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Abstract
This work studies the approximate controllability of a class of second-order retarded
semilinear differential equations with nonlocal conditions and with delays in control.
First, we deduce the existence of mild solutions using cosine family and fixed point
approach. For this, the nonlinear function is supposed to be locally Lipschitz. Con-
trollability of the system is shown using an approximate and iterative technique. The
results are illustrated using an example.
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1 Introduction

Let Z = L p([0, c]; V ) be a function space, where p > 1 and V is a Banach space. Let
Ct = C([−a, t]; V ) denotes the set of all V -valued continuous functions defined on
[−a, t] with the norm ‖z‖Ct = sup−a≤�≤t ‖z(�)‖. Consider the semilinear system:
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z̈(t) = Az(t) +
m∑

i=0

Biu(t − ai )

+F(t, zν(t), u(t), u(t − â1), . . . , u(t − âm̂)), t ∈ (0, c];
ż(0) = μ1;
ψ(z) = h, u(t) = 0, t ∈ [−a, 0];

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1.1)

where the state z(t) ∈ V and the control u(·) ∈ U = L p([0, c]; V ′), V ′ is another
Banach space; ai and â j , j = 1, 2, . . . , m̂ are fixed delays, such that 0 = a0 < a1 <

a2 < · · · < am < c, 0 < â1 < â2 < · · · < âm̂ < c and a = max{am, âm̂}. A
generates a strongly continuous cosine family {C(t) : t ∈ R} on V ; B0, B1, . . . , Bm

are continuous linear maps from V ′ to V ; ν : [0, c] → [0, c] is non-expansive and
nondecreasingmap satisfying ν(t) ≤ t ; the function zν(t) ∈ C0 is defined by zν(t)(ς) =
z(ν(t) + ς), ς ∈ [−a, 0]; and F : [0, c] × C0 × V ′ × V ′ × · · · × V ′

︸ ︷︷ ︸
(m̂+1) times

→ V is

nonlinear. ψ and h together represent the nonlocal delay condition.
Controllability is a fundamental property of dynamical systems, which was intro-

duced by Kalman [1] in 1960. He discussed the controllability of deterministic linear
systems. Roughly speaking, a dynamical system is called controllable during some
bounded time interval, over a space V , if we can steer that system from any initial state
to any final state in V during that time interval, using a set of control functions. There
are several types of controllability, namely; total state controllability, complete state
controllability, approximate controllability, trajectory controllability, null controlla-
bility, interior controllability, exact controllability, constrained controllability, partial
approximate controllability, etc. Some results on various types of controllability can
be seen in [2–10]. According to mathematical viewpoint, it is very important to rec-
ognize the difference between approximate and exact controllability. Approximate
controllability empowers to steer the system to any given neighborhood of any final
state, but by exact controllability, we mean that the system can be steered to any given
final state. Obviously, the condition of exact controllability is necessarily stronger than
approximate controllability. Approximate controllability makes free to steer a system
to states belonging to a dense subset of the state space. Therefore, it is reasonable to
investigate the approximate controllability of a system.

There are many natural incidents which involve a noteworthy memory effect.
Such real-life problems can be modeled by retarded differential equations. For exam-
ple, problems of economics, physical sciences, chemical sciences, biosciences, and
medicine are affected by their history results. Therefore, it is very important to discuss
the controllability of a retarded system. For any real world phenomena, it is always
better to represent an abstract model with delays appearing in more than one step. For
example, in patient’s treatment, there may be delays in the availability of doctors and
in the diagnosis. In the abstract system (1.1), the delay term zν(t) ∈ C0 represents the
notion of generalized delay, where delays occur in two steps. For some results on the
controllability of retarded systems of fractional and integer order, we refer [11–14]
and some references therein.

Existence of solutions for nonlocal abstract Cauchy problems has been proven
by Byszewski and Lakshmikantham [15]. Results for the existence of solutions of
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nonlocal semilinear systems with and without impulses can be seen in [16–18]. The
controllability results for nonlocal semilinear systems of fractional and integer order
have been proved inmany articles (see [13,14,19–22] and references therein). Control-
lability of linear systems with control delays was proved by Klamka [23]. Constrained
controllability results for semilinear systemswithmultiple delays in control canbe seen
in [24–26]. Klamka [27] proved the stochastic controllability of system with multiple
delays in control. Shen [28] proved the stochastic controllability results for impulsive
systems with multiple delays in control. However, to the best of our knowledge, there
is no result on approximate controllability of nonlocal semilinear retarded systems of
second order with multiple delays in control and locally Lipschitz non-linearity.

