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Abstract

Let A and B be two factors with dim.A > 4. In this article, it is proved that a bijective
map ® : A — Bsatisfies ®([AeB, C]) = [P(A)ed(B), d(C)]forall A, B,C € A
if and only if ® is a linear *-isomorphism, or a conjugate linear x-isomorphism,
or the negative of a linear x-isomorphism, or the negative of a conjugate linear *-
isomorphism.
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1 Introduction

Let A and B be two algebras. Recall that a map ® : 4 — B preserves product or
is multiplicative if ®(AB) = ®(A)P(B) for all A, B € A. The question of when a
multiplicative map is additive was discussed in [16]. Motivated by this, many authors
pay more attention to the maps on algebras preserving Lie product[A, B] = AB—BA
(for example, see [13-15,17,18]), or the skew Lie product [A, B], = AB — BA* (for
example, see [1,3,7,11]), or the Jordan *-product A ¢ B = AB + BA™* (for example,
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see [4,8,12,22]). These results show that the (skew) Lie product or Jordan *-product
structure is enough to determine the algebraic structure.

Recently, maps preserving the products of the mixture of (skew) Lie product and
Jordan x-product have received a fair amount of attention. For example, Yang and
Zhang [19] studied the nonlinear maps preserving the mixed skew Lie triple product
[[A, Bl., C] on factors. Li et al. studied the nonlinear maps preserving the skew Lie
triple product [[A, Bly, C]l. (for example, see [6,10]) and the Jordan triple *-product
A e B e C (for example, see [9,21]) on von Neumann algebras. In the present paper,
we will establish the structure of the nonlinear maps preserving the mixed product
[A e B, C] on factors.

Let R and C denote, respectively the real field and complex field. A von Neumann
algebra A is a weakly closed, self-adjoint algebra of operators on a Hilbert space H
containing the identity operator 1. A is a factor means that its center is C/. It is well
known that the factor A is prime, in the sense that AAB = 0 for A, B € A implies
either A=0or B =0.

2 Additivity

The main result in this section is the following.

Theorem 2.1 Let A and B be two factors. Suppose that a bijective map ® : A — B
satisfies ®([A @ B,C]) = [®(A) @ O(B), ®(C)] for all A, B,C € A. Then ® is
additive.

Proof We will complete the proof by proving several claims. O

Claim1 ®(0) = 0.
For every A € A, we have

P0) =P([0e0,A]) =[DP(0) e D(0), P(A)].

Since @ is surjective, there exists A € A such that ®(A) = 0. So ®(0) = 0.

Choose an arbitrary nontrivial projection P; € A, write P, = I — P;. Denote
Aij = PiAPj,i,j =1,2. Then A = Ziz,j:l A;j. For every A € A, we may write
A= Z?,j:] A;;. In all that follows, when we write A;;, it indicates that A;; € A;;.

Claim 2 Forevery Aj» € Az, Bo; € Aj1, we have
D(A12+ B21) = P(A12) + P(Bay).
Choose T = 21‘2,1:1 T;; € Asuch that
O(T) = ®(A12 + Ba1) — P(A12) — ®(Bar).
Since [A12 @ Pi, P1] = [B1 ® P>, P,] = 0, it follows from Claim 1 that

[®(A12 + B21) @ ®(Pr), D(P)] = ©([(A12 + B21) ® P1, P1])
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= ®([By1 Py, P1])
= ®([Ap 0 P, Pi]) + ®([B21 @ P1, P1])
= [(®(A12) + P(B21)) @ ©(Py), P(P1)]

and

[®(A12 + B21) @ ©(P2), ©(P2)] = ©([(A12 + Bay) @ P2, P2])
=O([Aip e P, P2])
= O([A1p e P2, P2]) + ®([B21 @ P2, P2])
=[(®(A12) + D(B21)) @ ©(P2), D(P)].

Thus ®([T e Py, P1]) = [P (T)e D (P;), P(P1)] =0and ®([T e Po, P2]) = [D(T) e
O(P), P(Py)] =0.Then [T @ P, P1] =[T o P, P,] =0, and so Tjp = 11 = 0.

