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Abstract
This paper deals with a Cauchy problem of the parabolic equations

ur = Au+ a1 (x)uP' + by (x)v?', v, = Av + ar(x)uP? + by(x)v#,
where the exponents p;, ¢; (i = 1, 2) are positive constants; the coefficients a; (x) ~
|x|% and b;(x) ~ |x|% as |x|] — +oo with the parameters «;, f; € R. For «;,
Bi > 0, we determine the exponent regions where all of the solutions blow up for any
nonnegative nontrivial initial data. For at least one negative parameter, we find different

conditions on global existence of solutions according to different classifications of
the parameters.
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1 Introduction

In this paper, we study a Cauchy problem of the parabolic equations with different
spatially dependent coefficients
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u; = Au+ a1 (X)uP' + by (x)v9!, (x,1) € RN x [0, T),
v, = Av 4 ar (X)uP? + by (x)v?2, (x,1) € RN x [0, T), (1.1)
u(x,0) = up(x), v(x,0)=vo(x), xeRY,

where the exponents p;, ¢; (i = 1,2) are positive constants; the coefficients
a;i(x), bij(x) = 0 are locally Holder-continuous satisfying that a; (x) ~ |x|* and
bi(x) ~ |x|% as |x| — oo for a;, Bi € R (i = 1,2); Initial data ug, vo = 0
are nonnegative bounded continuous functions. The uniqueness and local existence
of classical solutions can be obtained by the standard procedure in [14]. Nonlinear
parabolic equations coupled via nonlinear sources just as (1.1) are widely used in
chemical reactions, population dynamics, and heat transfer process, where the com-
ponents of the solutions represent the thickness of two kinds of chemical reactants,
the densities of two biological populations during a migration, and the temperature of
two different materials during a propagation (see, for example, [4,5,12]).

Itis well known that the Fujita blow-up exponent p, = 1+2/N isintroduced for the
Cauchy problem of u; = Au+u?.1If1 < p < p., any nonnegative nontrivial solutions
blow up in finite time. Pinsky studied the weighted equation u; = Au + a(x)u? with
a(x) ~ |x|* as |x| = 400 and obtained the Fujita exponent p, = 1 + 2 + «)/N
in [16]. Escobedo and Herrero studied the Fujita exponents of the problem (1.1) with
aj =b2 =0anda2 =b] = 1in[4].

Li, Sun and Zhang in [8] considered the Fujita exponent to the Cauchy problem of
the following reaction—diffusion equations:

ur=Au+vP, v, =Av+axu?, (x,1)e RN x[0,T), (1.2)

where a(x) ~ |x|™ as |x| - +ooand m € R. They proved that (i) if 0 < pg < 1 and
m > 0, all of the solutions are global; (ii) if pg > 1 andm > 0, there are no global solu-

m+2 m+2 m+2 m+2
. . 5= p+1 >=+q ey Ep+l e+
tions provided that max =T =T [ = N /2; (iii) if max —a=T =T

N/2 and m > 0, the problem (1.2) possesses both global and blow-up solutions.
For m < 0, some results on the global existence of solutions are proved under some
additional conditions.

Souplet and Tayachi in [15] discussed the following Cauchy problem:

<

U= Au+uP' + 0?2, v =Av+v”2 +u?, (x,1) e RN x (0, T), (1.3)

with constants p;, gi > 1 (i = 1,2). If py > q1 + 1 or p» > ¢» + 1, then there
exist initial data, such that non-simultaneous blow-up happens; If p; < g1 + 1 and
p2 < q2 + 1, then simultaneous blow-up occurs for every initial data. Rossi and
Souplet in [13] studied the parabolic equations (1.3) in a bounded domain, subject
to homogeneous Dirichlet boundary conditions. The coexistence of non-simultaneous
and simultaneous blow-up was first observed in the exponent region {p; > g1 +
1, p» > q>»+ 1}
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Liu and Lin discussed the Cauchy problem of the following parabolic equations in
[10]:

Uy = Au+ bX)u*vP, v, = Av+a@)ulv?, (x,1) e RN x[0,T), (1.4

where a(x) ~ |x|™ and b(x) ~ |x|* as |x|] — +oo for m,n > 0. Problem (1.4)
does not possess global solutions for nonnegative nontrivial initial data provided that
I-—a)(1—=8)<pg<(pgcorl <a<a.:=14+Q2+n)/Norl < <pf.:=
14+ (2 +m)/N, where

(PCI)C5:(1—O£)(1—ﬁ)-l—%max[p(%—i—l)

A= (500G 1) w31

If pg > (pq)c, @ > ac, and B > B, both global solutions and blow-up solutions
exist according to the choice of the initial data. Li and Sun in [7] studied a time-
weighted parabolic system, subject to null Dirichlet boundary conditions. The critical
Fujita exponents are prescribed by the weighted functions and the first eigenvalue
of Laplacian operator with zero Dirichlet boundary. Some related results can also be
found in the works [3,9,17-20] and [1,2,11] also.

It could be checked that the Fujita exponents in [10] are compatible with the ones
in [4,8,16] when the exponents and the parameters in (1.4) were taken of the special
values. Because of the different coupled relationship between (1.1) and (1.4), the
blow-up and global criteria on solutions in [10] are not applicable to the ones of (1.1).
The coupled parabolic equations in (1.1) are much more complicated than the ones in
(1.2). There are also many classifications for the parameters of coefficients. It could be
imagined that the singular phenomena of solutions are much more complicated than the
ones in [8]. Inspired by the works [7,8,10], we want to determine the exponent regions
where any nonnegative solutions blow up in finite time for any nontrivial nonnegative
initial data. Moreover, we want to discuss the influence of the four parameters in the
coefficients and show the quantitative conditions on the global existence of solution.

This paper is arranged as follows. In the next section, the main results are given
with respect to different cases (Theorems 2.1-2.6). The proof of the theorems can be
found in Sects. 3, 4, and 5, respectively. At the last section, we show the conclusion.