The article is structured like this: Sect. 2 contains the preliminaries. Existence
and controllability results are derived in Sects. 3 and 4, respectively. An example is
provided to illustrate the theory in Sect. 5.

2 Preliminaries

We present some definitions and preliminary facts which are to be used in forthcoming
sections. First, we define sine and cosine family, becausemild solutions for the systems
of second order are defined in terms of these families (for details, see [29,30]). For
this, let B(V ) denotes the set of bounded linear maps from V to itself.

Definition 2.1 A family of operators {C(t) : t ∈ R} ⊂ B(V ) is called strongly contin-
uous cosine family if:

(i) C(0)z = z for all z ∈ V ;
(ii) 2C(s)C(t) = C(s − t) + C(s + t) for all s, t ∈ R;
(iii) C(t) is strongly continuous in t .

The sine family {S(t) : t ∈ R} associated with {C(t) : t ∈ R} is defined as:

S(t)z =
∫ t

0
C(s)zds, z ∈ V , t ∈ R.

Throughout this article, we suppose that ‖C(t)‖ ≤ η1 and ‖S(t)‖ ≤ η2, 0 ≤ t ≤ c,
where η1 and η2 are constants. We also utilize the set:

V1 = {z ∈ V : C(t)z is continuously differentiable} .

Lemma 2.2 [29] If A generates a strongly continuous cosine family {C(t) : t ∈ R},
then:

(i) S(t) = −S(−t) and C(t) = C(−t) for all t ∈ R;
(ii) S(s),S(t), C(s) and C(t) commute for all s, t ∈ R;
(iii) 2S(s)C(t) = S(s − t) + S(s + t) for all s, t ∈ R;
(iv) C(s)S(t) + C(t)S(s) = S(s + t) for all s, t ∈ R;
(v) 2AS(s)S(t) = C(s + t) − C(s − t) for all s, t ∈ R;
(vi) if z ∈ V1, then S(t)z ∈ D(A) and d

dt C(t)z = AS(t)z;
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(vii) if z ∈ V1, then S(t)z ∈ D(A) and d2

dt2
S(t)z = AS(t)z.

Definition 2.3 Suppose ℘ ∈ C0 satisfies ψ(℘) = h. A function z(·) ∈ Cc is called the
mild solution of (1.1) if:

z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)

⎛

⎝
m∑

i=0

Bi u(s − ai )

⎞

⎠ ds

+
∫ t

0
S(t − s)F(s, zν(s), u(s), u(s − â1), . . . , u(s − âm̂ )) ds, t ∈ (0, c];

℘(t), t ∈ [−a, 0].
(2.1)

Moreover, if ℘(0) ∈ V1, then ż(t) is continuous on [0, c], and it is given by:

ż(t) = AS(t)℘ (0) + C(t)μ1 +
∫ t

0
C(t − s)

(
m∑

i=0

Biu(s − ai )

)
ds

+
∫ t

0
C(t − s)F(s, zν(s), u(s), u(s − â1), . . . , u(s − âm̂)) ds.

The systems

z̈(t) = Az(t) +
m∑

i=0

Biu(t − ai ), t ∈ (0, c];
ż(0) = μ1, z(0) = ℘(0);
u(t) = 0, t ∈ [−a, 0]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(2.2)

and

z̈(t) = Az(t) + B0u(t), t ∈ (0, c];
ż(0) = μ1, z(0) = ℘(0)

}
(2.3)

are corresponding linear systems with delays and without delay, respectively, if
ψ(℘) = h.

Definition 2.4 The system given by (1.1) is said to be approximately controllable on
[0, c], if, for every given ε > 0 and a final state zc ∈ V , one can find a control u ∈ U ,
such that themild solution z(t) corresponding to the control u satisfies ‖z(c)−zc‖ ≤ ε.

3 Existence of Mild Solution

To discuss the existence result, we suppose the following:

H1 ψ : C([−a, 0]; V1) → C([−a, 0]; V1) and there exists a unique function ℘ ∈
C([−a, 0]; V1) satisfying ψ(℘) = h.

123



Bulletin of the Iranian Mathematical Society (2022) 48:447–464 451

H2 F is continuous in t and locally Lipschitz in z that is there exists a constant λr > 0
satisfying:

‖F(t, z1, u0, u1, . . . , um̂) − F(t, z2, u0, u1, . . . , um̂)‖ ≤ λr ‖z1 − z2‖C0

for all t ∈ [0, c]; z
 ∈ C0 with ‖z
‖C0 ≤ r , 
 = 1, 2 and u j ∈ V ′, j =
0, 1, 2, . . . m̂.

