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Abstract
In this paper, the relative derived categories with respect to X -Gorenstein projective
modules andY-Gorenstein injectivemodules are introduced to unifyGorestein derived
categories and Ding derived categories in certain sense. A triangle-equivalence and
description ofmorphisms in such relative derived categories are given.We also discuss
a generalized Tate cohomology and obtain Avramov–Martsinkovsky exact sequences.
Finally, some applications are obtained.
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1 Introduction

Derived categories were first introduced by Grothendieck in [17]. Until 1963, his stu-
dent Verdier gave the definition of triangulated categories and developed the theory of
localization in [26]. He obtained the construction of derived categories. An important
generalization of classical homological algebra is Gorenstein homological algebra. In
[13], Gao and Zhang introduced so-called Gorenstein derived categories. They gave
the relation with the usual derived categories and found that the bounded Goren-
stein derived categories of Gorenstein rings and of finite dimensional algebras can be
explicitly described via the homotopy categories of Gorenstein projective modules.

The Quillenmodel structures over a Gorenstein ring could be generalized to the one
over a so-called Ding–Chen ring, with respect to some special Gorenstein projective
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andGorenstein injectivemodules [15,19] namedDingprojective and injectivemodules
byGillespie. Because thesemodules are introduced byDing and co-authors in [11] and
[10]. Many researchers pay attention to these modules, such as [27,28,30]. Especially,
in [24], Ren, Liu and Yang started from above conclusion of Quillen model structure
and introduced the relative derived categories with respect to Dingmodules. They gave
the relation with derived and Gorenstein derived categories and a triangle-equivalence
of Ding derived categories over Ding–Chen rings. Also the authors in [1] studied
relative derived category with respect to a contravariantly finite subcategory of an
abelian category as a generalization of the work in [13].

X -Gorenstein projective modules and Y-Gorenstein injective modules are intro-
duced in [6] and [22], where X is a class of modules that contains all projective
modules,Y is a class of modules that contains all injective modules. It has been proved
that the principle results on Gorenstein projective and injective modules remain true
for these modules. Now it is natural to ask whether the relative derived categories
with respect to X -Gorenstein projective and Y-Gorenstein injective modules share
nice analogous properties with corresponding Gorenstein derived categories and Ding
derived categories. We study the triangle-equivalence and morphisms in current rela-
tive derived categories. Also a generalizedTate cohomology is discussed andwe obtain
Avramov–Martsinkovsky exact sequences. These results cover the related conclusions
inGorenstein derived categories andDingderived categories. The triangle-equivalence
of D∗̃

C(R) and D∗̃
F (R) is achieved, where ˜C and ˜F denote the classes of Gorenstein

AC-projective modules and Gorenstein AC-injective modules, resp.
The layout of this paper is as follows: In Sect. 2, we review some definitions

and notations which are basic to the rest of the paper. Sect. 3 is devoted to define
and study the relative derived categories with respect to X -Gorenstein projective
modules and Y-Gorenstein injective modules. We show the triangle-equivalence and
give a new characterization of relative derived functor of Hom with respect to X -
Gorenstein projective modules and Y-Gorenstein injective modules as the morphisms
in the corresponding relative derived categories. In Sect. 4, we discuss a generalized
Tate cohomology in the sense of Iacob [20] with respect to X -Gorenstein projective
modules and Y-Gorenstein injective modules and get Avramov–Martsinkovsky exact
sequences. Finally, some applications are obtained in Sect. 5.

2 Preliminaries

Throughout this paper, R denotes a ring with unity, and modules are left R-modules.
We first review some notations and basic facts.

X -Gorenstein modules Let X (resp., Y) be a class of modules that contains pro-
jective (resp., injective) R-modules. Recall that an R-module M is X -Gorenstein
projective, if there exists an exact sequence of projective R-modules

P = · · · −→ P1 −→ P0 −→ P0 −→ P1 −→ · · ·
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such that M ∼= Im(P0 → P0) and HomR(P, Q) is exact whenever Q ∈ X . Dually, an
R-module N is Y-Gorenstein injective, if there exists an exact sequence of injective
R-modules

I = · · · −→ I1 −→ I0 −→ I 0 −→ I 1 −→ · · ·

such that M ∼= Im(I0 → I 0) and HomR(E, I) is exact whenever E ∈ Y [6].
We denote by P(resp., F , GP , DP , X -GP) the class of projective (resp., flat,

Gorenstein projective,Ding projective,X -Gorenstein projective)modules andI(resp.,
GI, DI, Y-GI) the class of injective (resp., Gorenstein injective, Ding injective, Y-
Gorenstein injective) modules.

Cotorsion pair Let A be an abelian category, C and D be classes of objects
in A. (C,D) is called cotorsion pair if C⊥ = D and C = ⊥D, where C⊥ = {Y ∈
Ob(A) | Ext1R(C, Y ) = 0 f or any C ∈ C}, ⊥C = {Y ∈ Ob(A) | Ext1R(Y , C) = 0

f or any C ∈ C}. The cotorsion pair (C,D) is said to be complete if for any
A ∈ A,there are short exact sequence 0 → D → C → A → 0 and 0 → A → C ′ →
D′ → 0 with C, C ′ ∈ C, D, D′ ∈ D. If A is an abelian category with enough projec-
tive and enough injective objects, the cotorsion pair (C,D) inA is called hereditary if
one of the following equivalent conditions holds: (1) C is resolving, that is, C is closed
under taking kernels of epics; (2) D is coresolving, that is, D is closed under taking
cokernels of monics; (3) ExtiR(C, D) = 0 for any C ∈ C and D ∈ D and i ≥ 1. In
[22], it has been proved that (⊥(Y-GI),Y-GI) is a complete hereditary cotorsion pair
if lY-GID(R) < ∞ and (X -GP, (X -GP)⊥) is a complete hereditary cotorsion pair
if lX -GPD(R) < ∞.

Complex An R-complex X is a sequence of R-modules

· · · δ2−→ X1
δ1−→ X0

δ0−→ X−1
δ−1−→ · · · ,

with δnδn+1 = 0 for all n ∈ Z. The nth homology module of X is Hn(X) =
Zn(X)/Bn(X), where Zn(X) = Ker(δX

n ), Bn(X) = Im(δX
n+1). We set Cn(X) =

Coker(δX
n+1). A complex X is called acyclic or exact if Hn(X) = 0 for any n ∈ Z.

For an integer m, Σm X denotes the complex X shifting m degrees; it is given by
(Σm X)l = Xl−m, δΣm X

l = (−1)mδX
l−m .