For every Cy; € Ay, 1 < k # 1 < 2, it follows from [Cy; e Ajp, P] = [Cyy @
B>1, Pr] = 0 that

[®(Cki) @ D(A12 + Bay), P(Pr)] = P([Ciy @ (A2 + B21), Pl
= O([Cyy @ A2, Pr]) + ©([Crz @ B, Prl)
=[D(Cpy) @ (P(A2) + P(B21)), P(Pr)l.

Thus ®([Ci; o T, Pr]) = [®(Cy;) @ ®(T), ®(Pr)] =0, andso [Cyy o T, P] =0,
which implies that C;T;; = O for every Cy; € Ajy;. Note that A is prime, it follows
that 7;; = 0,/ = 1,2. Hence 7 = 0. Now we have proved that (A2 + Ba) =
(A1) + P(By).

Claim 3 For every Ay € A11, Bia € Az, Ca1 € Az, D2y € Ap, we have
D(A11 + Biz + Ca1 + D) = (A1) + P(B12) + P(Ca1) + P(D22).

LetT = Z?’jzl T;j € Abe such that

O(T) = (A1 + Bz + Co1 + Do) — ®(Aq1) — P(B12) — ©(Ca1) — ©(D22).
It follows from Claim 2 that

[®(P1) e P(A1 + Biz + Co1 + D23), ®(Py)]
= O([P1 o (A1 + B2 + C21 + D), P2])
= O([Py o (B2 + C21), P2])
= O([P1 o (B2 + C21), P2]) + ([P @ Ay, P2]) + P([P1 e D22, P2])
= [®(P1) o (P(B12) + P(C21)), P(P2)]
+[D(P1) e (A1), D(P)] + [P(P)) @ P(D23), P(P,)]
=[D(P1) o (P(A11) + P (B12) + P(Ca1) + D(D22)), P(P)].
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This implies that [Py e T', P»] = 0. Thus T = T»; = 0. Forevery E;; € A;; (i # j),
we have

[®(E12) @ P(A11 + Bi2 + Ca1 + D22), ©(P1)]
= O([E2 e (A11 + Bi2 + Co1 + D22), P1])
= O([E2 @ D, P1])
= ®([E12 0 D, P1]) + ®([E12 0 Ay, P1])
+ ©([E12 @ Bi2, P1]) + ®([E12 ® C21, P1])
= [D(E12) o (P(A11) + D(B12) + ©(C21) + ©(D22)), (P1)]

and

[®(Ez1) @ P(A11 + B2 + Co1 + D22), D(P2)]
= ®([E21 @ (A1 + B2 + Co1 + D22), P2])
= O([Er1 @ Ay, P2])
= O([Ez1 @ D2, P2]) + ©([E2; @ Ay, P2])
+ ®([E21 @ Bpo, P]) + O([E21 @ Ca1, P2))
= [®(E21) @ (P(A11) + D(B12) + D(C21) + D(D22)), D(P)].

Then [E;j ¢ T, P;] = 0, and so 711 = T2 = 0. Hence T = 0. It follows that
D(A11 + Bio + Co1 + D) = @(Aq1) + ©(B12) + P(Ca1) + P(D22).

Claim4 Forevery A;; € A;j, Bijj € Aij, 1 <i # j <2, we have
®(Ajj + Bij) = P(Aij) + P(Bj)).

It follows from A;; + B;; = [% o (P; + A;j), Pj + B;;] and Claim 3 that

1
®(A;j + Bij) = CD([E o (P; + Ajj), Pj + Bj;])
1
= [CD(E) o O(P; + Ajj), ®(Pj + Bij)]
1
= [CD(E) o (P(F;) + P(A;))), P(Pj) + P(B;j)]

1 1 1 1
= ®([§ o P, Pi]) + c1>([§ o P, B;j]) + q’([z ® Ajj, Pj]) + CI3([5 e Ajj, Bi;1)
= ®(A;j) + (Bij).

Claim 5 For every A;;, B;; € A;i,i = 1,2, we have
D(Aj; + Bii) = ©(A;;) + P(Bij).
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Let
O(T) = P(Aj; + Bij) — P(A;;) — ©(Byiy).
It is clear that

[P(P;) e p(Aj; + Bij), p(P;)] = ®([P; o (Aji + Bii), Pi])
= ®([P; o Aji, P;]) + ®([P; ® Bj;, P;])
= [P(P;) o (P(A;;) + D(Bii)), D(P)].