H3 There exists a κ > 0 satisfying:

‖F(t, z, u0, u1, . . . , um̂)‖ ≤ κ(1 + ‖z‖C0 + ‖u0‖ + ‖u1‖ + · · · + ‖um̂‖)

for all t ∈ [0, c]; z ∈ C0, and u j ∈ V ′, j = 0, 1, 2, . . . , m̂.

First, we deduce the following lemma:

Lemma 3.1 Let z(t) be continuous on [−a, c). If k1 and k2 be two positive constants,
such that:

‖z(t)‖ ≤ k1 + k2

∫ t

0
‖zν(s)‖C0 ds ∀t ∈ [0, c).

Then,

‖z(t)‖ ≤ (M℘ + k1)e
k2c ∀t ∈ [0, c),

where z(t) = ℘(t) for t ∈ [−a, 0] and M℘ = supt∈[−a,0] ‖℘(t)‖.
Proof Let t̂ ∈ [0, c) be arbitrary. Then,

one can find a t∗ ∈ [−a, t̂] satisfying:

sup
ς∈[−a,0]

‖z(ν(̂t) + ς)‖ = ‖z(t∗)‖.

Now if t∗ ∈ [−a, 0], then:

sup
ς∈[−a,0]

‖z(ν(̂t) + ς)‖ = ‖z(t∗)‖

≤ M℘

< M℘ + k1 + k2

∫ t̂

0
‖zν(s)‖C0 ds.

If t∗ ∈ (0, t̂], then:

sup
ς∈[−a,0]

‖z(ν(̂t) + ς)‖ = ‖z(t∗)‖

≤ k1 + k2

∫ t∗

0
‖zν(s)‖C0 ds
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≤ M℘ + k1 + k2

∫ t̂

0
‖zν(s)‖C0 ds.

Thus:

‖z(̂t)‖ ≤ sup
ς∈[−a,0]

‖z(ν(̂t) + ς)‖ ≤ M℘ + k1 + k2

∫ t̂

0
‖zν(s)‖C0 ds

⇒ ‖z(t)‖ ≤ M℘ + k1 + k2

∫ t

0
‖zν(s)‖C0 ds ∀ t ∈ [0, c).

In view of Gronwall’s inequality, we obtain:

‖z(t)‖ ≤ (M℘ + k1)e
k2c ∀ t ∈ [0, c).

��
Theorem 3.2 Under hypotheses [H1]–[H3], the system (1.1)has a uniquemild solution
for each u(·) ∈ U and μ1 ∈ V .

Proof Let 0 < c1 < c and max
{‖B0‖, ‖B1‖, . . . , ‖Bm‖} ≤ MB . Define a mapping

� : Cc1 → Cc1 by:

(�z)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)

⎛

⎝
m∑

i=0

Bi u(s − ai )

⎞

⎠ ds

+
∫ t

0
S(t − s)F(s, zν(s), u(s), u(s − â1), . . . , u(s − âm̂ )) ds, t ∈ (0, c1];

℘(t), t ∈ [−a, 0];
(3.1)

and consider the ball:

Br0 =
{
z(·) ∈ Cc1 : ‖z‖Cc1

≤ r0, z(0) = ℘(0) and ż(0) = μ1

}
.

Then, for any z(·) ∈ Br0 and 0 ≤ s ≤ c1:

‖zν(s)‖C0 = sup
ς∈[−a,0]

‖z(ν(s) + ς)‖ ≤ sup
�∈[−a,c1]

‖z(�)‖ ≤ r0.

Thus:

‖(�z)(t)‖ ≤ η1‖℘(0)‖ + η2‖μ1‖ + η2MB

(∫ t

0

m∑

i=0

‖u(s − ai )‖ ds
)

+ η2

∫ t

0
‖F(t, zν(s), u(s), u(s − â1), . . . , u(s − âm̂))
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− F(t, 0, u(s), u(s − â1), . . . , u(s − âm̂))‖ ds
+ η2

∫ t

0
‖F(t, 0, u(s), u(s − â1), . . . , u(s − âm̂))‖ ds.