Denote by C(R) (resp., K(R), D(R)) the category of complexes (resp., the homo-
topy category, derived category). The homotopy category K(R) has the same objects
as C(R) and the morphisms are homotopy equivalence classes of morphisms in C(R).
The derived category D(R) is the localization of K(R) with respect to the multipli-
cation system formed by the quasi-isomorphisms in K(R). For a class of R-modules
B, K(B) is the homotopy category with each complex constructed by modules in B.
For ∗ ∈ {−,+, b},K∗(R) andD∗(R) stand for the corresponding homotopy category
and the derived category.

Gorenstein ring A ring R is called a Gorenstein ring if it is both left and right
noetherian and has finite self-injective dimension on both the left and the right.
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Ding–Chen ring A ring R is called Ding–Chen ring or n-FC ring if it is both left
and right coherent, and has both left and right self-FP-injective dimensions at most n
for some non-negative integer n ([8] or [9]).

3 Relative Derived Categories

In this section, we introduce relative derived categories with respect to X -Gorenstein
projective and Y-Gorenstein injective modules, and study corresponding triangle-
equivalence.

Definition 3.1 An R-complex X is calledX -GP-acyclic, if HomR(G, X) is acyclic for
every X -Gorenstein projective module G. A morphism f : X → Y of R-complexes
is called an X -GP-quasi-isomorphism, if HomR(G, f ) is a quasi-isomorphism for
every X -Gorenstein projective module G.

Dually, an R-complex X is called X -GI-acyclic, if HomR(X , E) is acyclic for
every Y-Gorenstein injective module E . A morphism f : X → Y of R-complexes is
called a Y-GI-quasi-isomorphism, if HomR( f , E) is a quasi-isomorphism for every
Y-Gorenstein injective module E .

Remark 3.2 1. Let X = P . Then X -GP = GP . Let X = F . Then X -GP = DP .
2. Since P ⊆ X , P ⊆ X -GP ⊆ GP , then every GP-acyclic complex is X -

GP-acyclic, every X -GP-acyclic complexes is acyclic. Moreover, every GP-quasi-
isomorphism is anX -GP-quasi-isomorphism and everyX -GP-quasi-isomorphism is
a quasi-isomorphism.

(3) By [7, Lemma 2.4] a complex is X -GP-acyclic if and only if HomR(G, X)

is exact for each complex G ∈ K+(X -GP). By [7, Proposition 2.6], a morphism
f : X → Y of R-complexes isX -GP-quasi-isomorphism if and only if HomR(G, f )

is quasi-isomorphism for each complex G ∈ K+(X -GP).
(4) Let X = GP . Then X -GP = P .
(5) Dually, let Y = I. Then Y-GI = GI. Let X = FI. Then Y-GI = DI. Let

Y = GI. Then Y-GI = I. The dual conclusions on Y-GI-acyclic complexes and
Y-GI–quasi-isomorphisms also hold.

Following Rickards criterion (see [25, Proposition 1.3]), we have the following
lemma.

Lemma 3.3 For ∗ ∈ {blank,−,+, b}, K∗
XGP (R) and K∗

YGI(R) are thick sub-
categories of K∗(R), where K∗

XGP (R) is the subcategory of K∗(R) consisting of
X -GP-acyclic complexes and K∗

YGI(R) is the subcategory of K∗(R) consisting of
Y-GI-acyclic complexes.

Proof It is obvious that K∗
XGP (R) and K∗

YGI(R) are full triangulated subcategories
of K∗(R). Also direct summands of X -GP-acyclic complexes(Y-GI-acyclic com-
plexes) areX -GP-acyclic complexes(Y-acyclic complexes). The conclusion holds by
Rickards criterion. ��

Note that a morphism of complexes f : X → Y is a X -GP-quasi-isomorphism
(resp., Y-GI-quasi-isomorphism) if and only if its mapping cone Cone( f ) is X -
GP-acyclic (resp.,Y-GI-acyclic). Denote the collection ofX -GP-quasi-isomorphism
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(Y-GI-quasi-isomorphism) by SXGP and SYGI . Then SXGP and SYGI are saturated
multiplicative systems corresponding to the subcategories K∗

XGP (R) and K∗
YGI(R).

Definition 3.4 For ∗ ∈ {blank,−,+, b}, the relative derived category D∗
XGP (R) of

the category of R-modules with respect toX -Gorenstein projective modules is defined
to be the Verdier quotient of K∗(R), i.e.

D∗
XGP (R) := K∗(R)/K∗

XGP (R) = S−1
XGPK∗(R).

Similarly, the relative derived category D∗
YGI(R) of the category of R-modules

with respect to Y-Gorenstein injective modules is defined to be

D∗
YGI(R) := K∗(R)/K∗

YGI(R) = S−1
YGIK∗(R).

We call D∗
XGP (R) and D∗

YGI(R) X -Gorenstein projective derived category and
Y-Gorenstein injective derived category, resp.

We know that D∗
XGP (R) and D∗

YGI(R) are the derived categories of the exact
categories (R-Mod, EXGP ) and (R-Mod, EYGI ) in sense of [23], where EXGP and
EYGI are the collections of all the short X -GP-acyclic and Y-GI-acyclic sequences,
resp.

It has been proved thatD∗
GP (R) andD∗

GI(R) are triangle-equivalent over a Goren-
stein ring R in [13]. When R is a Ding–Chen ring, D∗

DP (R) and D∗
DI(R) are

triangle-equivalent (see [24]). In the following, we investigate when D∗
XGP (R) and

D∗
YGP (R) are triangle-equivalent.
In the following, we say that an R-module M has a proper left X -GP-resolution

if there exists an X -GP-acyclic sequence · · · → G1 → G0 → M → 0 with each
Gi ∈ X -GP .

Lemma 3.5 Let R be a ring and M an R-module. If lY-GID(R) < ∞, lX -GPD(R) <

∞, and ⊥(Y-GI) = (X -GP)⊥, then HomR(G, E) is exact for a proper left X -GP-
resolution G : · · · → G1 → G0 → M → 0 and an arbitrary Y-Gorenstein injective
module E.

