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Abstract

In this paper, we are working with convolutions on the positive half-line, for Lebesgue
integrable functions. Six new convolutions are introduced. Factorization identities for
these convolutions are derived, upon the use of Fourier sine and cosine transforms and
Hermite functions. Such convolutions allow us to consider systems of convolution type
equations on the half-line. Using two different methods, such systems of convolution
integral equations will be analyzed. Conditions for their solvability will be considered
and, under such conditions, their solutions are obtained.

Keywords Convolution - (Sine and cosine) integral transforms - Hermite functions -
Factorization property - Integral equations of convolution type

Mathematics Subject Classification 44A35 - 65R10 - 33C45 - 42A85 - 45E10
1 Introduction

Despite all the previous developments in the area of convolution type operators and
equations, and their applications (cf., e.g., [6]), several additional investigations in

In honor of Professor Roland Duduchava on the occasion of his 75th birthday

Communicated by Mahmoud Hadizade.

B Luis Pinheiro Castro
castro@ua.pt

Anabela Sousa Silva
anabela.silva@ua.pt

Nguyen Minh Tuan

nguyentuan@vnu.edu.vn

CIDMA-—Center for Research and Development in Mathematics and Applications, Department of
Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

2 Dept. of Math., VNU University of Education, Viet Nam National University, 144 Xuan Thuy Str.
Cau Giay Dist., Ha Noi, Viet Nam

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s41980-020-00496-1&domain=pdf
http://orcid.org/0000-0002-4261-8699
http://orcid.org/0000-0002-8114-7009
http://orcid.org/0000-0002-5761-4041

S366 Bulletin of the Iranian Mathematical Society (2021) 47 (Suppl 1):S365-S379

this field are going on in recent years. Namely, new convolutions are continuing to
be introduced and applied to a great number of situations with particular emphasis
within engineering problems (cf., e.g., [1-5]). Anyway, the majority of the introduced
new convolutions are being considered in the full real-line (or “full space”) situation
in which the use of the full space facilitates the action of the convolutions (as well as
the existence and representation of their inverses). Different context is the “non-full
real line” case, in which the action and image of new convolutions need to be again
considered in such restricted domains. This also brings additional difficulties related
with the existence and representation of the associated inverse transformations.

The last situation is considered in this paper. We need to start by introducing some
auxiliary notions and results.

Let R, := (0, co) be the set of positive real numbers and let L' (R ) be the space
of all (Lebesgue) measurable complex-valued functions f : Ry — C with the finite
norm:

Il ey = fo | f Go)ldue.

For any element f € L! (R), let us consider the cosine Fourier transform, 7, and
its inverse defined, respectively, by:

2 o0
(T Hx) = \/;/O cos(xy) f(y)dy, x e Ry,

2 o0
FO) == / cos(ry) (T, f) (x)dx.
7 Jo

Similarly, we define the sine Fourier transform, 7§, and its inverse by:
2 o0
T == f sin(vy) f(dy, x € Ry,
0

2 [e¢])
f = \/;/0 sin(xy) (T f) (x)dx,
respectively.

We recall that associated with the Fourier cosine integral transform, Sneddon [8]
introduced, in 1951, a convolution of two elements f and g in the form:

1 o
(f + )(x)=—/ Mlg(lx =y + g +y)ldy, x e Ry.
f*'g Nl Fleg yD+ g +y)ldy +
This convolution enjoys the following important factorization property:

T.(f % g) = (T.f) (T.g).
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It was also introduced by Sneddon, a generalized convolution for the Fourier sine and
cosine transforms, defined by:

1 o0
(f ' o) = E/o fMlgllx —yh —gx +y)Idy, x Ry,

and which admits the following factorization property:

T(f %' g) = (I, f) (T.g).

In the next section, we introduce new convolutions for the Fourier sine and cosine
integral transforms which are related with Hermite functions. We will denote the
Hermite functions by @,,, for n € Ny, which are defined as:

12 d" 2
D, (x) = (—1)”(2”n!ﬁ)_787d ne_x , xeR.
X

The Fourier transform is an essential tool in many areas of mathematics and science.
This transform and its inverse, denoted, respectively, by F and F~!, are defined by:

(FHx) = Y £ (y)dy,

1 +00
p— e
A/ 21 /—oo

(7 En]om=rm= ¢ (F f)(@)dx.