Using [H2] and [H3], we obtain:

‖(�z)(t)‖ ≤ η1‖℘(0)‖ + η2‖μ1‖ + (m + 1)η2MBc
1− 1

p ‖u‖U + η2λr0

∫ t

0
‖zν(s)‖C0 ds

+ η2κ

∫ t

0
[1 + ‖u(s)‖ + ‖u(s − â1)‖ + · · · + ‖u(s − âm̂)‖] ds

≤ η1‖℘(0)‖ + η2‖μ1‖ + (m + 1)η2MBc
1− 1

p ‖u‖U
+ η2λr0r0c1 + η2κ

[
c1 + (m̂ + 1)c1

1− 1
p ‖u‖U

]

= η1‖℘(0)‖ + η2‖μ1‖ + (m + 1)η2MBc
1− 1

p ‖u‖U
+ η2

[
λr0r0c1 + κ

(
c1 + (m̂ + 1)c1

1− 1
p ‖u‖U

)]
.

Now, choosing r0 = 2
[
η1‖℘(0)‖ + η2‖μ1‖ + (m + 1)η2MBc

1− 1
p ‖u‖U

]
+1 and

c1 small enough, such that:

η2

[
λr0r0c1 + κ

(
c1 + (m̂ + 1)c1

1− 1
p ‖u‖U

)]
≤ η1‖℘(0)‖

+η2‖μ1‖ + (m + 1)η2MBc
1− 1

p ‖u‖U + 1.

Then:

‖(�z)(t)‖ ≤ 2
[
η1‖℘(0)‖ + η2‖μ1‖ + (m + 1)η2MBc

1− 1
p ‖u‖U

]
+ 1

= r0.

Therefore, � maps Br0 into itself.
Now, take z1, z2 ∈ Br0 , then:

‖(�z1)(t) − (�z2)(t)‖ ≤ η2

∫ t

0
‖F(s, (z1)ν(s), u(s), u(s − â1), . . . , u(s − âm̂))

− F(s, (z2)ν(s), u(s), u(s − â1), . . . , u(s − âm̂))‖ ds
≤ η2λr0

∫ t

0
‖(z1)ν(s) − (z2)ν(s)‖C0 ds

≤ η2λr0 t‖z1 − z2‖Cc1
.

Repeating the above process, one can obtain:

‖(�nz1)(t) − (�nz2)(t)‖ ≤
(
η2λr0 t

)n

n! ‖z1 − z2‖Cc1
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≤
(
η2λr0c

)n

n! ‖z1 − z2‖Cc1
,

which shows that �n is a contraction map for sufficiently large value of n. By Banach
fixed point theorem, � has a fixed point in Br0 . Hence, (2.1) is a mild solution on
[−a, c1]. In similar way, the existence of mild solution on [c1, c2], where c1 < c2, can
be shown. Applying the above technique, one can deduce that (2.1) is a mild solution
on the maximal existing interval [−a, c∗), c∗ ≤ c. Next, we show the boundedness of
solution. Clearly, z(t) is bounded on [−a, 0]. Now, for t ∈ [0, c∗):

‖z(t)‖ ≤ η1‖℘(0)‖ + η2‖μ1‖ + (m + 1)η2MB

∫ t

0
‖u(s)‖ ds

+ η2κ

∫ t

0

(
1 + ‖zν(s)‖C0 + (m̂ + 1)‖u(s)‖) ds

≤ η1‖℘(0)‖
+ η2

[
‖μ1‖ + (

(m + 1)MB + (m̂ + 1)κ
)
c1−

1
p ‖u‖U + κc

]

+ η2κ

∫ t

0
‖zν(s)‖C0 ds.

By Lemma 3.1, we have:

‖z(t)‖ ≤
[
η1‖℘(0)‖ + η2(‖μ1‖ + (

(m + 1)MB

+(m̂ + 1)κ
)
c1−

1
p ‖u‖U + κc

) + M℘

]
eη2κc,

which shows that z(t) is bounded on [−a, c∗), and hence, it is defined on [−a, c].
For uniqueness, suppose z1 and z2 be two solutions of (1.1) for the same control
function u. Then, z1(t) = z2(t) = ℘(t) for t ∈ [−a, 0]. Now, for t ∈ [0, c], let:

a∗ = max
{‖z1‖Cc , ‖z2‖Cc

}
.

Then:

‖z1(t) − z2(t)‖V ≤ η2

∫ t

0

∥∥F
(
s, (z1)ν(s), u(s), u(s − â1), . . . , u(s − âm̂)

)

− F
(
s, (z2)ν(s), u(s), u(s − â1), . . . , u(s − âm̂)

)∥∥ ds

≤ η2λa∗
∫ t

0

∥∥(z1)ν(s) − (z2)ν(s)
∥∥
C0
ds

≤ η2λa∗
∫ c

0

∥∥(z1)ν(s) − (z2)ν(s)
∥∥
C0
ds.
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Therefore:

‖(z1)ν(t) − (z2)ν(t)‖C0 ≤ η2λa∗
∫ c

0

∥∥(z1)ν(s) − (z2)ν(s)
∥∥
C0
ds.