Proof Let E be a Y-Gorenstein injective module. Since P ⊆ X -GP , then G is exact.
Break it up into short exact sequences. We just show that

T : 0 → L −→ G0 −→ M −→ 0

is HomR(−, E)-exact, where G0 → M is a X -Gorenstein projective precover of M .
By [22, Theorems 2.20 and 3.19], there exists a special short exact sequence

T′ : 0 −→ L ′ u−→ G −→ M → 0,

where G → M is an X -Gorenstein projective precover of M and L ′ ∈ (X -GP)⊥. It
is easy to prove that T and T′ are homotopic equivalent. So
HomR(T, E) and HomR(T′, E) are homotopic equivalent for Y-Gorenstein injective
module E . We only need to show that HomR(T′, E) is exact.
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We show HomR(G, E)
HomR(u,E)−→ HomR(L ′, E) −→ 0 is exact for arbitrary Y-

Gorenstein injective module E , that is, for arbitrary morphism f : L ′ → E , there
exists g : G → E such that gu = f . Since E is Y-Gorenstein injective module,
then 0 → E ′ → I

α→ E −→ 0, where I is injective module and E ′ is Y-Gorenstein
injective module. By assumption Ext1R(L ′, E ′) = 0. So there exists β : L ′ → I such
that αβ = f . Since I is injective, there exists ˜β such that ˜βu = β. Then g = α˜β is
the needed morphism. ��
Theorem 3.6 Let R be a ring. If lY-GID(R) < ∞, lX -GPD(R) < ∞, and ⊥(Y-
GI) = (X -GP)⊥, then D∗

XGP (R) is triangle-equivalent to D∗
YGI(R), where ∗ ∈

{blank,−,+, b}.
Proof It is sufficient to prove that EXGP coincides with EYGI . By assumption and [22,
Theorems 2.20 and 3.19], (⊥(Y-GI),Y-GI) and (X -GP, (X -GP)⊥) are complete
hereditary cotorsion pairs. Hence, every R-module M has a proper left X -GP-
resolution · · · → G1 → G0 → M → 0, denoted by G → M → 0, where G
is the deleted complex.

Let 0 → K → N → M → 0 be aX -GP-acyclic sequence of R-modules.We need
to prove that it is Y-GI-acyclic. Assume that G → M → 0 and G′ → K → 0 are
proper leftX -GP-resolutions of M and K respectively. By the Horseshoe Lemma [12,
Lemma 8.2.1], there is a a commutative diagram of exact sequences

0 G′ G′ ⊕ G G 0

0 K N M 0

0 0 0,

where G′ ⊕ G → N → 0 is a proper left X -GP-resolution of N .
For any Y-Gorenstein injective module E , by applying HomR(−, E) to the above

commutative diagram, we have

0 HomR(G, E) HomR(G′ ⊕ G, E) HomR(G′, E) 0

0 HomR(M, E) HomR(N , E) HomR(K , E) 0

0 0 0.

.

Each column is exact by Lemma 3.5, and the upper row is a sequence of complexes
with each degree split-exact. We infer that each column is a quasi-isomorphism. Thus,
it follows from the long homology exact sequence induced by the upper row that
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the second row is exact. Therefore, we deduce that 0 → K → N → M → 0 is
Y-GI-acyclic, as required.

Dually, we can show that every short Y-GI-acyclic sequence of R-modules is also
X -GP-acyclic. This completes the proof. ��

If ring R satisfies the conditions in Theorem 3.6, then we call D∗
XGP (R)

and D∗
YGI(R) the relative derived categories.

Remark 3.7 The known rings, includingGorenstein rings andDing–Chen rings, satisfy
the assumption of Theorem 3.6 (see more details in Sect. 5).

The relations between D∗
GP (R), D∗

XGP (R) and D∗(R) are as follows.

Proposition 3.8 For ∗ ∈ {blank,−,+, b}, there are isomorphisms of triangulated
categories

D∗(R) ∼= D∗
XGP (R)/

(K∗
P (R)/K∗

XGP (R)
)

and

D∗
XGP (R) ∼= D∗

GP (R)/
(K∗

XGP (R)/K∗
GP (R)

)

.

Proof It follows by [13, Lemma 2.4]. ��
It is well known that Ext functor has a tight connection with morphisms in derived

categories. That is, for any R-module M and N , ExtnR(M, N ) = HomDb(R)(M,Σn N ).
If M has a proper left GP-resolution G → M → 0, then for any R-module
N , Holm [18] defined ExtnGP (M, N ) = HnHomR(G, N ). By [13, Theorem 3.12],
ExtnGP (M, N ) = HomDb

GP (R)(M,Σn N ). For Ding derived categories, there is a sim-

ilar conclusion. If R-module M admits a proper left Ding projective resolution, N
is an arbitrary R-module, then ExtnDP (M, N ) = HomDb

DP (R)(M,Σn N ) [24, Theo-
rem 4.4]. In the following, we will show that corresponding results also hold in the
current relative derived categories.

Lemma 3.9 Let X be an R-complex. Suppose that there is a complex G ∈ K+(X -
GP) and an X -GP-quasi-isomorphism f : X → G. Then there exists a morphism g :
G → X such that f g is homotopic to 1G.

Proof Since f : X → G is an X -GP-quasi-isomorphism and G ∈ K+(X -GP),
then HomR(G, f ) : HomR(G, X) → HomR(G, G) is a quasi-isomorphism by [7,
Proposition 2.6]. So it follows from [2, (1.1)], for themorphism1G , there is amorphism
g : G → X such that f g ∼ 1G . ��

The following result gives another version of morphisms in DXGP (R).

Proposition 3.10 Let X be an R-complex, G ∈ K+(XGP). Then ϕ : f → f /1G

gives an isomorphism of abelian groups HomK(R)(G, X) ∼= HomDXGP (R)(G, X).
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Proof If f /1G = 0, then by the calculus of right fractions there is a X -GP-quasi-
isomorphism t : Y → G for some complex Y such that f t ∼ 0. It follows from
Lemma 3.9 that there is a morphism g : G → Y such that tg ∼ 1G . Thus, f ∼ f tg ∼
0, that is, ϕ : f → f /1G is injective.

Next we show that ϕ : f → f /1G is surjective. For each morphism f /s ∈
HomDXGP (R)(G, X), f /s presented by G

s⇐� Y
f−→ X , by Lemma 3.9, there is

a morphism g : G → Y such that sg ∼ 1G . So f /s = f g/1G = ϕ( f g), that is,
ϕ : f → f /1G is surjective. Hence, ϕ is an isomorphism as desired. ��
Definition 3.11 Suppose that R-module M has a proper left X -GP-resolution
G → M → 0. For an arbitrary R-module N and every n ∈ Z, define a relative
cohomology group

ExtnXGP (M, N ) = H−nHomR(G, N ).

Dually, suppose that R-module N has a coproper rightY-GI-resolution 0 → N →
E. For an arbitraryR-module M and every n ∈ Z, define a relative cohomology group

ExtnYGI(M, N ) = H−nHomR (M,E) .

It follows from Comparison Lemma that every two proper leftX -GP-resolution of
M are homotopy equivalent.Hence, ExtnXGP (M, N ) has no dependencewith the chose
of proper left X -GP-resolutions of M . Therefore, ExtnXGP (M, N ) is well defined.
Similarly, ExtnYGI(M, N ) is well defined.

