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Abstract
For n ≥ 2, an additive map f between two rings A and B is called an n-Jordan
homomorphism, or an n-homomorphism if f (an) = f (a)n , for all a ∈ A, or
f (a1a2 · · · an) = f (a1) f (a2) · · · f (an), for all a1, a2, . . . , an ∈ A, respectively. In
particular, if n = 2 then f is simply called a Jordan homomorphism or a homo-
morphism, respectively. The notion of n-Jordan homomorphism between rings was
introduced in 1956 by Herstein and the concept of n-homomorphism between alge-
bras was introduced in 2005 byHejazian et al. Properties of n-Jordan homomorphisms
as well as n-homomorphisms have been studied by many authors since then. One of
the main questions is that, “under what conditions n- Jordan homomorphisms are
n-homomorphism?”. Another natural question is that “under what conditions certain
properties of homomorphisms may be extended to n-homomorphisms”. We provide
conditions under which these questions have affirmative answers. We also study the
continuity problem for n-Jordan homomorphisms on Banach algebras, while extend-
ing some known results in this field.
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1 Introduction

Let A and B be two rings or algebras.
A map f : A → B is called additive if f (a + b) = f (a) + f (b) for all

a, b ∈ A. An additive map f is called a homomorphism or an anti-homomorphism
if f (ab) = f (a) f (b) or f (ab) = f (b) f (a), for all a, b ∈ A, respectively,
and it is called an n-homomorphism or anti n-homomorphism if f (a1a2 · · · an) =
f (a1) f (a2) · · · f (an) or f (a1a2 · · · an) = f (an) f (an−1) · · · f (a2) f (a1), respec-
tively, for all a1, a2, . . . , an ∈ A. In particular, if f (an) = f (a)n for every a ∈ A,
then f is called an n-Jordan homomorphism. In this paper we always assume that
n ≥ 2. A 2-Jordan homomorphism is simply called a Jordan homomorphism.

Whenever A and B are algebras, some authors define the above notions for a linear
map f : A → B rather than an additive map. But in our terminology, f is assumed
to be additive, not necessarily linear, even if A is an algebra.

The study of Jordan homomorphisms was initiated by some authors, including
Kaplansky [13], Jacobson and Rickart [12], and Herstein [10]. Many authors have
been working on the properties of Jordan homomorphisms since 1947. Note that
every Jordan homomorphism between two algebras is an n-Jordan homomorphism
for all n ≥ 2 [15, Lemma 6.3.2], but the converse is not true, in general.

The notion of n-Jordan homomorphism between rings was introduced in 1956 by
Herstein [10] and the concept of n-homomorphism between algebras was introduced
in 2005 byHejazian et al. [9] and have been studied bymany authors since then. A ring
A is called a prime ring if for any a, b ∈ A, aAb = {0} implies that a = 0 or b = 0.
We say that a ring A is of characteristic not n (char(A) �= n), respectively, larger than
n (char(A)> n), if na = 0, respectively, n!a = 0, implies that a = 0 for all a ∈ A.

A classical result due to Herstein [10, Theorem H] shows that every Jordan homo-
morphism from a ring onto a prime ring of characteristic different from 2 and 3 is
either a homomorphism or an anti-homomorphism.

The following interesting result, concerning Jordan homomorphisms on algebras,
is due to Żelazko, which can be deduced from [16, Theorem 1].

Theorem 1.1 Let A be an algebra, which is not-necessarily commutative, and let B be
a semisimple commutative Banach algebra. Then every linear Jordan homomorphism
f : A → B is a homomorphism.

Note that the original result of Żelazko in [16, Theorem 1] has been stated for a linear
Jordan functional on an algebra, but it is still valid on rings, even if the functional is
an additive Jordan mapping. We now present a proof for this extension.

Theorem 1.2 Every additive Jordan functional on a ring is multiplicative.

Proof Let f be an additive Jordan functional on a ring A and a, b be arbitrary elements
of A. Since f is a Jordan mapping, f (ab + ba) = 2 f (a) f (b). Moreover, f (a(ab +
ba) + (ab + ba)a) = 4 f (a)2 f (b). It follows that f (a)2 f (b) = f (aba) and hence
f (a)2 f (b2) = f (ab2a). Similarly, we have f (b)2 f (a2) = f (ba2b). On the other
hand,

f ((ab + ba)2) = f (ab)2 + f (ba)2 + 2 f (ab) f (ba).
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Hence f (a)2 f (b2) = f (ab) f (ba). By the above relations we obtain the following
equalities: f (ab)+ f (ba) = 2 f (a) f (b) and f (ab) f (ba) = f (a)2 f (b)2. Therefore,
f (ab) = f (ba) = f (a) f (b) and hence f is multiplicative. ��
By the result above, we can also extend Theorem 1.1 as follows:

Theorem 1.3 Let A be a ring, which is not necessarily commutative, and let B be a
semisimple commutative Banach algebra. Then, every additive Jordan homomorphism
f : A → B is an additive homomorphism.