By Gronwall’s inequality, we obtain (z1)ν(t) = (z2)ν(t) for all t ∈ [0, c], and conse-
quently, z1 = z2. This completes the proof. ��
Remark 3.3 It is notable that if the map ψ is not injective, then the system (1.1) may
have more than one solution for a fixed control u(·) ∈ U .

4 Approximate Controllability

The subsequent discussion needs the following hypotheses:

H4 The system (2.3) is approximately controllable.
H5 There exists a function q(·) ∈ L1[0, c] satisfying:

‖F(t, z, u0, u1, . . . , um̂)‖ ≤ q(t)

for all (t, z, u0, u1, . . . , um̂) ∈ [0, c] × C0 × V ′ × V ′ × · · · × V ′.
First, we prove the controllability of the corresponding linear system using the
technique similar to [32].

Theorem 4.1 Under hypotheses [H1] and [H4], the corresponding linear delay system
(2.2) is approximately controllable.

Proof Set c = am+1 and r = min{a1, a2 − a1, a3 − a2, . . . , am+1 − am}. Since
0 = a0 < a1 < a2 < · · · < am < am+1. Therefore, for each ai+1, one can find
a positive integer ni and a constant αi ∈ [0, r) satisfying ai+1 = ai + nir + αi ,
i = 1, 2, . . . ,m.

Case 1: If α1, α2, . . . , αm are positive.
Let z̃0; z̃11, z̃12 . . . , z̃1n1 , z̃1n1+1; z̃21, z̃22, . . . , z̃2n2 , z̃2n2+1; · · · ; z̃m1, z̃m2, . . . ,

z̃mnm , zc be given in V , where zc is the final state. Consider the system:

ξ̈ (t) = Aξ(t) + B0u(t), t ∈ (0, a1];
ξ̇ (0) = ξ1 = μ1;
ξ(0) = ℘(0).

⎫
⎬

⎭ (4.1)

Let ε > 0 be given. Set ξ̃0 = z̃0. By [H4], one can find a control u0, such that the mild
solution ξ(t) of (4.1) given by:

ξ(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)B0u0(s) ds, 0 < t ≤ a1,

satisfies ‖ξ(a1) − ξ̃0‖ ≤ ε.

123



456 Bulletin of the Iranian Mathematical Society (2022) 48:447–464

Let

w0(t) =
{
0, t ∈ [−a, 0];
u0(t), t ∈ [0, a1]

and

z(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)

(
m∑

i=0

Biw0(s − ai )

)
ds,

0 < t ≤ a1.

Then:

‖z(a1) − z̃0‖ = ‖ξ(a1) − ξ̃0‖
≤ ε.

Denote ξ(a1) by ξa1 and ξ̇ (a1) by ξ̇a1 and consider the system:

ξ̈ (t) = Aξ(t) + B0u(t), t ∈ (a1, a1 + r ];
ξ̇ (a1) = ξ̇a1;
ξ(a1) = ξa1 .

⎫
⎬

⎭ (4.2)

Set ξ̃11 = z̃11−χa1+r , where χa1+r = ∫ a1+r
0 S(a1+r−s)

(∑m
i=1 Biw0(s−ai )

)
ds =∫ a1+r

0 S(a1 + r − s)B1w0(s − a1) ds is known.
Again by [H4], one can find a control u11, such that the mild solution ξ(t) of (4.2)

given by:

ξ(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)B0u11(s) ds, a1 < t ≤ a1 + r ,

satisfies ‖ξ(a1 + r) − ξ̃11‖ ≤ ε.
Let

w11(t) =
{

w0(t), t ∈ [0, a1];
u11(t), t ∈ (a1, a1 + r ]

and

z(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)

(
m∑

i=0

Biw11(s − ai )

)
ds, a1 < t ≤ a1 + r .

Then:

‖z(a1 + r) − z̃11‖ = ‖ξ(a1 + r) + χa1+r − z̃11‖
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= ‖ξ(a1 + r) − ξ̃11‖
≤ ε.

Continuing in similar fashion, at the (n1 + 2)th step, we get:

ξ̈ (t) = Aξ(t) + B0u(t), t ∈ (a1 + n1r , a2];
ξ̇ (a1 + n1r) = ξ̇a1+n1r ;
ξ(a1 + n1r) = ξa1+n1r .