For arbitrary homology group ExtnXGP (M, N ) and ExtnYGI(M, N ), we have the
description in current relative derived categories.

Theorem 3.12 1. Assume that R-module M has a proper left X -GP-resolution, N is
an arbitrary R-module. Then

ExtnXGP (M, N ) = HomDb
XGP (R)(M,Σn N ).

2. Assume that R-module N has a coproper right Y-GI-resolution, M is an arbi-
trary R-module. Then

ExtnGI(M, N ) = HomDb
YGI (R)

(

M,Σn N
)

.

To prove the theorem, we firstly show the following lemma.

Lemma 3.13 D+
XGP (R) is a full triangulated subcategory of DXGP (R); Db

XGP (R)

is a full triangulated subcategory of D+
XGP (R), and hence of DXGP (R).

Proof Let S be the collection of all X -GP-quasi-isomorphism in K(R). Then S is
the compatible multiplicative system determined by the thick subcategory KXGP (R)

of K(R). Hence DXGP (R) = S−1K(R), D+
XGP (R) = (S ∩ K+(R))−1K+(R).

By [14, Proposition 2.10(III)], it is enough to prove that for any X -GP-quasi-
isomorphism f : M → N with N ∈ K+(R), there is a morphism g : M

′ →
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M , M
′ ∈ K+(R), such that f g is X -GP-quasi-isomorphism. Then the canonical

functor (S ∩ K+(R))−1K+(R) → S−1K(R) is fully faithful. Hence, D+
XGP (R) is a

full triangulated subcategory of DXGP (R).
Since N ∈ K+(R), there exists an integer i , such that Nk = 0 for any k < i . Let

M
′
be the soft truncation M⊃i of M . Then there is a commutative diagram

M⊃i

g

· · · Mi+2 Mi+1 Kerdi 0 · · ·

M

f

· · · Mi+2 Mi+1 Mi Mi−1 · · ·

N · · · Ni+2 Ni+1 Ni 0 · · · ,

where f is X -GP-quasi-isomorphism. It is easy to see that g is also a X -GP-quasi-
isomorphism. So is f g.

Similarly, we can prove that Db
XGP (R) is a full triangulated subcategory of

D+
XGP (R). Obviously, Db

XGP (R) is a full triangulated subcategory of
DXGP (R). ��

Now we prove Theorem 3.12.

Proof Let G → M → 0 be a proper left X -GP-resolution of M . Regard R-module
M as a complex, thenG → M is anX -GP-quasi-isomorphism. Hence, in the relative
derived category Db

XGP (R), G ∼= M . Therefore,

ExtnXGP (M, N ) = H−nHomR (G, N )

= HomK(R)

(

G,Σn N
)

∼= HomDXGP (R)

(

G,Σn N
)

∼= HomDb
XGP (R)

(

M,Σn N
)

,

where the first isomorphism follows from Proposition 3.10 and the second isomor-
phism is from Lemma 3.13. ��

Balance problem is an important issue in homological algebra. It is well known that
the classical cohomology functor ExtnR(−,−) can be defined by projective resolution
of thefirstmodule or injective resolution of the secondmodule.However, the balance of
the relative cohomology functors is not obvious. For example, the authors in [18] have
proved that for Gorenstein derived functors, when GpdR M < ∞ and GidR N < ∞,
ExtnGP (M, N ) ∼= ExtnGI(M, N ). Especially, when R is an n-Gorenstein ring, Goren-
stein derived functors are balanced (see [12]). For relative cohomology functors with
respect to Ding modules, even ExtnDP (M, N ) and ExtnDI(M, N ) are well defined
for M , N , they are not balance. But in [27], it has been proved that if R is a Ding–
Chen ring, HomR(−,−) is right balanced by DP × DI on R-Mod × R-Mod.
Hence ExtnDP (M, N ) ∼= ExtnDI(M, N ). On the other hand, in [24], the balanced
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result has been reproved when R is a Ding–Chen ring, Db
DP (R) and Db

DI(R) are tri-
angulated equivalent.We can get the balancedness of the relative cohomology functors
defined here. Based on Theorem 3.12 and Theorem 3.6, we get the following result.

Corollary 3.14 Let R be a ring. If lY-GID(R) < ∞, lX -GPD(R) < ∞, and
⊥(Y-GI) = (X -GP)⊥, then there is an isomorphism

ExtnXGP (M, N ) ∼= ExtnYGI(M, N )

for arbitrary R-module M, N.

Recall that for ExtGP (−,−) and ExtDP (−,−), there are long exact sequences,
see [2, Propositions 4.4 and 4.6] and [24, Proposition 4.6]. Next we give long exact
sequences concerning these relative cohomology functions.

Proposition 3.15 Let M be an R-module, N = 0 → N
f→ N

′ g→ N
′′ → 0 be an

X -GP-acyclic sequence of R-modules.
1. If M has proper left X -GP-resolution, then there is a natural morphism

ϑn
XGP (M,N) such that the following sequence is exact.

· · · ExtnXGP (M, N )
ExtnXGP (M, f )

ExtnXGP (M, N
′
)
ExtnXGP (M,g)

ExtnXGP (M, N
′′
)

ϑn
XGP (M,N)

Extn+1
XGP (M, N )

Extn+1
XGP (M, f )

Extn+1
XGP (M, N

′
)
Extn+1

XGP (M,g) · · · .

2. Assume that N , N
′

and N
′′

have proper left X -GP-resolutions. Then there is a
natural morphism ϑn

XGP (N, M), such that the following sequence is exact.

· · · ExtnXGP (N
′′
, M)

ExtnXGP (g,M)

ExtnXGP (N
′
, M)

ExtnXGP ( f ,M)

ExtnXGP (N , M)

ϑn
XGP (N,M)

Extn+1
XGP (N

′′
, M)

Extn+1
XGP (g,M)

Extn+1
XGP (N

′
, M)

Extn+1
XGP ( f ,M) · · · .

Proof Since N is X -GP-acyclic, then g induces a X -GP-quasi-isomorphism
Cone( f ) → N

′′
in the derived category Db(R), where the mapping cone of f

is Cone( f ) = 0 → N
f→ N

′ → 0. So in Db
XGP (R), Cone( f ) ∼= N

′′
.