1 +o00
A/ 27'[ ,/;oo
The Hermite functions, @, (x), are the eigenfunctions of the Fourier transform asso-
ciated with the eigenvalues 1, —1, i, —i. It can be verified by studying the differential
equation:

@/ (x)+ @2n+1—xHP,(x) =0
for which &,,(x) is a solution (cf. [9]). In what follows, we will use these properties:

D, (x) = (—=)"(F '@ (x), and  Dy(—x) = (=)D, (x). (1.1)

Moreover, we should observe that @,, are absolutely integrable functions:

/oo |®,(x)|dx < oo. (1.2)
0

2 New Convolutions

In this section, we will propose six new (classes of) convolutions, associated with
Fourier sine and cosine integral transforms, and we will present some of their proper-
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ties. We start by defining two new convolutions based on Hermite functions and some
shift operations.

Definition 2.1 For any f and g € L'(R,), we define the convolution operators ®°
and ®° by:

-1 k o0 poo
(f®‘3g)(u)=(2 ) f / [Por(w —y — 1) + Do (—u —y — 1)
T 0 0
+ Do (u —y+ 1)+ P (—u —y+ )] f(y)g(t)dyds,
-1 k o0 poo
(& w =" / / [Bot1 (4 — y — 1) — Poppr(—u — y — 1)
v 0 Jo
+ P 1(u—y+1) = Pop1(—u —y +0)]f(y)g)dyde,
k e N().

Theorem 2.2 Let f, g € L' (Ry). The convolutions ®¢ and ®° of functions f and g
belong to L' (R.) and satisfy the following weighted factorization identities associated
with cosine and sine Fourier integral transforms T, and Ty:

Te(f ®° g)(x) = Do () (T ) (x)(Teg) (x),
T (f ®° 8)(x) = Popy1 () (Te H(X)(Teg)(x),  k € No.

Proof Let f,g € L! (R4). We have that:

/O I(f ®° g)(w)|du

1 o0 [o/e] o0
ZE/O /(; /o [ Dok (u —y — 1) + Py (—u—y—1t)

F By — y 1) + B (=t — y + DI FW)Ig(0)|dydidu
1 o0 o0 o0
<o If(y)I/ 18] U (@t — y — 1)]du
T Jo 0 0
+/0 |q>2k(—u—y—t)|du+f0 1B — y + 1)ldu
+ / [ Do (—u —y + t)|du} drdy.
0

On the other hand, since @ (—x) = (—1)"®,(x), x € R, n € Ny, we have that:

o0 o0
/ |¢n(u+a)|du+/ | D, (—u + o) |du
0 0

f |¢n<s>|ds+/ (@0 (s)]ds

—00

foo [Py (s)|ds = 2/00 [Py (s)|ds 2.1
0

—00
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for any o € R. Thus, we can conclude that:
o0 2 o0 o0 o0

/ I(f ®° g)(u)|du < ;/ [ f(®)]dt X/ lg(¢)|dr X/ [ Do (2)|dt < o0.
0 0 0 0

Thus, f ®° g € L'(R4).
In the same way, using (2.1), we have that:

/0 |(f @7 g)(u)|du

1 00 poo poo
—f / / |Pogr1(u—y—1t) — DPopp1(—u —y —1t)
T Jo 0 0

+Popr1(u—y+1) — Popr1(—u—y+ ) f()Ilg)|dydtdu

1 o0 o0 o0
<5 If(y)I/ |g(r>|[/ (@t (1 — y — 1)[du
T Jo 0 0

o0 o0
+/ |<z>2k+1(—u—y—r>|du+/ (Bt (4 — y + 1)l
0 0
o0
+/ |@2k+1(—u—y+f)|du:| drdy
0

2 o0 o0 o0
L2 / FOldt x / g(Oldt x f (B (1)]dt < oo,
T Jo 0 0

and we conclude that f ®° g € L'(R,).
Let us prove the factorization identities. Using properties (1.1) and the formulas:

2cosacos B = cos(a + B) +cos(ae — B), «,B €R,
2cosz =ei4e7t, zeC, 2.2)

we have:

B,y (X)(Te ) () (Teg) (x) = (=) (F~' @) (0)(Te ) () (Tog) (x)

