed
point of P̃ and S̃.

Proof Let q̃ ∈ F̃(P̃) ∩ F̃(S̃). Then, from Lemma 3.1 lim
k→∞ ‖ũk − q̃‖ exists. Now, to

prove that {ũk} converges weakly to a common fixed point of P̃ and S̃, we will show
that {ũk} has a unique weak subsequential limit in F̃(P̃) ∩ F̃(S̃). So, let {ũk j } and
{ũkm } be two subsequences of {ũk} which converges weakly to w and y respectively.
On using Lemma 3.2, we get lim

k→∞ ‖P̃ũk − ũk‖ = lim
k→∞ ‖S̃ũk − ũk‖ = 0 and from

Lemma 2.5, we have I − P̃ and I − S̃ are demiclosed at zero. So w̃, ỹ ∈ F̃(P̃)∩ F̃(S̃).
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Next, we show the uniqueness. Since w̃, ỹ ∈ F̃(P̃) ∩ F̃(S̃), so lim
k→∞ ‖ũk − w̃‖ and

lim
k→∞ ‖ũk − ỹ‖ exists. Let w̃ �= ỹ. Then, by using Opial’s condition, we obtain

lim
k→∞ ‖ũk − w̃‖ = lim

k j→∞ ‖ũk j − w̃‖
< lim

k j→∞ ‖ũk j − ỹ‖
= lim

k→∞ ‖ũk − ỹ‖
= lim

km→∞ ‖ũkm − ỹ‖
< lim

km→∞ ‖ũkm − w̃‖
= lim

k→∞ ‖ũk − w̃‖

which is a contradiction, so w̃ = ỹ. Thus, {ũk} converges weakly to a common fixed
point of P̃ and S̃. �


Next, we establish and prove some strong convergence results.

Theorem 3.4 Under the conditions of Lemma 3.1, the sequence {ũk} has a strong limit
in F̃(P̃) ∩ F̃(S̃) if and only if lim inf

k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) = 0.

Proof Let lim
k→∞ ũk = q̃, where q̃ ∈ F̃(P̃) ∩ F̃(S̃), then it is trivial that

lim inf
k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) = 0.

For the converse part, let lim inf
k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) = 0. From Lemma 3.1, we

have lim
k→∞ ‖ũk − q̃‖ exists for all q̃ ∈ F̃(P̃) ∩ F̃(S̃), which gives

‖ũk+1 − q̃‖ ≤ ‖ũk − q̃‖ for any q̃ ∈ F̃(P̃) ∩ F̃(S̃),

which yields
d(ũk+1, F̃(P̃) ∩ F̃(S̃)) ≤ d(ũk, F̃(P̃) ∩ F̃(S̃)). (3.16)

Thus, {d(ũk, F̃(P̃) ∩ F̃(S̃)} is a bounded below and a non-increasing sequence
so lim

k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) exists. As, lim inf
k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) = 0 so,

lim
k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) = 0.

Now, we can find a subsequence {ũk j } of {ũk} and a sequence {m j } in F̃(P̃)∩ F̃(S̃)

such that ‖ũk j − m j‖ ≤ 1
2 j for all j ∈ N. From Lemma 3.1, we have

‖ũk j+1 − m j‖ ≤ ‖ũk j − m j‖ ≤ 1

2 j
.
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Using triangle inequality, we get

‖m j+1 − m j‖ ≤ ‖m j+1 − ũk j+1‖ + ‖ũk j+1 − m j‖
≤ 1

2 j+1 + 1
2 j

≤ 1
2 j−1

→ 0 as j → ∞.

So, {m j } is a cauchy sequence in F̃(P̃) ∩ F̃(S̃). From Lemma 2.4, F̃(P̃) ∩ F̃(S̃) is
closed, so {m j } converges to some m ∈ F̃(P̃) ∩ F̃(S̃).

Again, owing to triangle inequality, we have

‖ũk j − m‖ ≤ ‖ũk j − m j‖ + ‖m j − m‖.

Letting j → ∞, we have {ũk j } converges strongly to m ∈ F̃(P̃) ∩ F̃(S̃).

Since lim
k→∞ ‖ũk − m‖ exists by Lemma 3.1, therefore {ũk} converges strongly to

m ∈ F̃(P̃) ∩ F̃(S̃).