2 Main Results

If p1, g2, p2q1 < 1, the problem (1.1) turns into the subcritical one, where
all of the nonnegative solutions are global for any nonnegative initial data. If
max{p1, q2, p2q1} > 1, there exist blow-up solutions for large initial data (see, e.g.,
[6]). For convenience, we give three notations

o]

2 2
(pl)c:=1+maX{ ,O}, (qz)c:=1+maX{ J;Vﬁz,o},
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2 Bi a as Bi
(qul)c¢=1+NmaX{pz<7+l)+7+l,q1(7+1)+7+1,0}.

Let ¢1, ¢2 > 0 be two constants satisfying that

ElxlY < ai(x) < élxl%, x| < bix) < élxlPi forlarge |x], i = 1,2.
2.1

Theorem 2.1 Let «ay, aa, By, and B be positive. There are no global solutions of (1.1)
for any nonnegative nontrivial initial data provided that

1 < p2g1 < (p2q1)e, or 1 <p1 <(p)e, or 1<q2=<(q2)e.

The blow-up criteria in Theorem 2.1 are compatible with the ones in [4,8,16]. The
results of Theorem 2.1 and the ones in [8,10] show that the coefficients of the sources
play an important role in distinguishing global solutions from blow-up solutions.
Positive parameters of the coefficients are helpful for the existence of blow-up solutions
when |x| is large enough, while negative parameters are good for global existence of
solutions.

If the exponents satisfy that

p2q1 > (P2q91)e, 1> (P1)e, and g2 > (q2)c, (2.2)

there are blow-up solutions for large initial data (see [6]). We care about the different
quantitative conditions on the global existence of solutions according to different
classifications of o1, oz, B1, and B>. The assumption (2.2) is necessary in the following
theorems.

The first result is given for the positive parameters o, oz, B1, and S>.

Theorem 2.2 Let (2.2) be in force. Assume the initial data satisfy
uo(y) =81G(k,0,y), vo(y) =8G(k,O0,y), (2.3)

for any k > 0 and some constants 81,82 > 0. There exist global solutions of (1.1)
provided that positive parameters Bz, o1, B1, and ay satisfy that

B2 > qIN, (2.4)
@i > paN, 2.5)
(g2 — DEy <min{l, N(g2 —1)/2 — 1= B2/2}, (2.6)
(p1 — DE, <min{l, N(p1 — 1)/2 =1 —0a1/2}, (2.7)
AL @ @ AL
where E, := % _ GADpt g4l +;2)5]2j12 . and E, = % — Gt Dot ] 212);111:2 .

It can be checked that the conditions (2.4-2.7) in Theorem 2.2 are easy to meet. In
fact, (2.2) deduces that p; > 1 and g > 1; At first, we easily choose 8> and o1, such
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that (2.4-2.5) hold for any N > 1. Then, one could choose suitable 8 and «>, such
that (2.6-2.7) hold.

The following four results of (1.1) are given, containing at least one negative param-
eter in the coefficients.

Theorem 2.3 Let only one of the parameters a1, aa, B1, and By be negative and (2.2)
be in force. Assume the initial data satisfy (2.3).

(1) a1 < 0. If the positive parameters B, oo, and By satisfy

24 o
(p1—DE, <

for p1 —1> p, (2.8)

(2.4) and (2.6), then system (1.1) has global solutions.
(ii) B2 < 0. If the positive parameters a1, oy, and B satisfy

24 B2
(q2_1)Ev§ ﬁ

forqx — 1> qi, 2.9)

(2.5) and (2.7), then system (1.1) has global solutions.

(i) ar < 0 or By < 0. If the positive parameters B, o1, and By, or Bz, a1, and
o, respectively, satisfy (2.4-2.7) for g — 1 > q1, then system (1.1) has global
solutions.

Theorem 2.4 Let two of the parameters a1, an, By, and By be negative and (2.2) be in
force. Assume the initial data satisfy (2.3).

1) B1, B2 < 0 or ar, Bo < O. If positive parameters o1 and o, or oy and By,
respectively, satisfy (2.5), (2.7) and (2.9) for go — 1 > q1, then system (1.1) has
global solutions.

(1) a1, oo < 0 or a1, B1 < 0. If positive parameters By and By, or B> and oy,
respectively, satisfy (2.4), (2.6) and (2.8) for p1 — 1 > pa, then system (1.1) has
global solutions.

(i) aq, B2 < 0 or as, B1 < 0. If (2.4-2.7) are true, then system (1.1) has global
solutions.

Theorem 2.5 Let three of the parameters ay, az, B1, and By be negative and (2.2) be
in force. Assume the initial data satisfy (2.3).

(1) ay, a2, B1 < 0. If (2.4), (2.6) and (2.8) are true and p; — 1 > pj, then system
(1.1) has global solutions.
(i) a2, B1, B2 < 0.If(2.5), (2.7) and (2.9) are true and g» — 1 > q1, then system (1.1)
has global solutions.
(i) ayq, oz, B2 < 0 or ay, By, B2 < 0. If the parameter B or oy, respectively, satisfies
(2.8-2.9)and g> — 1 > q1 and p1 —1 > pa, then system (1.1) has global solutions.

Theorem 2.6 Let all of the parameters a1, aa, B1 and B> be negative and (2.2) be in
force. Assume the initial data satisfy (2.3). If (2.8-2.9) are true and q» — 1 > g1 and
p1 — 1 > po, then system (1.1) has global solutions.
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3 Proof of Theorem 2.1

Before the proof of Theorem 2.1, we give five lemmas. Denote u(¢) := u(x, t) and
lx—y[2

l
v(t) := v(x,t) for simplicity. Let G(¢, x, y) = me_ 4~ be the fundamental

solution of the heat equation in R" and

(S(Owo)(x) = /R Gx o)y,

The first three lemmas are just [8, Lemmas 4.1-4.3], respectively. For completeness,
we introduce the three results here.