Thus [P; ¢ T, P;] = 0, which implies that 712 = 751 = 0.
For every C;j; € A;j, j # i, it follows from Claims 3 and 4 that

[®(Cji) e D(A;; + Bij), D(P;)] = O(Cj; o (Aj; + Bii), Pi])
= ®(CjiAij) + (Cji Bii) — ®(A;iC};) — ®(BiiC}y)
= ®([Cj; ® Aji, P;]) + ®([Cj; ® B;;, P;])
= [®(Cji) @ D(Aj;), P(P)]+ [D(Cj;i) @ P(Bii), P(Pr)]
= [®(Cj;) o (P(Aj;) + P(Bj;)), P(F)]

and

[®(Cij) @ D(A;; + Bij), D(Pi)] = ©([Cij o (Ai; + Bii), Pi])
= O([Cij o Aji, Pi]) + ©([Cij @ Bii, Pi])
= [®(Cij) @ P(Aij), D(P)] + [P(Cij) @ P(Bi;), P(P;)]
= [®(Cij) o (P(A;;) + D(Bii)), P(P)].

Then [le' [ ] T, P,'] = [C,’j [ T, P,'] = 0, and so T11 = T22 =0.Hence T = 0. It
follows that ®(A;; + B;;) = ®(A;;) + ®(Bi;).

Claim6 @ is additive.
Let A = Ziz,jzl Aij, B = Ziz,jzl B;j € A. By Claims 3, 4 and 5, we have

2 2 2
®(A+ B) = <I>< Z Ajj + Z B,’j) = <D< Z (Ajj +Bij))

i,j=1 i,j=1 i,j=1
2 2 2
=Y ®A;+Bj)) =) PA))+ ) DB
i, j=1 ij=l i j=I
2 2
= q>< YA+ Y] B,,) = ®(A) + D(B).
ij=1 ij=1
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3 Main Result

Our main result in this paper reads as follows.

Theorem 3.1 Let A and B be two factors with dimA > 4. Then a bijective map
® : A — B satisfies ©([A e B,C]) = [P(A) e P(B), P(C)] forall A,B,C € A
if and only if ® is a linear x-isomorphism, or a conjugate linear x-isomorphism,
or the negative of a linear x-isomorphism, or the negative of a conjugate linear *-
isomorphism.

Proof Clearly, we only need prove the necessity. By Theorem 2.1, we obtain the
additivity of ®. Now we will complete the proof of main theorem by proving several

steps.
Step 1. &(CI) =ClI.
Let B € A such that ®(B) = I. Then

0=o(BeC,AI]) =[P(B)eP(C), P(AI)] =2[P(C), P(1I)]
for all C € Aand 2 € C. It follows from the surjectivity of ® that ®(Al) € CI, and
then ®(CI) € CI. By considering ®~!, we can obtain that ®(CI) = CI. O
Step 2. Forall A, B € A, [®(A), ®(B)] = 0if and only if [A, B] = 0.
It follows from ® (/) € CI and the additivity of ® that

29 ([A, B]) = ®(2[A, B]) = ®([I ¢ A, B))
=[D(I) e D(A), (B)]
= (@) + ()P (A), @(B)]

forall A, B € A.If®(I)+P(I)* =0, then ®([A, B]) =0, andso[A, B] = 0forall
A, B € A.This contradiction implies that ® (/) +® (I)* # 0. Hence [P (A), ®(B)] =
0if and only if [A, B] = 0. O

It follows from Step 2 that @ is an additive bijection that preserves commutativity
in both directions. Hence by [2, Corollary 3.8]
®(A) =ab(A) +§(A)
for all A € A, where a € C is a nonzero scalar, § : A — B is an additive Jordan
isomorphism,and & : A — CI isan additive map. Itis easy tocheck thatf(il) = +il.
Step 3. For every A, B € A, we have

(1) ®GA)—0GP(A) e CI,
(2) ®([A, B]) = €[®(A), ®(B)], where € € {1, —1}.