⎫
⎬

⎭ (4.3)

Set ξ̃1n1+1 = z̃1n1+1 − χa2 , where χa2 = ∫ a2
0 S(a2 − s)

(∑m
i=1 Biw1n1(s − ai )

)
ds =∫ a2

0 S(a2 − s)B1w1n1(s − a1) ds is known. Then, one can find a control u1n1+1, such
that the mild solution ξ(t) of (4.3) given by:

ξ(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)B0u1n1+1(s) ds, a1 + n1r < t ≤ a2,

satisfies ‖ξ(a2) − ξ̃1n1+1‖ ≤ ε.
Let

w1n1+1(t) =
{

w1n1(t), t ∈ (a1 + n1 − 1r , a1 + n1r ];
u1n1+1(t), t ∈ (a1 + n1r , a2]

and

z(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)

(
m∑

i=0

Biw1n1+1(s − ai )

)
ds,

a1 + n1r < t ≤ a2.

Then:

‖z(a2) − z̃1n1+1‖ = ‖ξ(a2) + χa2 − z̃1n1+1‖
= ‖ξ(a2) − ξ̃1n1+1‖
≤ ε.

Repeating the above process, at the last step that is (n1 + n2 + · · · + nm + m + 1)th
step, we get:

ξ̈ (t) = Aξ(t) + B0u(t), t ∈ (am + nmr , c];
ξ̇ (am + nmr) = ξ̇am+nmr ;
ξ(am + nmr) = ξam+nmr .

⎫
⎬

⎭ . (4.4)

Set ξ̃c = z̃c − χc, where χc = ∫ c
0 S(c− s)

(∑m
i=1 Biwmnm (s − ai )

)
ds is known from

previous step. Then, one can find a control umnm+1, such that the mild solution ξ(t)
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of (4.4) given by:

ξ(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)B0umnm+1(s) ds, am + nmr < t ≤ c,

satisfies ‖ξ(c) − ξ̃c‖ ≤ ε.
Let

wmnm+1(t) =
{

wmnm (t), t ∈ (am + nm − 1r , am + nmr ];
umnm+1(t), t ∈ (am + nmr , c]

and

z(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)

(
m∑

i=0

Biwmnm+1(s − ai )

)
ds,

am + nmr < t ≤ c.

Then:

‖z(c) − zc‖ = ‖ξ(c) + χc − zc‖
= ‖ξ(c) − ξ̃c‖
≤ ε.

Now, define the control w(·) on [−a, c] as:

w(t) =
{

w0, t ∈ [−a, a1];
wi (t), t ∈ (ai , ai+1], i = 1, 2, . . . ,m;

where:

wi (t) =
{

wi j (t), t ∈ (ai + j − 1r , ai + jr ], j = 1, 2, . . . , ni ;
uini+1(t), t ∈ (ai + nir , ai+1].

Then:

z(t) = C(t)℘ (0) + S(t)μ1 +
∫ t

0
S(t − s)

(
m∑

i=0

Biw(s − ai )

)
ds, 0 < t ≤ c

is the mild solution of (2.2) for the control functionw, and it satisfies ‖z(c)− zc‖ ≤ ε.
For other cases, the proof is similar. ��
Theorem 4.2 Under hypotheses [H1]–[H5], the semilinear system (1.1) is approxi-
mately controllable.
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Proof Since q(·) ∈ L1[0, c], one can find an increasing sequence 〈cn〉 in [0, c], such
that cn → c and:

∫ c

cn
q(t) dt → 0, as n → ∞.

Now, by approximate controllability of (2.2), for any given ε > 0 and zc ∈ V , one
can find a control ũ0 ∈ U satisfying:

∥∥∥∥∥zc − C(c)℘ (0) − S(c)μ1 −
∫ c

0
S(c − s)

(
m∑

i=0

Bi ũ0(s − ai )

)
ds

∥∥∥∥∥ ≤ ε

2
.

Denote z1 = z(c1, ℘, ũ0) and ż1 = ż(c1, ℘, ũ0), where z(t, ℘, ũ0) is themild solution
of (1.1) for the control ũ0. Again by approximate controllability of (2.2), one can find
a control ũ1 ∈ L p([c1, c]; V ′) satisfying:

∥∥∥∥∥zc − C(c − c1)z1 − S(c − c1)ż1 −
∫ c

c1
S(c − s)

(
m∑

i=0

Bi ũ1(s − ai )

)
ds

∥∥∥∥∥ ≤ ε

2
.

Define:

w̃1(t) =
{
ũ0(t), t ∈ [0, c1);
ũ1(t), t ∈ [c1, c].