Two mappings P̃, S̃ : G̃ → G̃ are said to satisfy the Condition (A) ([25]) if there
exists a nondecreasing function g : [0,∞) → [0,∞) with g(0) = 0 and g(c) > 0
for all c ∈ (0,∞) such that

‖ũ − P̃ũ‖ ≥ g(d(ũ, F̃(P̃) ∩ F̃(S̃)))

or

‖ũ − S̃ũ‖ ≥ g(d(ũ, F̃(P̃) ∩ F̃(S̃)))

for all ũ ∈ G̃. �

Now, we present a strong convergence result using Condition (A).

Theorem 3.5 Under the hypothesis of Lemma 3.1, if P̃ and S̃ satisfies Condition (A),
then {ũk} converges strongly to a point of F̃(P̃) ∩ F̃(S̃).

Proof From (3.16), lim
k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) exists.

Also, by Lemma 3.2 we have lim
k→∞ ‖ũk − P̃ũk‖ = lim

k→∞ ‖ũk − S̃ũk‖ = 0.

Then, the following can be concluded from condition (A)

lim
k→∞ g(d(ũk, F̃(P̃) ∩ F̃(S̃))) ≤ lim

k→∞ ‖ũk − P̃ũk‖ = 0

or

lim
k→∞ g(d(ũk, F̃(P̃) ∩ F̃(S̃))) ≤ lim

k→∞ ‖ũk − S̃ũk‖ = 0

so that lim
k→∞ g(d(ũk, F̃(P̃) ∩ F̃(S̃))) = 0.
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Since g is a non decreasing function satisfying g(0) = 0 and g(c) > 0 for all
c ∈ (0,∞), therefore lim

k→∞ d(ũk, F̃(P̃) ∩ F̃(S̃)) = 0.

FromTheorem3.4., the sequence {ũk} converges strongly to a point of F̃(P̃)∩F̃(S̃).

�


4 Numerical Example

In this section, wewill construct an example of a generalizedα-nonexpansivemapping
which is neither a Suzuki generalized nonexpansive mapping nor a nonexpansive
mapping.

Example 4.1 Let J̃ = R with the usual norm and G̃ = [0,∞). Let P̃ : G̃ → G̃ be a
mapping defined as

P̃(ũ) =
{
0 ũ ∈ [0, 3

2 )
6ũ
13 ũ ∈ [ 32 ,∞).

for all ũ ∈ G̃.

Proof Clearly ũ = 0 is the fixed point of P̃ . Then, (i) Since P̃ is not continuous at
ũ = 3

2 , so P̃ is not a nonexpansive map.
(i i) Let ũ = 1 and ṽ = 3

2 , then

1

2
‖ũ − P̃ũ‖ = 1

2
≤ 1

2
= ‖ũ − ṽ‖.

But

‖P̃ũ − P̃ ṽ‖ = 6ṽ

13
= 18

26
>

1

2
= ‖ũ − ṽ‖.

So, P̃ is not a Suzuki generalized nonexpansive mapping.
(i i i) Now, we prove that P̃ is a generalized α-nonexpansive mapping. For this, let

α = 1
3 and consider the following cases:

Case (A).When ũ ∈ [ 32 ,∞) and ṽ ∈ [0, 3
2 ) then,

‖P̃ũ − P̃ ṽ‖ = |P̃ũ − P̃ ṽ| = 6ũ

13
.
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Now,

α‖P̃ũ − ṽ‖ + α‖P̃ ṽ − ũ‖ + (1 − 2α)‖ũ − ṽ‖ = 1
3 |P̃ũ − ṽ| + 1

3 |P̃ ṽ − ũ| + 1
3 |ũ − ṽ|

= 1
3 | 6ũ13 − ṽ| + 1

3 |ũ| + 1
3 |ũ − ṽ|

≥ 1
3 | 6ũ13 + ṽ| + 1

3 |ũ − ṽ|
≥ 19ũ

39
> 6ũ

13
= ‖P̃ũ − P̃ ṽ‖.

Case (B).When ũ, ṽ ∈ [ 32 ,∞) then,

‖P̃ũ − P̃ ṽ‖ = 6

13
‖ũ − ṽ‖ = 6

13
|ũ − ṽ|.

Now,

α‖P̃ũ − ṽ‖ + α‖P̃ ṽ − ũ‖ + (1 − 2α)‖ũ − ṽ‖ = 1
3 |P̃ũ − ṽ| + 1

3 |P̃ ṽ − ũ| + 1
3 |ũ − ṽ|

= 1
3 | 6ũ13 − ṽ| + 1

3 |ũ − 6ṽ
13 | + 1

3 |ũ − ṽ|
≥ 1

3 | 19ũ13 − 19ṽ
13 | + 1

3 |ũ − ṽ|
= 19

39 |ũ − ṽ| + 1
3 |ũ − ṽ|

> 6
13 |ũ − ṽ|

= ‖P̃ũ − P̃ ṽ‖.