We consider the commutative diagram in Db
XGP (R)

N
f

N
′

Cone( f ) Σ N

N
f

N
′ g

N
′′

Σ N .
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Since N
f→ N

′ → Cone( f ) → Σ N is a distinguished triangle in Db
XGP (R), so

is N
f→ N

′ g→ N
′′ → Σ N . Applying HomDb

XGP (R)(M,−) to the distinguished

triangle, we get the exact sequence

· · · → HomDb
XGP (R)

(

M,Σn N
) → HomDb

XGP (R)

(

M,Σn N
′) →

HomDb
XGP (R)

(

M,Σn N
′′) → HomDb

XGP (R)

(

M,Σn+1N
)

→
HomDb

XGP (R)(M,Σn+1N
′
) → · · · .

Similarly, applying HomDb
XGP (R)(−, M) to the distinguished triangle N

f→ N
′ g→

N
′′ → Σ N , we get the long exact sequence in (2). ��

Dually, we can get long exact sequences concerning ExtYGI(−,−).
In [22], the X -Gorenstein projective and Y-Gorenstein injective dimension are

discussed. Now we investigate them further by conclusions established in the current
relative derived categories.

Proposition 3.16 Let M be an R-module admitting a proper left X -GP-resolution,
n be a non-negative integer. Then the following are equivalent.

1. X -GpdR M ≤ n.
2. For every R-module N and i > 0, Extn+i

XGP (M, N ) = 0.

3. For every R-module N, Extn+1
XGP (M, N ) = 0.

4. For any projective resolution of M, P → M → 0, Ker(P−n+1 → P−n+2)

∈ X -GP .
5. For any X -GP-resolution of M, G → M → 0, Ker(G−n+1 → G−n+2)

∈ X -GP .
6. For any proper left X -GP-resolution of M, G → M → 0, Ker(G−n+1 →

G−n+2) ∈ X -GP .

Proof (5)⇒(4)⇒(1) and (5)⇒(6)⇒(2)⇒(3) are obvious.
(1)⇒(6) Suppose that 0 → G−n → G−n+1 → · · · → G−1 → G0 → M → 0

is an X -GP-resolution of M with length n. Let G′ → M → 0 be any proper left X -
GP-resolution of M . By the Comparison Lemma we get the following commutative
diagram:

Take mapping cone and get the exact sequence

· · · G ′−n−2 G−n ⊕ G ′−n−1 G−n+1 ⊕ G ′−n · · · G0 ⊕ G ′−1 G ′0 0.
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Since X -GP is closed under taking kernels of epics and direct summands [22,
Lemma 3.2], then by the following exact sequence

0 → G−n → G−n+1 ⊕ Ker
(

G ′−n+1 → G ′−n+2
)

→ G−n+2 ⊕ G ′−n+1 →
· · · → G0 ⊕ G ′−1 → G ′0 → 0,

we get Ker(G ′−n+1 → G ′−n+2) ∈ X -GP .
(6)⇒(5) Assume that 0 → G−n → G−n+1 → · · · → G−1 → G0 → M → 0

be a proper left X -GP-resolution of M with length n. Let G′ → M → 0 be any X -
GP-resolution of M . By the Comparison Lemma we get the following commutative
diagram:

· · · G ′−n−1 G ′−n G ′−n+1 · · · G ′−1 G ′0 M 0

· · · 0 G−n G−n+1 · · · G−1 G0 M 0.

Take mapping cone and get the exact sequence

· · · → G ′−n−1 → G ′−n → G−n ⊕ G ′−n+1 →
G−n+1 ⊕ G ′−n+2 → · · · → G−1 ⊕ G ′0 → G0 → 0.

Since X -GP is closed under taking kernels of epics [22, Lemma 3.2],

Coker
(

G ′−n−1 → G ′−n
)

∼= Ker
(

G−n ⊕ G ′−n+1 → G−n+1 ⊕ G ′−n+2
)

∈ X − GP.

So Ker(G ′−n+1 → G ′−n+2) ∼= Coker(G ′−n−1 → G ′−n) ∈ X -GP .
(3)⇒(1) Assume that

· · · G−n−2d
−n−2

G−n−1d
−n−1

G−n d−n

G−n+1 · · · G0 d0

M 0

is a proper left X -GP-resolution of M . Let K −n = Kerd−n+1, K −n−1 = Kerd−n .
Especially, in (3) set N = K −n−1, so Extn+1

XGP (M, K −n−1) = 0, that is, the sequence

HomR(G−n, K −n−1) HomR(G−n−1, K −n−1) HomR(G−n−2, K −n−1)
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is exact. For f ∈ HomR(G−n−1, K −n−1), HomR(d−n−2, K −n−1)( f ) = 0. Hence,
there exists g ∈ HomR(G−n, K −n−1) such that f = HomR(d−n−1, K −n−1)(g) =
gd−n−1. Let h : K −n−1 → G−n . Since d−n−1 = h f and f is epic, by f = gd−n−1 =
gh f , we have gh = 1K −n−1

, that is, the sequence

0 −→ K −n−1 −→ G−n −→ K −n −→ 0

splits. So K −n ∈ X -GP . ��
By Theorem 3.12 we get the following conclusions.

Corollary 3.17 Let M be an R-module admitting a proper left X -GP-resolution, n be
a non-negative integer. Then the followings are equivalent.

1. X -GpdR M ≤ n.
2. For every R-module N and i > 0, HomDb

XGP (R)(M,Σn+i N ) = 0.

3. For every R-module N, HomDb
XGP (R)(M,Σn+1N ) = 0.

By Theorem 3.12, Corollary 3.14 and Corollary 3.17, we get the following propo-
sition.

Proposition 3.18 Let R be a ring such that lY-GID(R) < ∞, lX -GPD(R) < ∞,
and ⊥(Y-GI) = (X -GP)⊥, n be a non-negative integer. Then for R-module M, the
following are equivalent.

1. X -GpdR M ≤ n.
2. For every R-module N and i > 0, morphisms in the relative derived category

HomDb
XGP (R)(R)

(

M,Σn+i N
)

= 0.

3. For every R-module N, morphisms in the relative derived category

HomDb
XGP (R)

(

M,Σn+1N
)

= 0.

4. For every R-module N and i > 0, morphisms in the relative derived category

HomDb
YGI (R)

(

M,Σn+i N
)

= 0.

5. For every R-module N, morphisms in the relative derived categoryHomDb
YGI (R)

(M,Σn+1N ) = 0.

Dually, we can get the characterizations of Y-Gorenstein injective dimension.

4 Generalized Tate Cohomology

In the following, we consider the generalized Tate cohomology respect to X -
Gorenstein projective and Y-Gorenstein injective modules.