Lemma3.1 For any m > 0 and t > 0, the function H(x) = f G(t,x,y)(1 +
RN

|[yD™dy attains its minimum at x = 0. m]

Lemma3.2 Forany B > 1, m > 0, and k = 1,2, ..., there is a constant C1 > 0
independent of k, such that

n A\ n
(/ G(t,O,y)(1+|)’|)f‘kdy) > Cit2 fort=0.
RN

Moreover, the same result holds form < 0 and t > 1. O

Lemma 3.3 Foranyk > 0 and m > 0, there is a constant Co > 0 independent of k,
such that

G

1
k m
rfrd —r)lz2dr > ——.
/0 (k+%2+12 !

O

The following three estimates are inspired by the [8, Lemmas 4.4, 4.7, and 4.8],
respectively. Since the coupled relationship in (1.4) is much complicated than the main
system in [8], similarly to them, we show the proof of the following three lemmas for
completeness.

Lemma 3.4 Let (u(t), v(t)) be a global solution of (1.1) with p» > 1, q1 > 1, and
p2q1 > 1. Then, there exists a positive constant C = C(p2, q1, &2, B1), such that for
anyt >0

(% +1q + 5L +1 B npr+ %41

t natt S(Dupllee =€, 1 207 IS(Dvolleo = C.

Proof Considering that

t t
u(t) = St)ug + / St — s)ajuP' (s)ds + / S — s)bjv? (s)ds,
0 0 G.1)

t
v(t) = S(t)vy —l—/ S(t — s)aruP?(s)ds —l—/ S(t — s)byv?2(s)ds,
0 0

t
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and by (3.1), we have

u(t) = St)up, v(t) = S(t)vo, (3.2)
t

t
u(t) > / S(t —s)biv? (s)ds, v(t) > / S(t — s)auP?(s)ds. 3.3)
0 0

Using (3.2) and (3.3), we obtain u(x, t) > by (x)t(S(t)vo(x))?" and

t
v(t) 2/ S(t — $)auP?(s)ds
1 P241
> f o ( / / Gt — 5.5 ) a (3)G(s, v, )b (y)vo(z)dzdy) ds
RN JRN

Ny ey 1’2141
> s"2 471([ -] b (4mws)"2e W & a,
RN

1 P29q1
(Y)blql(y)vo(z)dzdy} ds.

It can be checked that

ly—xP? lz—yP? _ sx 4 (t=9)z>  |Jx—z?

_4(t—s) 4 __4s(t—s) ‘y— t 4t

Then, by (2.1) and Lemma 3.2, one can obtain that az (x) > ¢1(1+|x[)*? and by (x) >
c1(1 + |x|)# for large |x|, and hence

1y? x—z|2
v(t)>/ sP? {/ / [471(t—s)]_*(471s) Te iy~

a+prB1 291
er(1+ [y i vo(z)dzdy} ds

» (t _ S) P24q1
z/ s [//R ( >c1<1+|y|) i dyGr, x, Z)vo(z)dZ] ds
R N

a+prfi

Z/ sP2e1Cq |:(l ZS)S] ’ ds(S(t)vg)P? 1",
0

where C| is given in Lemma 3.2. Using Lemma 3.3, we let s = rt and obtain

+p2B
2 +pb az+;2ﬁ1 +patl

/’ o |:s(t—s)] 2 ds> Cat
0 t

(0{2+§72ﬁl + o+ 1)

@0+ :
2t 4y
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1
In fact, in Lemma 3.3, / rk[r(l —r)]2dr is bounded if k < 0 or m < 0. Here, we

0
solve the case for p» > 0. Then, we have

C1C1C2t( +1)p2+ B+

[(4+1)m+%+1]

a B
c1C1C2;(72+1)‘11+71+1 (S()ug)P2n

. (S@yvo)»24!

a+p2Bi ’
2320 4

similarly, u(f) > eI 3.4
(g +Da+8+1] °
where C; and ¢ are two positive constants.
Substituting (3.4) into (3.1), we have
t
v(t) > / S(t — s)auP?(s)ds
0
P2
f ¢1C1Cps(F D0+ 41 (5(5)ug) 2
Z/ S(t _S)aZ T B
0 . b oA L
[(%+ 1)+ 5 +1]
_ (c1C1Cr)P? f’ St — s)azs[(a%+1)ql+ﬂ71+l]m
©+rb 1) p, Jo
[+ 1) g1+ +1]
(S(s)uo)pZ‘“ds.

In fact, by Lemma 3.2, we have

t
/ S(t — $)an (S(s)up)"29 ds
0

P3qi
/ (/ | Gasx P ()G, Z)uo(z)dzdy> ds
RN JRN
P Paqi
/ {/ f [4r(t—s)]~ 2(4715) 26 Tas(t=s) 4? Zl(y)uo(z)dzdy} ds
RN

( S)S @ p%ql
z/ [/ G( 0, )<1+|y|)P2‘H S(t)uo] ds
0 LJRN t

t . o)
> / ¢ [“ ts)sr (S(t)up)P341 ds.
0
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By Lemma 3.3, we have

! 7} B
/ St — s)azs[( F )i+ -H]pz (S(s)ug)P2 %' ds
0

1 o 8
= ./ S (1 — S)azs[(%ﬂ)qﬁ%“]m(S(s)uo)f’%q'ds
0

/ C [(t —tS)S:| 7 (S(s)uo)p%qls[( +1)Q1+ﬂ| +1]p2ds
0

@ AL a 1

. Clt[( 2+ )+ +1]pa+ B4+ / .
0

[(%+1)a1+8+1]p+ G +1

[(“2 +1)g1+ 4 +1]p2 [r(1 — r)]%zdr(S(f)"O)p%ql

(S(t)ug)P2
2+1

C1Cot
>

{[(“2+1)q1+’3‘ +1]p2+“2+1}

For convenience, we denote E := (% + 1)q1 + 5 ’31 +1,F = (’81 +Dpa+F +1
Therefore, we have