Case (C).When ũ, ṽ ∈ [0, 3
2 ) then,

‖P̃ũ − P̃ ṽ‖ = 0.

So,

α‖P̃ũ − ṽ‖ + α‖P̃ ṽ − ũ‖ + (1 − 2α)‖ũ − ṽ‖ = 1
3 |P̃ũ − ṽ| + 1

3 |P̃ ṽ − ũ| + 1
3 |ũ − ṽ|

≥ ‖P̃ũ − P̃ ṽ‖.

Therefore, P̃ is a generalized α-nonexpansive mapping with α = 1
3 .

Similarly, we can define S̃ : G̃ → G̃ as

S̃(ũ) =
{
0 ũ ∈ [0, 3

2 )
7ũ
15 ũ ∈ [ 32 ,∞).

for all ũ ∈ G̃. It can be easily verified that S̃ is a generalized α-nonexpansive mapping
with α = 1

3 and 0 is the common fixed point of S̃ and P̃ .

Now, we will examine the influence of parameters ηk, θk, ρk and initial value. For
this, we will consider the three cases.
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Table 1 Values of proposed iteration with respect to the same initial value and different sets of parameters
ηk , θk , ρk

Iteration number Parameter set 1 Parameter set 2 Parameter set 3

1 5000 5000 5000

2 1401.079838514 1899.211045365 1432.925979813

3 381.0501326773 677.4285705191 424.4006681847

4 100.1902200173 231.8713263259 127.9785928363

5 25.6388595463 76.84568172673 39.07929702894

6 6.423176792865 24.79025669454 12.04907271974

7 1.582277562736 7.813331496065 3.744278230206

8 0.000000000000 2.412713365529 1.17122456375

9 0.000000000000 0.4738088690678 0.000000000000

10 0.000000000000 0.000000000000 0.000000000000

Table 2 Values of proposed iteration with respect to different initial values and the same set of parameters
ηk , θk , ρk

Iteration number When ũ1 = 1000 When ũ1 = 5000 When ũ1 = 9000

1 1000 5000 9000

2 288.5939724543 1442.969862271 2597.345752088

3 78.98316163354 394.9158081677 710.8484547019

4 20.72783433697 103.6391716848 186.5505090327

5 5.277860900662 26.38930450331 47.50074810596

6 1.314180344228 6.57090172114 11.82762309805

7 0.000000000000 1.608374438762 2.895073989772

8 0.000000000000 0.000000000000 0.5300090406747

9 0.000000000000 0.000000000000 0.000000000000

Case (I). In this case, we will show the convergence of our iteration scheme for
three different set of parameters with same initial value. We take the following set of
parameters:

1. ηk = k
k+1 , θk = k

k+5 , ρk = 1√
2k+1

for all k ∈ N and ũ1 = 5000

2. ηk = 2k
5k+2 , θk = 1

k+5 , ρk = k
k+9 for all k ∈ N and ũ1 = 5000

3. ηk = 1√
k+5

, θk = 1
3k+7 , ρk =

√
k+1
5k+1 for all k ∈ N and ũ1 = 5000

We get the following Table 1 and Graph 1 for the initial value 5000. �

Case (II). In this case, we will show the convergence for three different initial values
with same set of parameters. Set ηk = k

k+1 , θk = 2k
5k+2 and ρk = 1√

2k+1
for all k ∈ N.

We get the following Table 2 and Graph 2.
Case (III). In this case, wewill consider three different set of parameters with different
initial values. Consider the following different set of parameters:
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Fig. 1 Graph corresponding to Table 1

Fig. 2 Graph corresponding to Table 2

1. ηk = k
k+1 , θk = k

k+5 , ρk = 1√
2k+1

for all k ∈ N and ũ1 = 1000

2. ηk = 2k
5k+2 , θk = 1

k+5 , ρk = k
k+9 for all k ∈ N and ũ1 = 5000

3. ηk = 1√
k+5

, θk = 1
3k+7 , ρk =

√
k+1
5k+1 for all k ∈ N and ũ1 = 9000

We get the following Table 3 and Graph 3.
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Table 3 Values of proposed iteration with respect to different initial values and different sets of parameters
ηk , θk , ρk

Iteration number Parameter set 1 Parameter set 2 Parameter set 3

1 1000 5000 9000

2 280.2159677027 1899.211045365 2579.266763663

3 76.21002653546 677.4285705191 763.9212027324

4 20.03804400345 231.8713263259 230.3614671053

5 5.127771909259 76.84568172673 70.3427346521

6 1.284635358573 24.79025669454 21.68833089553

7 0.000000000000 7.813331496065 6.73970081437

8 0.000000000000 2.412713365529 2.108204214751

9 0.000000000000 0.4738088690678 0.4447952498376

10 0.000000000000 0.000000000000 0.000000000000

Fig. 3 Graph corresponding to Table 3

From the above three cases, it is clear that our iteration process (1.1) not only
converges to the common fixed point of P̃ and S̃ but it also shows that iteration
process is stable with respect to the different initial values and parameters ηn, θn and
ρn .