123



S132 Bulletin of the Iranian Mathematical Society (2021) 47 (Suppl 1):S119–S141

Definition 4.1 Assume that R-module M has a proper left X -GP-resolution, N is an
arbitrary R-module. Let P → M → 0 and G → M → 0 be a projective resolution
and a proper leftX -GP-resolution, resp. Then there is a morphism f : P → G. Define
the generalized Tate cohomology with respect toX -Gorenstein projective modules as

̂Ext
n
XGP (M, N ) := H−n−1Hom(Cone( f ), N ).

We discuss the existence of Avramov–Martsinkovsky exact sequence by the meth-
ods in derived categories.

Lemma 4.2 Given proper left X -GP-resolutions γ : G → M and γ
′ : G′ → M

′
,

and projective resolutions π : P → M and π : P′ → M
′
, there exist unique up to

homotopy morphisms of complexes ϕ : P → G and ϕ
′ : P′ → G

′
with π = γ ϕ and

π
′ = γ

′
ϕ

′
. For each homomorphism of modules μ : M → M

′
, there exists a unique

up to homotopy morphism μ̃, making the right-hand square of the diagram

P
ϕ−−−−→ G

γ−−−−→ M

μ

⏐

⏐

	
μ̃

⏐

⏐

	

μ

⏐

⏐

	

P
′ ϕ

′
−−−−→ G

′ γ
′

−−−−→ M,

commute; for each choice of μ̃, there exists a unique up to homotopy morphism μ,
making the left-hand square commute up to homotopy. If μ = idM , then μ and μ̃ are
homotopy equivalences, that is, isomorphisms in homotopy category.

Proof Denote

G : · · · → Gn → Gn−1 → · · · → G1 → G0 → 0,

G
′+ : · · · → G

′
n → G

′
n−1 → · · · → G

′
1 → G

′
0

γ
′

→ M
′ → 0.

G
′+ is X -GP-acyclic; hence, HHomR(Gi ,G

′+) = 0 for all i ∈ Z. Note that G =
lim−→G≤i , whereG≤i is the subcomplex ofGwith nth component equal to Gn for n ≤ i

and to 0 for n > i . Consider the exact sequence of complexes

0 −→ G≤i−1 −→ G≤i −→ Σ i Gi −→ 0.

As G≤−1 = 0, using the induced exact sequence of complexes of abelian groups

0 → HomR

(

Σ i Gi ,G
′+)

→ HomR

(

G≤i ,G
′+)

→ HomR

(

G≤i−1,G
′+)

−→ 0

and induction on i , we get HHomR(G≤i ,G
′+) = 0 for all i ∈ Z. Thus, we have

HHomR

(

G,G
′+)

= HHomR

(

lim−→G≤i ,G
′+)

= H
(

lim←−HomR

(

G≤i ,G
′+))

= 0
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with the last equality coming from the Mittag-Leffler criterion.
The exact sequence 0 → Σ−1M

′ → G
′+ → G

′ → 0 induces an exact sequence

0 −→ HomR

(

G,Σ−1M
′) −→ HomR

(

G,G
′+)

−→ HomR

(

G,G
′) −→ 0.

For each n, the connecting map in the homology exact sequence is an isomorphism

HnHomR

(

G,G
′) ∼= Hn−1HomR

(

G,Σ−1M
′) ∼= HnHomR

(

G, M
′)

.

So HomR(G, γ
′
) is a quasi-isomorphism. The Lifting Lemma [2, 1.1(1)] yields a

unique up to homotopy morphism μ̃ with γ
′
μ̃ = μγ .

Ifμ = idM , then reversing the roles of M and M
′
, we get a morphism μ̃

′ : G′ → G
inducing idM . Thus, μ̃μ̃

′ : G′ → G
′
induces idM , and hence is homotopic to idG′ .

By symmetry, μ̃
′
μ̃ ∼ idG, so μ̃ is a homotopy equivalence.

By [2, 1.2(1) and 1.1(1)], we get morphisms ϕ, ϕ
′
with π = γ ϕ, π

′ = γ
′
ϕ

′
, then a

morphism μ̃
′
with ϕμ

′ ∼ μ̃
′
ϕ

′
, all unique up to homotopy. If μ = idM , then all these

maps are quasi-isomorphisms, so μ is a homotopy equivalence. ��

Proposition 4.3 Let M be an R-module admitting a proper left X -GP-resolution and
N be an arbitrary R-module. Then ̂Ext

n
XGP (M, N ) is well defined, and there is

an Avramov-Martsinkovsky type exact sequence

0 −→ Ext1XGP (M, N ) −→ Ext1R(M, N ) −→ ̂Ext
1
XGP (M, N )

−→ Ext2XGP (M, N ) −→ · · ·
−→ ExtiR(M, N ) −→ ̂Ext

i
XGP (M, N ) −→

Exti+1
XGP (M, N ) −→ Exti+1

R (M, N ) −→ · · · .

Proof Let P → M andG → M be a projective resolution and a proper left Gorenstein
projective resolution of M , resp. Formorphism f : P → G, consider the exact triangle
in K(R)

P
f−→ G −→ Cone( f ) −→ ΣP.

Applying HomK(R)(−, N ) to the above triangle, we get the exact sequence

· · · → HomK(R)(Σ
−n+1P, N )

→ HomK(R)(Σ
−nCone( f ), N ) →

HomK(R)

(

Σ−nG, N
) → HomK(R)

(

Σ−nP, N
) →

HomK(R)(Σ
−n−1Cone( f ), N ) → HomK(R)(Σ

−n−1G, N ) → · · · ,
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where HomK(R)(Σ
−nP, N ) = ExtnR(M, N ). By Proposition 3.10 and Theorem 3.12,

we get

HomK(R)(Σ
−nG, N ) ∼= HomDb

XGP (R)(M,Σn N ) = ExtnXGP (M, N ).

Since Hom is left exact, we get that ̂Ext
n
XGP (M, N ) = 0 whenever n < 1. Then the

above Avramov–Martsinkovsky type exact sequence holds.
Take another projective resolution Q → M → 0 and another proper left X -GP-

resolution X → M → 0. Then 1M induces a morphism g : Q → X, u : P → Q
and v : G → X, such that the following diagram commutes in K(R) by Lemma 4.2

P
f−−−−→ G

u

⏐

⏐

	
v

⏐

⏐

	

Q
g−−−−→ X.

Hence, we get the commutative diagram

P
f−−−−→ G −−−−→ Cone( f ) −−−−→ ΣP

u

⏐

⏐

	
v

⏐

⏐

	
w

⏐

⏐

	 Σu

⏐

⏐

	

Q
g−−−−→ X −−−−→ Cone(g) −−−−→ ΣQ,

wherew =
(

Σu 0
0 v

)

by [29, Lemma 2.2.3]. Since u and v are isomorphisms inK(R)

by Lemma 4.2, w is so in K(R). So

HomK(R)(Σ
−n−1Cone( f ), N ) ∼= HomK(R)(Σ

−n−1Cone(g), N ),

that is,

H−n−1HomR(Cone( f ), N ) ∼= H−n−1HomR(Cone(g), N ).