(c1C1C) P EPEFHL (S (1) ug)P3e:

ar+pyf o ’
E( 242 L+1)p2(Ep2 4 % + 1)72+1

v(r) =

B1 2
(c1C1Co) N FN+ 2 FL(§ (1) vg)P24i
p(e2)

similarly, u(t) > p .
"(Fq+ 8+

Using Lemmas 3.2 and 3.3, we obtain
t B
f S(t — s)aps T+ +Dr2 g
0

)
> CICI/ (Fqi+5-+1)pa [Q] ’ ds
0

1

AL 9] AL 53

=c;CitFat7z +hprt s+l / rFat2 001 — )7 dr
0

B 7}
¢1CCatFat7 +Dprt 5 +1 _ ¢1C1Cat Fma1+F

= ©_ = “_1"
[(Fai+ 8 +Dpr+ 2+ 1171 7 (Fpagi + F)7 !
Therefore, there is

D2
B
(€1C1Co)N T sFat 3+ (§(s)vg) P20

t
v(t) 2/ St — s)ap ds
0 1

AL

Bitaie
p(P3 o (Fq1 +8 4+ 1) ’

@ Springer



1060 Bulletin of the Iranian Mathematical Society (2022) 48:1051-1074

(C]C1C2)(ql+l)p2

p(PH3 ) (Far+ 4+ 1)@“)')2

t
X/ St —S)azs(Fq1+ﬁTl+l)p2(S(S)Uo)(pqu)zds
0

(c1Cy Cz)(pqu+1)tFP2q|+F(S(t)v0)(p2q1)2

F<ﬁ1+g|az+]

v

B1 1 P2 « ’
)pz‘“ (Fen + —'621 + 1)( ’ ) (Fpaq1 + F) £+
Using the induction process, we have

(ra*-1 (rgF-1

V(t) = (c1C1Cy) 7291 AgBet P (S(t)vg) P20, 3.5)

where constants

+5+1
p2q1 — 1 2

k=1 ' - ﬁ+l)(p2q1)k’ipz
Bt k—1 [ ( 2
Ap: = F_( 1+ 2+1>(P2q1) 1—[ |:F 1(1726]1) 1 B i| ’
i=1
k-1 i —(B+1)(p2g)*
%) k-2 —1
By : = (Fpagi + F)~(F+0@2a) 2 T [%}
L opa—1

Then by (3.5), we have

B R (T |
t[( 2+ )P2+ 7+ ] a1~ )t (§(t)vg)

a)* =11 1 R 1
- =1 13 (p2a)¥ (p2a)k (r2aDk
< (c1C1Cy) PPN (et Ay B, vl -

1
It can be found out that (A;By) 290" has a finite limit as k — oo. Thus, for some
constant C > O and any ¢ € [0, T)

<57|+|)p2+g%+1
t rath o IS(H)volleo = € < +00.

Then, we treat (u(t + ), v(t + 7)) for ¢, T > 0 as the solution of (1.1) with the initial
value (u(t), v(r)). Replace (ug, vg) by (u(r), v(r)) and those estimates hold also.
Setting t = 7, one can obtain the conclusion. The proof for u(¢) is similar. O

Lemma 3.5 Assume the global solution (u, v) of (1.1) satisfies that

_? _?
u(x,t) > cotl‘e T, v(x,t) > cotlze T, t>1>0, x¢€ RN, 3.6)
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where ty, co > 0, and l] € [-N/2,00), I € [-N/2, 00). Then, for a;(x) ~ |x|%,
bi(x) ~ |x|Pi, i = 1,2, as |x| — oo, there exist positive constants c, t1, such that for
t>1n

x|

t 1+qllz+* -5 ; B _N
| s = spunas = AR A R
0 ct’flog(1+t)e_17, ifl—l—qllz—i-% =—%;
(3.7)
t 1+pal +% _k? Qo _N
/ St — s)auP*(s)ds > <t N e i F A+ pali+ 3 2’
0 ct=% log(1 + 0)e™ "1, if 1+ paly +%2=-7
(3.8)

Proof 1t follows from (3.3) and (3.6) that:

M(f)>c /f [4m(t —5)]™ e 4(’XY>b1(y)sqllze dyds t> 1.

Here
b= o qpreal?
e 4=y s =g HGNE-9) e s s
and for s € [0, %]
2
qir(s,t) -, r(s,t) 2 |x]
- lx]” — [x|* > ——,
2(t —s) t
where r (s, t) = m. Then

q1res t)II

t
u(t) = cg' / / G@r(s,t)(t —s),r(s,t)x, y)e bl(y)sq‘lzr 2 (s, t)dyds

N ris,t)(—s D 2 rGs) 2
> ¢l / / 277G < (s, 1) ),O,y)e s T =gy
0
RN 2

by (y)sq'12r7 (s, t)dyds

! (1 — x|
zcg'z—%ff G (T8 DU o 0 e by (s ¥ (s, 1)dyds.
10 RN 2

For t > 21y, we obtain
t
f S — s)biv? (s)ds
0

>Cq12_ﬂ _ﬁ/‘ / (V(S H( —s) 7y) bl(y)sq]lzr%(s,t)dyds.
RN
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A simple calculation reveals, for sufficiently large k > 0,ift > 2k andk < s <t —k,
then r(s, t)(t —s)/2 > 1. Without loss of generality, we take k > ty and r; = s/¢. By
[8, Lemma 2.2], we have

o mz !
(t—s)zsq”r =

N+B)
c1c012 _7/ (t—tr1)2 (tr)M2r =2 1dry

u(t)

v

Clc

v

N+By

= ci¢ = M / (t —try) £ (tr) 2 [ nt :| ’ tdr
: VO i  Agi =) :

1 q112+‘TN 1
_ N+p M B (2 r 1—r)?2
- clcglz T e tltnhts . 1 ( i,Hﬂ r, t>2k.
T [ +4q1(1 —r1)]
3.9
By (3.9), one could find positive constants ¢, and 7, such that
' it -2
St — s)biv?(s)ds > cpt T2 > 1.
0

This shows the firstinequality in (3.7).Ifl+qllz+% = —%,thenqllz+%+% =1,
and the integral of (3.7) is on log ¢ for large ¢. Thus

! 2
/ S — s)b1v? (s)ds > ct*% log(1 + t)ef%, t=1.
0

This finishes the proof of (3.7). Similarly, we have (3.8). O

Lemma 3.6 Assume that poq1 > 1 and (u(t), v(t)) be a global solution of (1.1).