(1) Let A € A. Then
DUA)—O0GENDP(A) =abB(iA)+EGA) —OGT)D(A)
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=ab(iO(A) +EGA) — G T)D(A)
=0(I)(ad(A) +&(A) +&G{A) — 0 DEA) —0GT)DP(A)
= £(A) —0GDE(A) e CI

(2) It follows from Step 1 that %(QD(I) + ®(I)*) = €l for some € € C. By Step
2, we have

1
@ ([A, B]) = E(cb(l) + @(NH)H[P(A), D(B)] = e[P(A), P(B)]

forall A, B € A. Forevery A € A with A = —A*, we have

[®(A) e ®(B), D(C)] = ®([A e B, C]) = ®([[A, B], C])
= [[®(A), D(B)], D(O)]

for all B, C € A. Thus

(1 — e2)D(A)D(B) + O (B) (2D (A) + ®(A)*) e CI 3.1)
forall B € Aand A € Awith A = —A*.Let P; € Bbeanontrivial projection.
Then there exists D € A such that ®(D) = P;. Taking B = D in (3.1), we
have

(1 —€HDP(A)P, + Pi(e?D(A) + D(A)*) € CI.
This yields
(1 —eHP,d(A)P; =0 (3.2)

forall A € A with A = —A*, where P, = I — Pj. Then by assertion (1) and
(3.2),

(1—e)P,®(iB)P =0 (3.3)
for all B € A with B = — B*. It follows from (3.2) and (3.3) that
(1 —e)HP,d(C)P =0

forall C € A. Hence € € {1, —1}.

m}

Remark 3.2 Let € be as above, and let W = ¢ ®. It follows from Theorem 2.1 and Step
3(2) that W : A — B is an additive bijection and satisfies

V([AeB,C])=[¥(A)eW¥(B), V()]
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and
V([A, B]) =[V(A), ¥(B)]

for all A, B, C in A. Hence by [20, Theorem 2.1], there exists an additive map f :
A — CI with f([A, B]) = 0 for all A, B € A such that one of the following
statements holds:

(1) W(A) = ¢(A) + f(A) forall A in A, where ¢ : A — B is an additive isomor-

phism;
2) W(A) = —¢p(A) + f(A) for all A in A, where ¢ : A — B is an additive anti-
isomorphism.

Step 4. Statement (2) of Remark 3.2 does not occur.
Indeed, if ¥ = —¢ + f, where ¢ : A — B is an additive anti-isomorphism and
f : A — CI is an additive map with f([A, B]) = 0forall A, B € A, then
V([AeB,C])=—¢(AeB,C]) =[p(B)p(A) + p(A")p(B), ¢(C)]
for all A, B, C in A. On the other hand,we have

V([AeB,C])=[V(A) e V(B), V((C)]
= [(—=¢(A) + f(A)) o (—¢(B) + f(B)), (—¢(C) + f(C))]
= [(¢(A) — f(A)) e (—@(B) + f(B)), 9(C)]
= [¢(A) o (=¢(B)) + ¢(A) o f(B) + f(A) e p(B). p(C)].

It follows from the surjectivity of ¢ that

(@(A™) + 9(A)e(B) + (p(B) — f(B)(p(A)*
+9(A) + (f(A) + f(A)")e(B) € CI G4

for all A, B € A. Let P € A be a nontrivial projection. Then ¢(P) is a nontrivial
idempotent in 3. Taking B = P in (3.4) and multiplying (3.4) on the right-hand side
by ¢(P1) and on the left-hand side by ¢(P), we get

(I — f(P)p(P)(9(A)* + p(A)p(PT) =0 (3.5)
for all A € A. Replacing ¢(A) by i¢(A) in (3.5), we have

(I — F(P)@(P)(p(A)* — p(A)p(PH) =0. (3.6)
It follows from (3.5) and (3.6) that

(I — f(P)p(P)p(A)g(PT) =0
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forall A € A. Hence f(P) = I for any nontrivial projection P € A. Taking B = P
in (3.4) and multiplying (3.4) on the right-hand side by ¢(P~1), we have

(P (@(A)* + (A)gp(PT) € Co(Ph) (3.7)

forall A € A and any nontrivial projection P € A. Replacing ¢(A) by i¢(A) in (3.7),
we can obtain that

P(PTAPT) = p(PHp(A)p(PT) € Cp(PH) = ¢(CPY)
for all A € A and any nontrivial projection P € A. This implies that
PrAPL =CP* PAP =CP

for any nontrivial projection P € A. It follows that A is isomorphic to M,(C),
the algebra of all 2 x 2 matrices over C, which contradicts the assumption that
dimA > 4.
(]

Step 5. W is an additive *-isomorphism .