= ﬁ(—i)" /OO e @, (h)dh /00 cos(xy) f(y)dy /OO cos(xt)g(t)dr
T(ﬁ —00 0 0

0 00
= if( i) U_OO eihx¢n(h)dh+/0 eihxqbn(h)dh}

X /oocos(xy)f(y)dy/.Oocos(xt)g(t)dt
0 0

_ %( iy Uoo M@, (—h)dh + /Ooo eihx<1§n(h)dh]

x/ cos(xy)f(y)dy/Oocos(xt)g(t)dt
0 0
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_ ﬁ 7 * o o —ihx ihx
—m(—l)/o /0 /(; (e " @y (—h) + " D, (h))

x cos(xy) cos(xt) f(y)g(¢r)dtdydh

( l)n / / f (e—zhx(p (— h)—f-elhx(p (h))

X(COS(x(y + 1) +cos(x(y — 1)) f(y)g()drdydh

(=D" [ % [ ix+i+h) ix(y+i—h) o ix(y—t+h)
L PLaYey + e Xy t— +ezx y—t
2w/ 27 ./0 /0 /0 (
+e 7O @, (h) £ (1)g(1)drdydh

( l)n / / / zx(y+t h)+e—zx(y+t+h)
271«/

el YOI o ix It ”)) ®u(—h) f(y)g()drdydh

CO" (5T T ity | —ixOr—h) | ix(—t+h)
— el.x y t _"_ e—l.x y 11— + el.x y—t
2/ 2m /0 /0 /0 (
+eT 0TI @, () £ (1)g(1)drdydh

" %% (Lixori—h) ix(yrt+h) | ix(y—t—h)
+ <el.x y — + e—lx y +elx y— —
2w A/21 /0 /0 /0
+e—”‘0’—’+h)> @, (h) f(y)g()drdydh.

Thus, if n = 2k, k € Ny, then identity (2.2) and some changes of variables allow
to get:

Dok (x)(Te ) (x)(Teg) (x)

( l)2k / / /< (eix(y—i-l—i-h) + e—ix(y+l+h)
2

ezx()'—t+h) +e—tx(y—t+h) eix(y—t—h) +e—ix(y—t—h)
+

2 2
eix(y+t—h) + e—ix(y+t—h)
> Do (h) f(y)g(t)dhdydt

_ (=DF

/ / / (cos(x(y +t+ h)) +cos(x(y —t + h))
+C0s(x(y —t—h))+cos(x(y +1t—h))) Py (h)f(y)g(t)dhdyds

lk
- h U / f cos(xu)@or(u — y — 1) f(y)g(t)dudydt
y+t

+ / / / cos(rit) Doy (1 — y + 1) F () g (1) dudyds
0 0 y—t
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o0 [ee} y—t
+/ / / cos(xu)Po(—u+y —1t)f(y)g(t)dudyds
0 —00

o0 y+t
+/ / / cos(xu) Do (—u +y + t)f(y)g(t)dudydt}
_ (DF

[/ / / cos(xu) Dok (u — y — 1) f(y)g(t)dudydr

+/ / / cos(xu)Pyp(u —y + t)f(y)g(t)dudydti|

_ —1)"

[ / / / cos(ei) P — y — 1) f (y)g(D)dudyds
+ / f / cos(eu)Pa(u — y — 1) £ (y)g (1) dudyds

0 0 —00
+/ / / cos(xu)@ox(u —y +1t) f(y)g(t)dudydr

0 0 0

oo 0
+/ / / cos(xu)Py(u —y + t)f(y)g(t)dudydti|
0 0 —00

2 00 (—l)k oo poo
= —/ cos(xu)[ / / (Pox(u —y — 1)+ Pop(—u—y —1)
T Jo 2w 0 0

+ Pop(u—y+1)+ Poy(—u—y+1) f(y)gt)dyds]du
=T.(f ®° g)(x).

On the other hand, if n = 2k + 1, k € Ny, then by applying
2ising =€t —e72, 7 €C,
and a few changes of variables, we have:

Popet1 () (Te f)(x)(Te.g) (x)

l( l)2k+1/ / / eix(y—i—t—i—h) _e—ix(y+t+h)
2i

elx(y—t+h) _ e—tx(y—t+h) eix(y—t—h) _ e—ix(y—t—h)
* 2i B 2i
eix(y+t7h) _ efix(ertfh)
2i )

Dorr1(h) f(y)g(t)dhdydt

( Z)Zk

/ / / (sin(x(y + ¢ + h)) + sin(x(y — t + h))
—sm(x(y —t—h)) —sin(x(y +t —h))) Dyy1(h) f(y)g(t)dhdydt
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U / / SinCru)Bogs 1 ( — y — 1) (g dudyds
y+t