B
o e (BFHDa+E 1
@ If p2q1—1

_k2
u(x,t) > Ct"e™ i fort>t,,x € RY;

@ B
2 1 Dg+5 1 . o
If % = %, then there exist positive constants t1, C, suchthatu(x,t) >

> % then there exist positive constants ry, t.,, and C, such that

Ix[?
Ct_% log(l +1t)e”  fort >1t, x € RV,
(i) If(%+1)p2+“72+1

P2q1—1
r —ﬁ N
v(x t) > Ct2e” 1t fort >t,, x € R";

¢! F+Dpot+ 2 +1
I P2g1—1

XZ
ci—% log(1 + t)e_% fort > 1), x € RN,

> % then there exist positive constants ry, t,,, and C, such that

= %, then there exist positive constants tr, C, such thatv(x, t) >
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Proof By (3.1), we have
t
u(t) > S(uog +/ S(t — s)b1v? (s)ds, (3.10)
0
t
v(t) > S(t)vy +/ S(t — s)auP?(s)ds. (3.11)
0

Using (3.11) and (3.10), we obtain

t s q1
u(t) > Sug +f S(t —s)by [/ l S(s1 — s2)auf? (sz)dsz} dsy.
0 0

We have u(t) > uo(x,t) + ui(x, t). Define
t S1 q1
u(t) :=/ St —s1)by |:/ S(s1 — s2)a2up2(s2)ds2] ds;. (3.12)
0 0

Letly =1 = —%. By [8, Lemma 2.2], substituting (3.8) into (3.12), we obtain

! =Y pyt g L2
ui(r) > / / G(t —s1,x, y)b1(y)(cs, 2 Ze 2)?'dyds
0 JRN

2
> (B D)ot e -5 ma B

il ) ) N 2
1mmi 5+l ++4+1-5 _lxl
similarly, v (1) = Cl;( 2 P23 224 - B

El

where constant C; > 0. Let

t N q1
ur(t) := / St —s1)by |:/ 1 S(s1 — sz)agufz(sz)ds2:| dsy.
0 0

We have
' [(1+"72)q1+1+%1—%pzq1]pz+1+%2 _e2 |
us(t) > G(t —s1,x, y)bi1(y) ycs; e % dyds;
0 JRN
o B o B 2
- Czt{[(1+72)q1+1+7'7¥p2q1]p2+1+72}q1+1+7‘e,¢

[+ )qr+14 3 J o2+ D= (2?2

= (Cat

By induction, we have

q1

t S1
ug(t) =/0 St —spbi (/0 S(s1 — Sz)azu,le(SﬁdSz) ds;

[(r2a)f-1]

o 1 N k 2
[(1+7)ql+1+7] T 2 () B

= Cyt
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Then, there exist positive constants Cy, #, such that

_N k x\z
> (P2q1) o

k
o ot
u(x,t) > Crup(x,t) > Ckat[(1+ 7)a+l+ ] P2d1—1

t>tn, xRV,

’

¢ Ftha G4

Since prq1 > 1, we obtain that, i > %, there exists a constant K > 0,

-
such that 2
[(E+D)a+8+1][an =11 y
r = — = (p2gq1)” >0,
p2gi — 1 2

B2 (RDg+ 5+
> ro,—" 2 2
and u(x,t) > Ct'le ] If =T
x|

Ct_% log(1 + t)e_| . Similarly, the case (ii) of Lemma 3.6 is proved. m]

= %, by Lemma 3.5, we have u(x,t) >

Inspired by the proof of [10, Theorem 1.1(i)], we show the proof of Theorem 2.1 of
the present paper.

Proof of Theorem 2.1 We only prove 1 < p2q1 < (pa2gi)c. Assume for some
(1o, vo) # (0,0), system (1.1) has a solution which is bounded in any Sy =

N o (F+Dqi++1
[0,T) x R". By Lemma 3.6, if +——*—

' S p2q1—1
exist constants #1, C > 0 satisfying that

= % and p>qi > 1, then there

v2
S(u(t) > f G(t,x, y)Ct~ log(1 + e~ "1 dy
RN
_N _ﬁ N
>Ct 2log(l+t)e” 1, t>1t, x €R".
Thus, for some 7 > 0

(0’72+1)q1+ﬁ7'+1 B

i BT S(u() = Clog(1+ e 1, t>1, x € RV,

and these imply the left-hand side comes to infinite at point x = 0 as t — —+o0,
(Z+Dg1+5+1

a contradiction to Lemma 3.4. If —
p2q1

constants #;, C > 0, such that

> % and prq; > 1, there exist

Iy 1x?
S(Ou(r) z/ G(t,x,y)Ct" e~ T dy>Ct"e™ ", t>t,, x€RV.
RN

Similarly, one could obtain a contradiction also at point x = 0 as ¢t — +o00. The proof
for v(t) is similar. O
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4 Proof of Theorem 2.2

The proof is inspired and similar to the part (I) in the proof of [8, Theorem 1.2(b) and
Theorem 1.3].