Clearly, w̃1(·) ∈ U . Continuing in this manner, one can obtain three sequences zn, ũn
and w̃n , such that ũn(·) ∈ L p([cn, c]; V ′), w̃n(·) ∈ U given by:

w̃n(t) =
{
ũn−1(t), t ∈ [0, cn);
ũn(t), t ∈ [cn, c]

and zn = z(cn, ℘, ũn−1), żn = ż(cn, ℘, ũn−1) with:

∥∥∥∥∥zc − C(c − cn)zn − S(c − c1)żn −
∫ c

cn
S(c − s)

(
m∑

i=0

Bi ũn(s − ai )

)
ds

∥∥∥∥∥ ≤ ε

2
.

Let z(t, ℘, w̃n) be the mild solution of (1.1) associated with w̃n . Denote:

GF,B(s) =
m∑

i=0

Bi w̃n(s − ai ) + F(s, zν(s), w̃n(s), w̃n(s − â1), . . . , w̃n(s − âm̂)).
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Then:

z(c, ℘, w̃n) = C(c)℘ (0) + S(c)μ1 +
∫ c

0
S(c − s)GF,B(s) ds

= C(c − cn + cn)℘ (0) + S(c − cn + cn)μ1 +
∫ cn

0
S(c − cn + cn − s)GF,B(s) ds

+
∫ c

cn
S(c − s)GF,B(s) ds

= (C(c − cn)C(cn) + AS(c − cn)S(cn)
)
℘(0) + (S(c − cn)C(cn) + S(cn)C(c − cn)

)
μ1

+
∫ cn

0

(S(c − cn)C(cn − s) + S(cn − s)C(c − cn)
)
GF,B(s) ds

+
∫ c

cn
S(c − s)GF,B(s) ds

= C(c − cn)

(
C(cn)℘ (0) + S(cn)μ1 +

∫ cn

0
S(cn − s)GF,B(s) ds

)

+ S(c − cn)

(
AS(cn)℘ (0) + C(cn)μ1 +

∫ cn

0
C(cn − s)GF,B(s) ds

)

+
∫ c

cn
S(c − s)GF,B(s) ds

= C(c − cn)

[
C(cn)℘ (0) + S(cn)μ1 +

∫ cn

0
S(cn − s)

( m∑

i=0

Bi ũn−1(s − ai )

+ F(s, zν(s), ũn−1(s), ũn−1(s − â1), . . . , ũn−1(s − âm̂))

)
ds

]

+ S(c − cn)

[
AS(cn)℘ (0) + C(cn)μ1 +

∫ cn

0
C(cn − s)

( m∑

i=0

Bi ũn−1(s − ai )

+ F(s, zν(s), ũn−1(s), ũn−1(s − â1), . . . , ũn−1(s − âm̂))

)
ds

]

+
∫ c

cn
S(c − s)

( m∑

i=0

Bi ũn(s − ai )

+ F(s, zν(s), ũn(s), ũn(s − â1), . . . , ũn(s − âm̂))

)
ds

= C(c − cn)zn + S(c − cn)żn +
∫ c

cn
S(c − s)

( m∑

i=0

Bi ũn(s − ai )

)
ds

+
∫ c

cn
S(c − s)F(s, zν(s), ũn(s), ũn(s − â1), . . . , ũn(s − âm̂)) ds.

Now:
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‖z(c, ℘, w̃n) − zc‖ ≤
∥∥∥∥∥zc − C(c − cn)zn − S(c − cn)żn

−
∫ c

cn
S(c − s)

(
m∑

i=0

Bi ũn(s − ai )

)
ds

∥∥∥∥∥

+
∥∥∥∥
∫ c

cn
S(c − s)F(s, zν(s), ũn(s), ũn(s − â1), . . . , ũn(s − âm̂)) ds

∥∥∥∥

≤ ε

2
+ η2

∫ c

cn
q(s) ds

≤ ε

2
+ η2

ε

2η2
(if n is large enough)

= ε.