Hence, ̂Ext
n
XGP (M, N ) is well defined. ��

Dually,we have the following.

Definition 4.4 Assume that R-module N has a coproper right Y-GI-resolution,
M is an arbitrary R-module. Let 0 → N → I and 0 → N → E be an injective
resolution and a coproper right Y-GI-resolution of N , resp. Then there exists a mor-
phism f : E → I. Define the Tate cohomology with respect toY-Gorenstein injective
modules as

̂Ext
n
YGI(M, N ) := H−n−1Hom (M,Cone( f )) .
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Proposition 4.5 Assume that R-module N has a coproper right Y-GI-resolution,
M is an arbitrary R-module. Then ̂Ext

n
YGI(M, N ) is well defined, and there exists

an Avramov-Martsinkovsky exact sequence

0 −→ Ext1YGI(M, N ) −→ Ext1R(M, N )

−→ ̂Ext
1
YGI(M, N ) −→ Ext2YGI (M, N ) −→ · · ·

−→ ExtiR(M, N ) −→ ̂Ext
i
YGI(M, N )

−→ Exti+1
YGI(M, N ) −→ Exti+1

R (M, N ) −→ · · · .

It is easy to get the balance of generalized Tate cohomology with respect to X -
Gorenstein projective and Y-Gorenstein injective modules holds when lY-GID(R) <

∞, lX -GPD(R) < ∞, and ⊥(Y-GI) = (X -GP)⊥. In addition, we discuss the long
exact sequences of Tate cohomology with respect to X -Gorenstein projective mod-
ules (resp., Y-Gorenstein injective modules) ̂ExtXGP (resp., ̂ExtYGI ).

Lemma 4.6 1. Let N = 0 → N
f→ N

′ g→ N
′′ → 0 be an X -GP-acyclic sequence

of R-modules. Then we have the following commutative diagram:

0 PN
α

s

PN ′
β

s′

PN ′′

s′′

0

0 GN
γ

t

GN ′ δ

t ′

GN ′′

t ′′

0

0 N
f

N
′ g

N
′′

0,

where the upper two rows are degreewise split exact sequences of complexes, PN
π→

N → 0, PN ′
π ′→ N

′ → 0 and PN ′′
π ′′→ N

′′ → 0 are projective resolutions of N , N
′

and N
′′
, resp., GN

t→ N → 0, GN ′
t ′→ N

′ → 0 and GN ′′
t ′′→ N

′′ → 0 are proper

left X -GP-resolutions of N , N
′

and N
′′

resp., and π = ts, π ′ = t ′s′, π
′′ = t ′′s′′.

2. Let M = 0 → M
f→ M

′ g→ M
′′ → 0 be a Y-GI-acyclic sequence of R-

modules. Then we have the following commutative diagram:

0 IM
α IM ′

β
IM ′′ 0

0 EM
γ

t

EM ′ δ

t ′

EM ′′

t ′′

0

0 M
f

s

M
′ g

s′

M
′′

s′′

0,
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where the upper two rows are degreewise split exact sequences of complexes, and 0 →
M

ε→ IM , 0 → M
′ ε′→ IM ′ and 0 → M

′′ ε′′→ IM ′′ are injective resolutions of M, M
′

and M
′′

resp., 0 → M
s→ EM , 0 → M

′ s′→ EM ′ and 0 → M
′′ s′′→ EM ′′ are coproper

right Y-GI-resolutions of M, M
′

and M
′′

resp., and ε = ts, ε′ = t ′s′, ε′′ = t ′′s′′.

Proof It is enough to prove (1). (2) is dually. Let PN
π→ N → 0 and PN ′′

π ′′→ N
′′ → 0

be projective resolutions of N and N
′′
resp., then we have the following commutative

diagram by Horseshoe Lemma:

0 PN
α

π

PN ′
β

π ′

PN ′′

π ′′

0

0 N
f

N
′ g

N
′′

0

0 0 0.

Set (PN ′ )i = (PN )i ⊕ (PN ′′ )i . Then π ′ : PN ′ → N
′ → 0 is a projective resolution

of N
′
.

Let GN
t→ N → 0 and GN ′′

t→ N
′′ → 0 be proper left X -GP-resolutions of N

and N
′′
, resp. Since N = 0 → N

f→ N
′ g→ N

′′ → 0 is X -GP-acyclic sequence
of R-modules, then we get the following commutative diagram by Horseshoe Lemma
similarly:

0 GN
γ

t

GN ′ δ

t ′

GN ′′

t ′′

0

0 N
f

N
′ g

N
′′

0

0 0 0.

Set (GN ′ )i = (GN )i ⊕ (GN ′′ )i . Then t ′ : GN ′ → N
′ → 0 is a proper left X -GP-

resolution of N
′
.

ForGN
t→ N → 0, since PN is dg projective, we have an epic quasi-isomorphism

HomR(PN ,GN )
HomR(P,t)

HomR(PN , N ) 0.

Hence, by [2, (1.1)], for π : PN → N , there exists s : PN → GN , such that π = ts.
Similarly for π ′ : PN ′ → N

′
, π ′′ : PN ′′ → N

′′
, there exists s′ : PN ′ → GN ′ and

s′′ : PN ′′ → GN ′′ resp., such that π ′ = t ′s′, π ′′ = t ′′s′′.
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Consider the following diagram:

0 PN
α

s

PN ′
β

s′

PN ′′

s′′

0

0 GN
γ

t

GN ′ δ

t ′

GN ′′

t ′′

0

0 N
f

N
′ g

N
′′

0

0 0 0.

Since t ′s′α = π ′α = f π = f ts = t ′γ s and t ′ is an epic morphism, so s′α = γ s.
Similarly, since t ′′s′′β = π ′′β = gπ ′ = gt ′s′ = t ′′δs′ and t ′′ are epic morphisms,
so s′′β = δs′, that is the above diagram is commutative. ��

Proposition 4.7 Let M be an R-module and N = 0 → N
f→ N

′ g→ N
′′ → 0 be

an X -GP-acyclic sequence of R-modules.
1. If M has a proper left X -GP-resolution, then there exists a natural mor-

phism ̂ϑn
XGP (M,N), such that the following sequence is exact.