/ sin(xu) Por1(u — y + 1) f(y)g(t)dudydr

/ / / sin(xu) Por1(—u +y — 1) f(y)g(1)dudydr

y+t
/ SinCeu) a1 (—u+ y + t)f(y)g(t)dudydt}

_ = 1)"

[/ / / sin(xu) Pogq1(u — y — 1) f(y)g(t)dudydr

+/ / / sin(xu)Pok41(u — y + l)f(y)g(l)dudydf}

Y
\ff sm(xu)[ )//(¢zk+1(u— ) = By (—u—y —1)

+ @1 (u—y + 1) — o1 (—u — y + 1)) f(»)g(t)dydt] du
=T, (f ®° g)(x).

O

We will proceed with additional four new (classes of) convolutions, on the half-line,
and their factorization identities.

Definition 2.3 For any f and g € L'(R,), we define the convolution operators ©¢
and ©° by:

( of pyay = S foofoo[qbzk@—t—u)+q>2k(y—r+u>
—¢2k(()y + ?— u) — Oop(y +1 +u)lf(y)g(t)dyds,
(f 0 9w = = i / / [@or1(=y +1+u) — Doy (=y +1—u)
+<1>zk+1(()y +(; —u) — Po1(y + 1 +u)]f(y)g)dydr,
k € Np.

Theorem 2.4 Let f, g € L' (R,). The convolutions ©¢ and ©° of functions f and g
belong to L (R..) and satisfy the following weighted factorization identities associated
with cosine and sine Fourier integral transforms T, and Ty:

T.(f ©° g)(x) = Pox(x) (T f)(x)(Tsg)(x),
Ty (f ©7 )(x) = Do 1 (X)(Ts f)(x)(Tsg)(x),  k € No.

Proof This proof is performed with the same technique already presented in the proof
of Theorem 1, using the identities (1.1), the trigonometric formulas 2 sina sin § =
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cos(a — B) — cos(a + fB), 2cosz = e'* + e 7% and 2i sinz = ¢'* — e (@, B € R,
z € C), the property (1.2), the oddness of the function sin(x), and the evenness of
cos(x). In view of this, a detailed deduction is here omitted.

Indeed, from inequalities:

(0.¢] 2 [e¢) oo o0
/ I(f ©° ) w)ldu < —/ | f(2)|de X/ lg(1)]dz X/ |Pox (1)|dr < oo,
0 7 Jo 0 0

and
o0 2 o o0 o0
/ [(f ©7 g)(u)|du < —/ [ f()|de x / lg(2)|dr x f |@og+1(2)]dr < o0,
0 T Jo 0 0

we conclude that f ©° g, f©°g e L'(R,) for f, g € L'(Ry). Moreover:

@y (x)(Ts f)(x)(T58) (x)

_ (=i)" (_l)n /OO /oo /Oo(eix(y—t—h) +e—ix(y—t+h) _eix(y-H—h)
2w 2w 0 0 0
—e O G () £ (y) g (r)drdydh

( D" / f / h - —h h
(elx(y t+h) +e ix(y—t—=h) _ zx(y+t+)
271«/
—e Oy @, (h) f(y)g(t)dtdydh.

Thus, if n = 2k, k € Ng, we have:

Dok () (T f) (x)(T58) (x)

2k 00 00 o0
/ / / (cos(x(y —t —h)) —cos(x(y +t — h))
T Jo Jo Jo

+cos(x(y —t +h)) —cos(x(y + 1+ h))) P (h) f(y)g(t)drdydh

P 00 i2k 00 00
=1/—/ cos(xu) |:—/ / (Pok(y — 1 —u) + Py (y —t +u)
7 Jo 2w Jo Jo

—Dop(y+t —u) — Do (y +t+u) f(y)g(t)dedyldu
=T.(f O &) (x).