Proof of Theorem 2.2 Define ug(x, t) = S(t)ug, vo(x, 1) = S(t)vo, and

t t
un+1(x,t)=u0(x,t)+/ S(t—s)alu,’;'(s)ds—i-/ S(t —s)biv(s)ds, (4.1)
0 0

t

t
Vpa1(x, 1) = vo(x, 1) +/ St — )asul?*(s)ds +/ St — )byvP (s)ds. (4.2)
0 0

By induction, u,4+1(x,1) > wu,(x,t) and v,1(x,t) > v,(x,1). If u(x,t) =
lim u,(x,t) < oo and v(x,1) = lim v,(x,7) < oo forx € RY, ¢t € [0, 00),
n— o0 n— oo

then by(4.1-4.2), (u, v) satisfies (3.1). Hence, (u, v) is global. Thus, it suffices to
prove that if
uo(y) <81G(k,0,y), wvo(y) <8G(k,0,y),

for any £ > 0 and some &1, 62 > 0, then

supu,(x,t) < oo supv,(x,t) <oo for x € Ry, t > 0.
n n

Consider

(4.3)

up(x, 1) < ci(k + HEG@mu(t + k), 0, x) for x € Ry, 1 >0,
va(x, 1) < calk + )G, (t + k),0,x) for x € Ry, t >0,

where ¢, ¢ > 0 and

g, if (6, N) € {(—1, 400) x [1, 400)} U (=2, —1] x [2, +00)},

w(e, N) = —%, (e, N) € [=2, —1) x {1},
S8 e N) = (1)) x (1) U ((-2) x [2, ool

with e € {o;, Bi, i = 1,2} and small § > 0. Forn =0, 1, 2, ...

l+p2 1+qi+paq 1+ p2+ prgi + p3qi

my, =1, 5
P2 241 P5q1
L _ . a T+t pa 1+ g1 + pagi + p2g?
T g pa1 P24 o
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thatis, fork =0, 1, 2, ...

1+ g1 — (P29 — q1(p2g))* =k
I (1 = p2g1) (p2g1 )" ’ ’
" (14 p2) [1 = (p2gD)*
T , n=2k+1;
(I = p2g)py" 45
1+ p2 — (p2g)* ! = pa(pag))* 0= 2k
L= (1— pqu)(p%q{)k ' ’
" (1+q1) [1 = (p2gD* ]
pEa— n=2k+1.
(I = p2g1)q; " py

One could see m”q—fq‘ =1L, l";:—z”z = mpy1, and {m,}, {I,} are increasing with
. P291 + q1 . P2q1 + p2
lim m, = ———, lim [, = ————=.
n—00 pqr — 1 n—ooo p2q1 — 1

Here, we only prove (4.3). First

up(x,t) = S(ug < & / G(t,x,y)G(k,0,y)dy <81k + t)E“G(mn(t + k), 0, x),
RN

vo(x,1) = S < 82/ G(t,x, )Gk, 0, y)dy < 8(k + )G (1, (t + k), 0, x).
RN

Assume that

up(x,t) <cik+ t)E“G(mn(t +k),0,x) for x € RN, t>0, “4.4)
vn(x, 1) < calk + )G, (t +k),0,x) for x e RV, t > 0. 4.5)

By (4.4) and (4.2), we see by [8, (2.1)] that

t
U1 (1) < vo(x. 1) + / St = $)azel? (k + $)P 0 GP2 (myy s + k), 0, x)ds
0
t
+/ St — $)brcP (k + 5)2F G2 (U, (s + k), 0, x)ds
0

t
< vo<x,z>+clf Pk + )BT A=p)
0

G (mn(s +k) + palt —s),O’ x)
P2

x/ ()G( (t —s)mu(s +k) mp (s + k) )d d
RNazy mn(s+k)+p2(t—s)’y’m,,(s+k)+p2(t—s)x yes

o /r 2 (k + syE+ (-0 (ln(s +k) +qa(t —5) 0. x)
0 q2

(t = $)ln(s + k) In(s + k)
. (4.
X/RNbZ(y)G(l,,(s—i—k)—i—qg(t—s)’y’ ln(s-}—k)—{—qz(t—s)x)dyds (4.6)
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We study the case oz, B2 > 0. By [8, Lemma 5.1], we have

/' ()G< (t — s)mp(s + k) my (s + k) >d
e 2T G 0+ =) s 10+ palt—s)

5C’{1+[ (¢ = $)mals +£) ]22+[ Mnls + £) ]azlxl‘”},
my (s + k) + pa(t — ) my (s + k) + pa(t — )

(t = $)lns +K) (s +K)
/RN )G (zn(s 0+ a2 —5) " G A0 + ol — s)x> dy

<C

_ 2 B2
: 1+[ (t = )ln(s +K) }+[ In(s +K) } e
In(s +5) +g2(t = s) In(s +K) + q2(r = 5)

Then

! k r—
er»l(x7 1) = volx, 1) + C; / sz(k +S)P2E"+%(l_p2)G (mn(s + )+p2( S)’ 0. x)
0

P2

% o
X 1+[ (= S)ma(s + k) ]2 +|: mals + 0 ]ZIXIO‘2 ds
my(s + k) + pa(t — ) my (s + k) + pa(t —s)

t
+c2/ L (k+5)REBTT0-0)G (l”(Hk)’qu(’_s),o, x>
0 q2

x{l+|: (@ = (s + 1) ]2+|: Inls +£) ]lelﬁz}ds.
Li(s + k) 4+ q2(t — 5) Li(s + k) +qa(t — )

Let

t
Ji = / (k _i_s)PzEqu%(lfpz)G (mn(s +RO+pal - s),O, x) ds,
0 P2

t
J2 = / (k —+ S)P2E14+%(17P2)G <mn(s + k) + pZ(t - S) , O, )C)
0 P2

[ (t — $)m(s + k) Tzzds
mu(s + k) + pa(t —s) '

t
B = / (k +5)PEt30-m)G (m”(s 0T Pl x)
0

P2
TN SN
my(s + k) + p2(t —s)

t —
Jy = / (k—i—s)qu”*%(]”mG <l”(s+k)+qZ(t S),O,x> ds,
0 92

t
Js = / (k _i_s)ququ%(l*qz)G <ln(s + k) + g2t — S),O,x)
0 q2
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[ (t = ),y (s + k) ]@zd
LG+ +qi—s]