· · · ̂ExtnXGP (M, N )
̂ExtnXGP (M, f )

̂ExtnXGP (M, N
′
)
̂ExtnXGP (M,g)

̂ExtnXGP (M, N
′′
)

̂ϑn
XGP (M,N)

̂Extn+1
XGP (M, N )

̂Extn+1
XGP (M, f )

̂Extn+1
XGP (M, N

′
)

̂Extn+1
XGP (M,g)

· · · .

2. If N , N
′
and N

′′
have proper left X -GP-resolutions, then there exists a natural

morphism ϑn
XGP (N, M), such that the following sequence is exact.

· · · ̂ExtnXGP (N
′′
, M)

̂ExtnXGP (g,M)
̂ExtnXGP (N

′
, M)

̂ExtnXGP ( f ,M)
̂ExtnXGP (N , M)

̂ϑn
XGP (N,M)

̂Extn+1
XGP (N

′′
, M)

̂Extn+1
XGP (g,M)

̂Extn+1
XGP (N

′
, M)

̂Extn+1
XGP ( f ,M)

· · · .

Proof 1. Let P → M → 0 and G → M → 0 be a projective resolution and a proper
left X -GP-resolution of M , resp. Then there exists a morphism f : P → G. For the
mapping cone Cone( f ), Cone( f )i = Gi ⊕ Pi−1 is X -Gorenstein projective. Since

the sequence of R-modules N = 0 → N
f→ N

′ g→ N
′′ → 0 is X -GP-acyclic, so

there is an exact sequence of complexes
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0 −→ HomR

(

Cone( f ), N
′′) −→ HomR

(

Cone( f ), N
′)

−→ HomR(Cone( f ), N ) −→ 0.

So the long exact sequence in (1) holds.
2. By Lemma 4.6 we get the following commutative diagram:

0 PN
α

s

PN ′
β

s′

PN ′′

s′′

0

0 GN
γ

t

GN ′ δ

t ′

GN ′′

t ′′

0

0 N
f

N
′ g

N
′′

0,

where PN
π→ N → 0, PN ′

π ′→ N
′ → 0 and PN ′′

π ′′→ N
′′ → 0 are projective

resolutions of N , N
′
and N

′′
resp., GN

t→ N → 0, GN ′
t ′→ N

′ → 0 and GN ′′
t ′′→

N
′′ → 0 are proper left X -GP-resolutions of N , N

′
and N

′′
, resp. Also the upper two

rows are degreewise split-exact sequences of complexes. Since α and γ are injective,

so

(

Σα 0
0 γ

)

: Cone(s) → Cone(s′) is injective. Similarly, since β, δ are epic, then
(

Σβ 0
0 δ

)

: Cone(s′) → Cone(s′′) is epic. Hence, we have degreewise split exact

sequence of complexes

0 Cone(s) Cone(s
′
) Cone(s

′′
) 0.

Applying HomR(−, M) to it, we get the exact sequence of complexes

0 → HomR(Cone(s′′), M) → HomR(Cone(s′), M) → HomR(Cone(s), M) → 0.

Hence, the long exact sequence in (2) holds. ��

Dually, we have

Proposition 4.8 Let M = 0 → M
f→ M

′ g→ M
′′ → 0 be a Y-GI-acyclic sequence

of R-modules, N be an arbitrary R-module.
1. If N has a proper right Y-GI-resolution, then there exists a natural mor-

phism ̂ϑn
YGI(M, N ), such that the following sequence is exact.
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· · · ̂ExtnYGI (M
′′
, N )

̂ExtnYGI (g,N )
̂ExtnYGI (M

′
, N )

̂ExtnYGI ( f ,N )
̂ExtnYGI (M, N )

̂ϑn
YGI (M,N )

̂Extn+1
YGI (M

′′
, N )

̂Extn+1
YGI (g,N )

̂Extn+1
YGI (M

′
, N )

̂Extn+1
YGI ( f ,N )

· · · .

2. If M, M
′
and M

′′
have proper rightY-GI-resolutions, then there exists a natural

morphism ̂ϑn
YGI(N ,M), such that the following sequence is exact.

· · · ̂ExtnYGI (N , M)
̂ExtnYGI (N , f )

̂ExtnYGI (N , M
′
)

̂ExtnYGI (N ,g)
̂ExtnYGI (N , M

′′
)

̂ϑn
YGI (N ,M)

̂Extn+1
YGI (N , M)

̂Extn+1
YGI (N , f )

̂Extn+1
YGI (N , M

′
)

̂Extn+1
YGI (N ,g)

· · · .

5 Applications

Example 5.1 Let R be a Noetherian ring. By [5, Lemma 2.1], G-gldim(R) ≤ n < ∞
if and only if R is a n-Gorenstein ring. Hence, Theorem 3.6 is the conclusion in [13]:
when R is a Gorenstein ring,D∗

GP (R) andD∗
GI(R) are triangle-equivalent, which are

called Gorenstein derived categories.

Example 5.2 Let R be a commutative coherent ring. By [4] and [21, Theorem 3.1],
G-wdim(R) ≤ G-gldim(R) ≤ n < ∞ if and only if R is a n-FC ring. Hence,
Theorem 3.6 is the conclusion in [24]: when R is a n-FC ring, D∗

DP (R) are D∗
DI(R)

are triangle-equivalent, which are called Ding derived categories.

Example 5.3 When ring R has finite global dimension, then Theorem 3.6 is the clas-
sical triangle-equivalence between injective derived categories and injective derived
categories, that is the classical derived category D(R), and GP = X -GP = P .
Hence, Gorenstein projective derived category and D∗

GP (R), X -Gorenstein projec-
tive derived category D∗

XGP (R) and derived category D∗(R) coincide.

Example 5.4 Let R be a ring with finite global Gorenstein AC-injective dimension and
global Gorenstein AC-projective dimension, also each absolutely clean R-module has
finite level dimension or each level R-module has finite absolutely clean dimension,
then for ∗ ∈ {blank,−,+, b}, D∗̃

C(R) and D∗̃
F (R) are are triangle-equivalent, where

˜C and ˜F denote the classes of Gorenstein AC-projective modules and injective
modules, resp. Other corresponding conclusions on morphisms and Generalized Tate
cohomology can be easily obtained. In fact, a ring R is called AC-Gorenstein if each
absolutely clean R-module has finite level dimension, equivalently, each level R-
module has finite absolutely clean dimension. (See [16, Definition 4.1]). By [16,
Theorems 6.2 and 7.1], ⊥(˜F) = (˜C)⊥ = ω, where ω denotes the class of modules of
finite level dimension, equivalently, of finite absolutely clean dimension.
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Remark 5.5 Recently, the authors in [3] generalize the all existing version of Goren-
stein modules. The discussions in current paper can be considered in this general
setting.
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