For the case n = 2k + 1, k € Ny, we obtain:

Doy 1 () (T f)(x)(Ty8) (x)
2k
- &) / / / (sin(x(y — 1 4+ h)) — sin(x(y — £ — h))

+ sm(x(y +1t—h)) —sin(x(y + 1+ h) P41 (h) f(y)g(t)drdydh,
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D) 00 i2k 00 00
= /—/ sin(xu) |:—/ / (Pogr1(=y +1t+u)
7 Jo 2w Jo  Jo

—Popp1(=y +t —u)+ Py (y +t —u)
— D1 (v + 1 + 1)) f()g(t)dudrdy]
=T,(f @° g)(x).

m}

Definition 2.5 For any f and g € L'(R,), we define the convolution operators @&¢
and &° by:

(ot p = S /oo /oo[d’zk(y 1= u) — Doy + 1+ )
+<Dzk(y0— t B u) — Py (y —t +w)lf(y)g(r)dyds,
(o o = L foo /oo[qul(y Tt - )+ Dot (v 1+ u)
+€Dzk+1(()y —(; —u) + Po1(y —t +w)]f(y)g(t)dydt,
k € Np.

Theorem 2.6 Let f,g € L'(Ry). The convolutions ®° and @° of f and g belong
to L' (R.) and satisfy the following weighted factorization identities associated with
cosine and sine Fourier integral transforms T. and Ty:

T (f @ g)(x) = P ()(Ts f)(0)(Te8) (%),
Te(f @ 8)(x) = Popq 1 ()T f)(x)(Teg)(x), k€ No.

Proof The result is deduced using the technique already presented in detail in the
proof of Theorem 1, and considering in this case the identities (1.1), the trigonometric
formulas 2 sin @ cos B = sin( — B) +sin(a + ), 2cosz = €'* +e¢~2 and 2i sinz =
et — e (a, B € R, z € ©), the property (1.2), the oddness of the function sin(x),
and the evenness of cos(x).

Proceeding in the same way as in the proof of Theorems 2.2 and 2.4, we obtain that

fe‘s, f@°geLl'Ry).
As about the factorization identities, we have:

@ (x)(Ts f) () (Teg) (x)

(=) [ [ [ , ' |
= ﬁ/ / / @D, (—h) [ezx(y+t—h) — o ixGttth) + X O—1=h)
TTIA 2T JO 0 0
_e_ix(y_’”)] F(g@)dydrdh

S [ [l
¢ (/’Z) tx(y+t+ ) ix(y+t— )+etx(y t+h)
2m 2w

—eTXOTD] £ (y)g(rdydidh,
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Thus, if n = 2k, k € Ng, we have:

Doy (X)(Ts f) (x)(Teg) (x)

2k o roo roo
ﬂlx/ﬂfo /0 /0 @or(h) [sin(x(y +t — h)) +sin(x(y + 1 + h))
+sin(x(y — 1 = h)) +sin(x(y — 1+ h)] f(y)g(t)dydedh

2 00 2k o0 00
= \/j/ sin(xu) [l—/ / (Do (y +1t —u) — Pop(y +t +u)
T Jo 27 0 0

+Pou(y —t —u) — P (y —t +u)) f(y)g()dydr]du
=Ty(f &° &) ().

On the other hand, if n = 2k + 1, k € Ny, then:

Poget-1 () (T f) (x)(Te.g) (x)

2k [e’s) o0 %)
_ / / / Grprr (h) [ cos(x(y + 1 + 1))
2 Jo 0 0

+cos(x(y+t —h)) —cos(x(y —t + h)) +cos(x(y —t — h))]
x f(y)g(t)dydrdh

2 00 i2k o poo
= ‘/—f cos(xu) |:—f / (Po41(y +1 —u)
T Jo 27 Jo 0

4o 1(y+t4+u)+ Popp1(y —t —u)
+ @1 (y — 1 +u)) f(¥)g(t)dydt]du
=T.(f ° g)(x).

3 Applications to Integral Equations

Our aim in this section is to study certain integral equations (and systems of inte-
gral equations) generated by the previously presented convolutions, to establish the
solvability of such convolution integral equations, and to obtain consequent explicit
solution formulas.

3.1 System of Integral Equations
We start by analyzing a system of integral equations involving two of the previously

introduced convolutions. Indeed, let us consider the following system of integral equa-
tions:

@(x) + (g ®° Y)(x) = f(x)
{ Y(x) + da(p O @)(x) = g(x) * € R+, (3.1)

@ Springer



S376 Bulletin of the Iranian Mathematical Society (2021) 47 (Suppl 1):S365-S379

where ¢ and ¥ are the unknown functions, p, ¢, f and g € L' (R, ) are given func-
tions, and A and X, denote complex numbers.