'
Jo = / (k +s)‘12Ev+%(1—q2)G (l,,(s + k) +qa(t — S),O,x>
0

q2
I, k B2
|: (s +4) ] |x|52ds.
In(s + k) + q2(t — )

Then

Vpt1(x, 1) Svo(x, ) +C(J1+ o+ T3+ Ja+ J5s + Js)

with C := max{c>Cy, ¢ C,}. Since ”’"(”")lj;"z("” < MR (1) = by (£ 4K,
one has

N _ x|
G(mn<s+k)+pz(t—s>7o,x> B [4nmn(s+k>+p2(t—s)] T i
P2 P2
<c[ 1+k ]gc(z (t +4),0,x)
- my(s + k) + pa(t —5) il T
As for Ji, we have
Ji < c/[(k+s)P2Eu+”z“<1—P2)[ r+k }g G (g1 (t 4+ k), 0, x)ds
— n ) £
0 mp(s + k) + p2(t — s)
N
! a t+k z
= CG(ysi(t +K),0, x / k—i—sE“2l[ }
(s (¢ +1).0.5) | Gk +5) G+ =)
In view of £, > 0, we obtain
N
Ji=Ck+0PGlyy1(t + k), 0, x) I ! [ 1k ]Tds
b m o k) F A Lmals k) + pat —s) '

Letr = s/t. We have

S

! 1 [ t+k ]
/ = ds
0 (k+s)2tt Lmn(s +k)+ pa(t — )

N
2

tdr.

[ amz et e =)
o kg FH LmaGt + )+ pat =)

Moreover

t+k 1
— — ast— 0,
m,(rt + k) + pa(t —rt) my
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t+k 1

e d as t — oQ.
mu(rt +k) + p2(t —rt) p2— (p2 — my)r

RO gnd p = P2 o ] 1+k

p2q1—1 p2—mn > my (rlt+k)+172(f—”)

Since 1 < m, < is bounded. By

1
% > 0,wehave émztis integrable in [0, 1] and / —————;—tdrisbounded
(k+rry 2 H! 0 (k+rr)zt!

in [0, 00). Hence, J; < C(k + )5 G (L1 (t + k), 0, x).

The estimate for J, is similar to the one for J; as J, < C(k + t)E”G(ln+1(t +
k), 0, x). We omit the detail here.

As for J3, we have

t
J3 < CGlnyt1(t +K), 0, %) / (k + 5)P2Eut 3 (1=p2) [
0

t+k 7 Ix[?
x[ + i| e Rix|*24s.
mn(s + k) + p2(t — 5)

my (s + k) :|a2
mp(s + k) + pa(t — )

=

Here

R— Myt + pok — (p2 — my)s
 [ma(s + k) + pat — $)my + p2) (¢ + )]

_nbp 2
Asfore™ 4 T|x|%2, let z = |x|* and

polxl? _ PRz
TR = e 2] T

f@) =€

aQ

. . . . . )
£f(z) shows its maximum at 7 = ;;L}‘, and its maximum is e~ 2 13;%) 2. Then

t
J3 S CG(ln+1([ +k)’ O’x)f (k +S)Ev—l
0

S

@ Ny
X[ stk ]2[ t+k }2 d
s.
my(s + k) + pat —s) my (s + k) + pa(t — )
Similarly to the proof of J; and J,, one could find a constant C > 0, such that
J3 < Clk+0EGlyy1(t + k), 0, x).

Since the proofs for J4, J5, and Jg are all very similar, we only prove J5 here. In the

(mmMp%w%ﬂ&>mNmMM@—D<qu%@y%%%—%}m

obtain g £y + %(1 —q)+6 < E,and 6 > % + 1, where 6 is a constant. Therefore,

we have

t
1
Js < Clk+ D5 Glly1 (1 +5),0,%) | ————-[4nlyr1 (1 + k)]
0 (k+s5)?7"7

N
2
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N 5
« |:47_[ In(s + k) + q2(t — S)j| 2 e_%|:ln(s+k)‘fq2(t—s)_ln+ll(t+k)j|

q2
B

|: t—s :|2ds
(s +k)+ g2t —5) '

B x4 P
Since nGTh+art=s) _ lhtq (t + k), we have ¢~ TnGHOTRT < ¢~ it | Let
q2 - -

R 92 _ 1
(Un+ g +5) L1t +k)

Invirtueof g2 > (¢2). and 2J1r\,ﬁ2 > q1,onecould findthatl,, > I, = I—Fql1 > 1+

Hence, R > 0 and

1
@1

d 1

Js = Clk+ D" Glys1(t +5),0,%) | ——
0 (k+s5)7"7

X[ st (t + K)o ][ s fds
In(s + k) + g2t —5) In(s + k) + g2t —5) '

Letr = s/t. We have

B2

/f 1 [ Lis1(t +k)qn }2[ t—s ]zds
0 (k+s)9f%2 In(s +k) +q2(t —5) In(s + k) + q2(t — 5)

|=

B2

/1 1 [ Lis1(t +K)qa ]2 [ t—rt }2“1
— r.
0 (k+rt)9‘ﬁ72 Ly(rt + k) + qa2(t — rt) Ly(rt + k) + qa2(t — rt)

Moreover
I t+k l
n+1(t +k)g2 o e o 0.
Ly(rt +k) + g2(t — rt) I,
In+1(t +K)q2 ln+192
— as t — o0.
Ln(rt +k) +qat —rt) g2 — (g2 —l)r
Since 1 < [, < %fff and r = qzq_zln > 1, there is a contradiction here with
premise r € (0, 1), and hence, the function W% is bounded. Similarly,
WM is also bounded. In virtue of 6 — % > 1, we know that 197 !
(k+r)? ™2
! 1
is integrable in [0, 1] and / —ﬁztdr is bounded in [0, c0). Then, there
0 (k+rt)f=7

exists some positive constant C, such that J5 < C(k + t)E”G(ln+1(t + k), 0, x).
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Consequently, we obtain

A

Va1 (x, 1) < vo(x, 1) + C(Jy + Jo + J3 + Ja + Js + Jg)
61+ Ok + DGy (t + 5,0, %),

IA

where C = max{cf71 Cq, cgl C»}. The calculation steps for u,+1 and v,4 are very
similar and the result is

U1 (6, 1) < B2+ Ok + D5 Gy (1 +6),0, ),
where C = max{c({ZC 1, cg 2C,}. We can do former procedure again and obtain that

Upa(x, 1) <uo(x, 1) + Cltk + )E G (myy1(t + k), 0, x),
Upt2(x, 1) <wvo(x, 1)+ C(k + t)EvG(l,,H(t + k), 0, x).