By Step 4, now we obtain that ¥ = ¢ + f, where ¢ : A — B is an additive
isomorphism and f : A — CI is an additive map with f([A, B]) = 0 for all
A, B € A. Thus

V([AeB,C])=¢([AeB,C]) = [p(A)p(B) + ¢(B)p(A¥), p(C)]
for all A, B, C € A. On the other hand, we have

V([AeB,C])=[V(A) e ¥W(B), V((C)]
= [(¢(A) + f(A)) o (9(B) + f(B)), (¢(C) + f(C))]
= [(¢(A) + f(A)) o (p(B) + f(B)), ¢(C)]
= [¢(A) e p(B) + f(A) e 9(B) + ¢(A)  f(B), p(C)].

It follows from the surjectivity of ¢ that

@(B)(@(A)" — 9(A™) + @(B)(f(A)* + f(A) + f(B)(p(A)* + ¢(A)) € CI
(3.8)

forall A, B € A. Let . € C, and let P € A be a nontrivial projection. Multiplying
(3.8) on the left-hand side by ¢(P~1) and on the right-hand side by ¢(P), and then
taking B = AP, we have

FOPIQ(P)(p(A)* + 9(A)g(P) =0 (3.9)
for all A € A. Similarly, we can obtain from (3.9) that

FP)p(PHYo(A)p(P) =0
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for all A € A. Then f(AP) = 0 for all A € C and any nontrivial projection P € A.
This yields that

fOI) = fP)+ fO.PYH =0

for all A € C. Since every A in A can be written as a finite linear combination of
projections in A (see [3]), it follows that f(A) = 0 forall A € A. Now (3.8) becomes

@(B)(p(A)* — p(A")) e CI (3.10)

for all A, B € A. In particular, p(A)* — p(A*) € CI forall A € M. If p(A)* —
@(A*) # 0 for some A € A, then by (3.10), ¢(B) € CI for all B € A. This
contradiction implies that ¢ (A)* = ¢(A*) forall A € A. Hence W = ¢ is an additive
x-isomorphism. O

Step 6. @ is alinear x-isomorphism, or a conjugate linear x-isomorphism, or the neg-
ative of a linear x-isomorphism, or the negative of a conjugate linear *x-isomorphism.

By Step 5, it is easy to check that W(i/) = =+il and W(qI) = gl for every
rational number ¢. Let A be a positive element in .A. Then A = B? for some self-
adjoint element B € A. It follows from Step 5 that W(A) = W(B)? and W(B) is
self-adjoint. So W(A) is positive. This shows that W preserves positive elements. Let
X € R be any real number. Choose sequences {a, } and {b,} of rational numbers such
that a,, < A < b, for all n and lim,_, ¢ a, = lim,_, o b, = A. It follows from

anl <Al < byl
that
anl < W(AI) < b,l.
Taking the limit, we get that W(AI) = AI. Hence for all A € A,
W(AA) =V ((AHA) = VADHY(A) = AV (A).

Hence W is real linear. It follows from W (i I) = =i [ that W is linear or conjugate linear.
Since ® = €W, € € {1, —1}, now we can obtain that ® is a linear *x-isomorphism, or
a conjugate linear *x-isomorphism, or the negative of a linear x-isomorphism, or the
negative of a conjugate linear x-isomorphism. O

From Theorem 3.1 and the fact that every ring isomorphism between type I factors
is spatial, we have the following corollary.

Corollary 3.3 Let A and B be two type I factors acting on a complex Hilbert spaces
H with dimH > 2. Then a bijective map ® : A — B satisfies ®([A o B,C]) =
[D(A) @ D(B), ®(C)] for all A, B,C € A if and only if there exists € € {1, —1}
such that ®(A) = eUAU* for all A € A, where U is a unitary or conjugate unitary
operator.
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