123



1508 Bulletin of the Iranian Mathematical Society (2022) 48:1493–1512

5 Applications

Application to constrained optimization and variational inequality problem:
Now, we will use J̃ to denote a real Hilbert space and G̃ for a nonempty closed
convex subset of J̃ . Let S̃ : G̃ → G̃ a nonlinear operator. Then, S̃ is called to be:

(i) Monotone if 〈S̃ũ − S̃ṽ, ũ − ṽ〉 ≥ 0 for all ũ, ṽ ∈ G̃,
(ii) λ̃- strongly monotone if there exist a constant λ̃ > 0 such that 〈S̃ũ − S̃ṽ, ũ − ṽ〉 ≥

λ̃‖ũ − ṽ‖2 for all ũ, ṽ ∈ G̃,
(iii) ξ̃ - inverse strongly monotone (ξ̃ -ism) if there exist a constant ξ̃ > 0 such that

〈S̃ũ − S̃ṽ, ũ − ṽ〉 ≥ ξ̃‖S̃ũ − S̃ṽ‖2 for all ũ, ṽ ∈ G̃,

(iv) L̃-Lipschitzian if there exists a constant L̃ > 0 such that ‖Sũ − S̃ṽ‖ ≤ L̃‖ũ − ṽ‖,
for all ũ, ṽ ∈ G̃.

A point z̃ ∈ G̃ with 〈S̃z̃, z̃− ũ〉 ≥ 0 for all ũ ∈ G̃ is termed as a solution of variational
inequality problem denoted by V I (G̃, S̃). �(G̃, S̃) is used to denote the solution
set of V I (G̃, S̃). It was Stampachhia [26,27] who initiated the study of variational
inequalities. Let μ > 0 is a constant and P̃G̃ be the metric projection from J̃ onto G̃

then, the set of fixed points of P̃G̃(I −μS̃) is same as the solution set of V I (G̃, S̃) i.e.,
F̃(P̃G̃(I − μS̃)) = �(G̃, S̃). Also, it is worth mentioning that if S̃ is L̃-Lipschitzian
and λ̃ - strongly monotone, then the operator P̃G̃(I − μS̃) is a contraction on G̃ when
0 < μ < 2λ̃/L̃2. Then, using the Banach contraction principle we can find a unique
solution of V I (G̃, S̃) and the sequence generated by the Picard iteration process,

ũk+1 = P̃G̃(I − μS̃)ũk, k ∈ N

will converge strongly to that solution denoted by ũ∗.
If S̃ = P̃, then the iterative process (1.1) gives the following iterative procedure:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũ1 ∈ G̃

w̃k = (1 − ηk)ũk + ηn S̃ũk
ṽk = (1 − θk)S̃ũk + θkw̃k

ũk+1 = (1 − ρk)S̃w̃k + ρk S̃ṽk, k ∈ N

(5.1)

where {ηk}, {θk} and {ρk} are sequences in (0, 1).
Now, in view of Theorem 3.3, we obtain the following results:

Theorem 5.1 Let P̃G̃ : J̃ → G̃ be a metric projection defined on nonempty closed

convex subset G̃ of J̃ and S̃ : G̃ → J̃ a ξ̃ - inverse strongly monotone mapping, where
ξ̃ > 0 is a constant. Suppose �(G̃, S̃) �= φ and μ ∈ (0, 2ξ̃ ). If {ũk} is constructed
from ũ1 ∈ G̃ as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũ1 ∈ G̃

w̃k = (1 − ηk)ũk + ηk P̃G̃(I − μS̃)ũk
ṽk = (1 − θk)P̃G̃(I − μS̃)ũk + θkw̃k

ũk+1 = (1 − ρk)P̃G̃(I − μS̃)w̃k + ρk P̃G̃(I − μS̃)w̃k, k ∈ N
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where {ηk}, {θk} and {ρk} are sequences in (0, 1) then, {ũk} converges weakly to a
solution of the variational inequality V I (G̃, S̃.)