That is, if (4.4—4.5) hold for n, the estimates hold for n + 2. This completes the proof.
O

5 Proof of Theorems 2.3-2.6

In this section, we prove Theorems 2.3-2.6. We only give the proof of Theorem 2.4
(ii1). The other cases can be proved similarly. The proof is inspired and similar to the
part (II) in the proof of [8, Theorem 1.2(b) and Theorem 1.3].

Proof of Theorem 2.4(iii). We study the case for a1, 82 < 0 and the other cases
can be obtained similarly. There exists some positive constant C, such that a>(x) <
C(1 + [x)®2, by(x) < C(1 + |x|)#2. By [8, Lemma 5.2], we obtain from (4.6) that

(t = )ln(s +K) In(s + &)
b d
/RN 206 <1n<s T+ gt -9 Ins+ k) + ot — s>x> Y

(t —s),,(s + k)
= /R 26 <ln<s T+at—5 " y) @

Fort € [0, 1] and B, < O, / G(t,0, y)(1+ |y|)ﬂ2dy < 1. Using [8, Lemma 2.2]
RN

/ G(t,0,y)(1+|yDPdy < Cf(t), t=0, e [-2,0],
RN

where

1, ifr=<l,
f(t) = {tw(ﬂz,N)’ l‘ft > 1.
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By (4.6), we see

! k t —
U1 (3, 1) < vo(x, 1) +c1/ Pk 4 sy Bt T (0=p) G (’"”(” )=y x)
0

P2

(o)
t—s)my(s+k)y 717 M (s + k) @
ds
X{1+|:mn(s+k)+p2(t—s)] +|:mn(5+k)+p2(t—s)] |x] } s

+C /t ng k + S)‘DEU‘F%(I*‘]Z)G (l"(s T+ —s) ,0, x)
0

q2
(t — (s + )
Xf(l,,<s+k>+qzz<r—s>>ds‘

Define

'
K| := / (k + S)QZEH‘%(]*QZ)G (ln(s +k)+qa(t — S),O’ x)
0

q2
( (@t —$)l(s + k) )ds
In(s + k) +q2(t —5)

Therefore, v, 41(x, 1) < vo(x, 1)+C(Ji+J2+J3+K ) with C = max{c{*Cy, ¢’ C2}.
The discussion on Ji, J2, and J3 could be obtained by the former ones. We only deal
with K. If p1 — 1 > pao,

t
Ki < Gl (¢ +k),0,x)/ (k + 5)2Evt5 (1-02)
0

X[ L1 (t + K)o } < (t — )lu(s + k) )ds
Lis+k)+qa(t—s) LiGs+k)+q(t —s)

From the analysis on Js, we know that % is bounded. Then

t _
KlsG(ln+1(t+k>,o,x)/(k+s>q2Ev+’2v<‘qz)f( (= $)n(s +K) )ds
0

(s + k) +q2(t —5)

Let r = s/t. We obtain that

, N (t = )ln(s + k)
P Eyv+5(1-q2)
/o(k“) ’ f<1n<s+k)+qz(r—s))ds

1 t—r)l,(rt + k)
— | (k4 ey Y0 ( n d
/0( o s +aa—rm )Y

If % < 1, one can see that ¢ is bounded. Then, if (go — 1) E, < 2+2ﬁz ,it

is obvious that there exists a constant C > 0, such that

1
N (t —rt)l,(rt + k) E
k4 rryREtS-a < )zd <Clk+nktr.
/0( " Ihei0 +aat—rm )= CEHD

@ Springer



Bulletin of the Iranian Mathematical Society (2022) 48:1051-1074 1073

If % > 1, there exists a constant C > 0, such that m > C.
Then
1 _
/ (k + ”)quv—&-%(l—qz)f ( (t = rt)ly(rt + k) ) tdr
0 Ly(rt + k) + g2(t — rt)
1
< / (k4 ryREAY A= 0Ny, < c k4 nEe,
0
Hence
Unp1 (6, 1) S vo(x, ) + ¢ Ci(J1 + o+ 3+ K1)
< B+ POk +DE G (lys1(t + k), 0,%).
Similarly, u,4+1(x, ) < c(k + I)E“G(mnH(I +k),0, x). O

6 Conclusion

As noted above, for «;, ;i > 0,i = 1, 2, we prove that there are no global solutions
of (1.1) for any nonnegative nontrivial initial data provided that

1 < pag1 < (p2q1)e, or 1 <pr <(p1)e, or 1<q2=(q2)e.

Besides the case for o, 8; > 0,1 = 1, 2, atleast one out of ¢, B;, i = 1, 2 is negative,
we show the global existence of solution provided that

p2q1 > (p291)e, p1 > (p1)e, and g2 > (q2)c,

where some other conditions on p;, g;, «;, Bi, i = 1, 2, are needed. Therefore, it was
a pity that we have not obtain the precise Fujita exponents of (1.4). We thought about
that the exponents (p2q1)c, (P1)e, (g2)c Were correct, because they are compatible
with the ones in [4,8,16]. In fact, the more complicated coupled relation and the
unbounded variable coefficients bring much more difficulty in the discussion of the
global existence of solutions. And the semigroup method used in [10] would not be
used anymore. We need to overcome more difficulty in dealing with the interactive
terms, such as J;,i = 1,2, --- , 6, in the proof of Theorems 2.2-2.6, respectively.
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