Applying the Fourier sine to the first equation of (3.1) and Fourier cosine to the
second one, we obtain the following linear system of algebraic equations:

{ T (@) + M Py 1 Te (T (Y) = T (f) (3.2)
T () + M Pu T (p) T (@) = Tc(g). '

Suppose that:
1 = 222 @k Pok+1T5(p)Te(q) # 0. (3.3)
Then, the linear system (3.2) has the solution:

To(g) = T (f) — MPur1 T (@) Te(g)
‘ 1 = 222 @o Poie+1 T5 (p) Te(q)
Ty = Te(8) — M@ Ts(p) T3 (f) .
L = 2122 @0 Poi+1T5 (p) T (q)

s

Consider the function:

AMAr Dot

Hit)y= —————,
1 — A A Dopt

where

t=T.(p®° q) = Po+1Ts(P)T:(q).

Since ¢ := t(x) is the cosine Fourier transform of a function of L' (R, ), and H (¢) is
analytic under the condition (3.3) and H (0) = 0, then by the Wiener—Lévy theorem
(cf. [7, p. 63]), there exists a function & € L'(R.), such that:

MA2 Dok Do 1T ()T (q)
1 — XA Do Dok 41 T5(p) Te(q)

T.(h) = H(t) =

(Note that, for Fourier cosine transform, the Wiener-Lévy Theorem states that if 7 (x)
is a Fourier cosine transform of an Ll(R+) function and @ (u) is analytic in the
neighborhood of the origin with @(0) = 0, over the range of values of 7(x), then
@ (7(x)) is also the Fourier cosine transform of an L' (R, ) function.)

Thus, we obtain:

To(9) = [T,(f) = M Pour1 Te (@) Te (L + To(h)]
= Ty(f) — M Pt Te(@) Te(8) + Ty (f)Te(h)
~ 2P 1 T Te(9) Te ()
=T(f) — MT(q @ ) + T, (f *' h) — 1 Ti((q ®° ) *' h).
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Hence:
p=f+f*h=1q® g—ri(qg@° g *" h.
Similarly, we have:

T.(¥) = [Te(g) — M@uTs (D) Ty (HIL + Te(h)]
= To(8) + T()Te(h) — M Pu T (P) T (f)
=22 @ T (P) T ()T (h)
=Te(9) + Te(g " h) — MaT(p @° f) — M Te((p ©° £) +° h).

Thus:
Yy=g+g"h—rp0° f—rapo° f)+"h.
3.2 Convolution Equations

Let us now consider the following (independent) integral equations in L' (R ):

M) + (p @ @) (x) = f(0), G4
MY (x) + (g O ¥)(x) = g(x), (3.5

where A, A2 € C, p,q, fand g € LI(RJr) are given, and ¢ and ¢ are unknown
elements to be determined in the same space. Let us fix the notation:

A(x) == A1 + P (x) (Tep) (x),
B(x) 1= A2 + P11 (x) (T59) (x).

Theorem 3.1 Assume that A(x) # 0, B(x) # 0, forx € Ry, and %L, s e L'(R,).
Then: (i) Eq. (3.4) has a solution in L' (R,.) if and only if:

7. (T;f ) € L'(Ry); (3.6)

(ii) Eq. (3.5) has a solution in L' (R..) if and only if:

T, (T;g) e L'(Ry). (3.7)

In these cases (3.6) and (3.7), the solutions of Egs. (3.4) and (3.5) are given, respec-

tively, by:
T, T
¢:Tc(;f>v Y= s(;g)~
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Proof Let us prove proposition (i). Suppose that Eq. (3.4) has a solution ¢ € L' (R.).
Applying the Fourier cosine 7 to both sides of Eq. (3.4), we obtain:

M (Te) (x) + Pk (x) (Te p) () (Tep) (x) = (T f)(x),
that is:
AX)(Tep) (x) = (T f)(x).
Having in mind that A(x) # 0, for x € R, we get:

T Hx)

(Tep)(x) = A

Moreover, since Tfo elL! (R4), we obtain:
T.f
g = Tc( " ) e L'(Ry).

Assume now that ¢ = T, (Tf—f> elL! (R4). Thus, we get:

A
Te(g(x) + (p ®° )(x)) = (Tc [)(x).

Thus, applying the inverse of Fourier cosine transform to both members of the last
equation, we conclude that ¢ fulfills Eq. (3.4).

To consider case (ii), establish the solvability of (3.5), and obtain its solution, we
proceed in the same way, making use of the Fourier sine transform 7. O
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