Hence, the system (1.1) is approximately controllable. ��

5 Example

Consider the semilinear wave equation for 0 ≤ x ≤ 1 on [0, c]:

∂2 z̃(t,x)
∂t2

= ∂2 z̃(t,x)
∂x2

+
m∑

i=0

u(t − ai , x)

+ F(t, z̃(ν(t) + ς, x), u(t, x), u(t − â1, x), . . . , u(t − âm̂)), t ∈ [0, c];
∂ z̃
∂x (t, 0) = ∂ z̃

∂x (t, 1) = 0, t ∈ [0, c];
∂ z̃
∂t (0, x) = μ̃1(x);
n∑

j=1

β j z̃(t j , x) = z̃0(x);

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

where −a ≤ t1 < t2 < · · · < tn ≤ 0. The above equation can be converted in the
abstract form (1.1), if we make the following setting:

(i) Define A : D(A) ⊆ V → V by Ay = d2y
dx2

, where V = L2[0, 1] and:

D(A) = {y ∈ V : y, yx are absolutely continuous,

yxx ∈ V and yx (0) = 0 = yx (1)} .

For 
 = 1, 2, . . .; take f
(x) = 21/2 cos lπx and σ
 = (
π)2. Clearly, 0, σ1, σ2, . . .
are eigenvalues of A with eigenfunctions 1, f1, f2, . . .; respectively. Also, the set
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{1, f1, f2, . . .} is an orthonormal basis for V . Then:

Ay = −
∞∑


=1

(
π)2 〈y, f
〉 f
, y ∈ V ,

and A generates the cosine family {C(t) : t ∈ R} given by:

C(t)y =
∞∑


=1

cos(
π t) 〈y, f
〉 f
, y ∈ V ,

with corresponding sine family:

S(t)y =
∞∑


=1

1


π
sin(
π t) 〈y, f
〉 f
, y ∈ V .

Now define:

V ′ =
{
u(t) ∈ L2[0, 1]

∣∣∣∣ u(t) =
∞∑


=2

δ
 f
 with
∞∑


=2

δ2
 < ∞
}

and Biu(t) = u(t).

(ii) ν(t) = t3

1+c3
, t ∈ [0, c], which satisfies ν(t) ≤ t and z̃ν(t)(ς, x) =

z̃
(

t3

1+c3
+ ς, x

)
.

(iii) ψ(z)(t) = P(z) for z ∈ C0, t ∈ [−a, 0]; h(t) = z0 = z̃0(x), where P :
C0 → V is such that P(z) = ∑n

j=1 β j z(ti ) and z(t j ) = z̃(t j , x). We take

℘(t) = ∑n
j=1 ℘(t j ), where ℘(t j ) = 1

β j

1
n z0, and then, for each t ∈ [−a, 0]:

ψ(℘)(t) = P(℘) =
n∑

j=1

β j℘(t j ) =
n∑

j=1

β j
1

β j

1

n
z0 = z0 = h(t).

If we take

F(t, zν(t), u(t), u(t − â1), . . . , u(t − âm̂ ))

=
(

t
∥∥zν(t)

∥∥
C0

1 + ∥∥zν(t)
∥∥
C0

f3(x) + t2(‖u(t)‖ + ‖u(t − â1)‖ + · · · + ‖u(t − âm̂ )‖)
1 + ‖u(t)‖ + ‖u(t − â1)‖ + · · · + ‖u(t − âm̂ )‖ f4(x)

)
,

then:

‖F(t, zν(t), u(t), u(t − â1), . . . , u(t − âm̂))‖
≤ 21/2(t + t2)

≤ 21/2(c + c2)
(
1 + ‖zν(t)‖C0 + ‖u(t)‖ + ‖u(t − â1)‖ + · · · + ‖u(t − âm̂)||) .
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Hence, [H3] and [H5] are satisfied.
Also:

‖F(t, (z1)ν(t), u(t), u(t − â1), . . . , u(t − âm̂))

− F(t, (z2)ν(t), u(t), u(t − â1), . . . , u(t − âm̂))‖
≤ c

∥∥(z1)ν(t) − (z2)ν(t)
∥∥
C0

for any (z1)ν(t), (z2)ν(t) ∈ C0 and u(t) ∈ V ′.
Hence, [H2] is satisfied. The linear part of (5.1) is approximately controllable (in
fact, it is exactly controllable) [31]. Thus, by previous theorem, the system (5.1) is
controllable.

6 Conclusion

In this article, approximate controllability for retarded systems of second order with
control delays and nonlocal conditions has been discussed by assuming that the non-
linear term is locally Lipschitz which is a weaker condition than Lipschitz continuity.
Using fixed point approach, the existence and uniqueness results have been derived.
The system with delay effect appearing in two steps is considered. Here, the control-
lability results have been derived without assuming the inclusion relation among the
range sets of the operators. However, conditions [H3] and [H5] are very strong, and
may not be easily satisfied in many practical problems. For this reason, an study on
approximate controllability of the same system without assuming the conditions [H3]
and [H4] is a matter of next investigation.
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