Proof Oncombining the facts that P̃G̃(I−μS̃) is nonexpansivemapping ifμ ∈ (0, 2ξ)

and every nonexpansive map is a generalized 0-nonexpansive mapping, our result
follows from Theorem 3.3 by taking S̃ = P̃G̃(I − μS̃) in (5.1).

Now, the iterative procedures developed to obtain extremum values of a convex dif-
ferentiable function q(x) can also be used used for image and signal processing. Since
every L̃-Lipschitzian operator is 2/L̃-ism, we obtain the following result concerning
minimizer of q. �

Theorem 5.2 Let D̃ be an open set which contains a nonempty closed convex subset
G̃ of a Hilbert space J̃ and q be a differentiable and convex defined on D̃. Suppose
that ∇q is a L̃-Lipschitz continuous operator on D̃ with μ ∈ (0, 2/L̃) and minimizers
of q relative to the set G̃ exist. Let {ũk} be a sequence in G̃ constructed from ũ1 ∈ G̃
and defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũ1 ∈ G̃

w̃k = (1 − ηk)ũk + ηk P̃G̃(I − μ∇q)ũk
ṽk = (1 − θk)P̃G̃(I − μ∇q)ũk + θnw̃k

ũk+1 = (1 − ρk)P̃G̃(I − μ∇q)w̃k + ρk P̃G̃(I − μ∇q)ṽk, k ∈ N

where {ηk}, {θk} and {ρk} are sequences in (0, 1). Then, {ũk} converges weakly to a
minimizer of q.

Application to Split feasibility problem:
Let G̃1 and G̃2 be closed, convex and nonempty subsets of two real Hilbert spaces

J̃1 and J̃2 respectively and let Ã : J̃1 → J̃2 be a bounded and linear operator. Then, the
split feasibility problem (abbreviate SFP) can be mathematically described as locating
a point ũ ∈ G̃1 such that

ũ ∈ G̃1, Ãũ ∈ G̃2. (5.2)

Let

� = {ũ ∈ G̃1 : Ãũ ∈ G̃2} = G̃1 ∩ Ã−1G̃2 (5.3)

be the solution set of SFP (5.2). Then, � is closed, convex and nonempty set. Also,
we assume that � �= ∅. Censor and Elfving [28] solved the class of inverse problems
with the help of SFP. In 2002, Byrne [29] introduced the following famous algorithm
for solving the SFP. In this, the iterative step ũk is calculated as follows:

ũk+1 = P̃G̃1
[I − γ Ã∗(I − P̃G̃2

) Ã]ũk, k ≥ 0, (5.4)

where 0 < γ < 2

‖ Ã‖2 , P̃G̃1
and P̃G̃2

denote the projections onto sets G̃1 and G̃2,

respectively and Ã∗ : J̃ ∗
2 → J̃ ∗

1 is the adjoint of Ã.
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Now, the following important Lemma was given by Feng et al. [30]

Lemma 5.3 Let operator S̃ = P̃G̃1
[I − γ Ã∗(I − P̃G̃2

) Ã], with 0 < γ < 2

‖ Ã‖2 . Then,

S̃ is a nonexpansive map.
Also, since we have assumed that solution set � �= ∅, it is easy to observe that

any ũ∗ ∈ G̃1 is the solution of SFP if and only if it satisfies the following fixed point
equation:

P̃G̃1
[I − γ Ã∗(I − P̃G̃2

) Ã]ũ = ũ, ũ ∈ G̃1.

So, the solution set � is equal to the fixed point set of S̃ , i.e, F̃(S̃) = � = G̃1 ∩
Ã−1G̃2 �= ∅. For details, one can refer [31,32].

Now, we present our main results.

Theorem 5.4 Let {ũk} be the sequence defined by iterative procedure (5.1) with S̃ =
P̃G̃1

[I − γ Ã∗(I − P̃G̃2
) Ã] then, {ũk} converges weakly to the solution of SFP (5.2).

Proof By Lemma 5.3, S̃ is a nonexpansive map and every nonexpansive mapping is a
generalized 0-nonexpansive mapping, so we conclude our result from Theorem 3.3. �

Theorem 5.5 Let {ũk} be the sequence obtained by using (5.1) with S̃ = P̃G̃1

[I −
γ Ã∗(I − P̃G̃2

) Ã] then, {ũk} converges to the solution of SFP (5.2) if and only if
lim inf
k→∞ d(ũk,�) = 0.

Proof Proof follows from Theorem 3.4. �
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