In 2007, Bračič and Moslehian obtained interesting results for 3-homomorphisms
between C*-algebras, in [5].

In 2009, Gordji in [6] proved that for n ∈ {3, 4}, every n-Jordan homomorphism
between two commutative algebras is an n-homomorphism. In 2012, this result was
extended for n < 8 by Bodaghi and Shojaee [3].

In 2013, Lee extended the previous result for every nwhen A and B are commutative
algebras [14].

In 2014, Gselmann also proved the above general result for commutative rings in
[8] as follows:

Theorem 1.4 Every n-Jordan homomorphism ϕ between commutative rings A and B
is an n-homomorphism if char(B) > n. Moreover, if A is unital with the unit eA, then
the map ψ defined by ψ(x) = ϕ(eA)n−2ϕ(x) is a homomorphism.

In 2016 and 2018, Zivari-Kazempour proved that every 3-Jordan or 5-Jordan homo-
morphism from a unital Banach algebra into a semisimple commutative Banach
algebra is a 3-homomorphism or 5-homomorphism [17] and [18]. Note that in these
articles 3-Jordan or 5-Jordan homomorphisms are assumed to be linear.

Later in 2017, An proved the following result in [2], even if A and B are not
commutative. But he imposed one more condition as follows:

Theorem 1.5 Let A and B be two rings, where A is unital and char(B) > n. If every
Jordan homomorphism from A into B is a homomorphism (an anti-homomorphism),
then every n-Jordan homomorphism from A into B is an n-homomorphism (an anti
n-homomorphism).

It was also shown by Bodaghi and Inceboz in 2018 that every additive (not nec-
essarily linear) n-Jordan homomorphism between two commutative algebras is an
n-homomorphism [4]. However, their proof is different from that of Lee and Gsel-
mann. Since B is an algebra, it is clear that char(B) > n and so Theorem 1.4 is
stronger than the result of Lee, Bodaghi and Inceboz.

We either extend the known results in this area, or obtain similar results with
different approach, while presenting shorter proofs for the recent known results.

2 n-Jordan Homomorphisms and n-Homomorphisms Between Rings
and Algebras

We now extend the above-mentioned results, for n-Jordan homomorphisms, when A
and B are rings or algebras and have weaker conditions than the above results.
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We first present the following theorem, which plays an essential role for the next
results. The set of all bijections σ : {1, 2, . . . , n} → {1, 2, . . . , n} is denoted by Sn .

Theorem 2.1 Let A be a ring and a1, a2, . . . , an ∈ A (n ≥ 2). Then

n−1∑

k=0

(−1)k
∑

I ,|I |=n−k

(
∑

i∈I
ai

)n

=
∑

σ∈Sn
aσ(1)aσ(2) · · · aσ(n),

where I is a subset of {1, 2, . . . , n}, |I | indicates the number of elements of I , and σ

runs through all permutations of the elements a1, a2, . . . , an ∈ A.

Proof Let S = S(a1, a2, . . . , an) = ∑n−1
k=0(−1)k

∑
I ,|I |=n−k

(∑
i∈I ai

)n . Then, S can
be represented in the form

S =
(

n∑

i=1

ai

)n

−
∑

I ,|I |=n−1

(
∑

i∈I
ai

)n

+ · · · + (−1)n−1
∑

I ,|I |=1

(
∑

i∈I
ai

)n

=
(

n∑

i=1

ai

)n

−
n∑

i=1

(a0 + a1 + · · · + ai−1 + ai+1 + · · · + an + an+1)
n

+ · · · + (−1)n−1(an1 + an2 + · · · + ann ),

where a0 = an+1 = 0. Note that the expression

∑

σ∈Sn
aσ(1)aσ(2) · · · aσ(n),

appears only in the term
(∑n

i=1 ai
)n .

We first show that if a j = 0 for some j then S = 0. For the proof, we split the
sigma (−1)k

∑
I ,|I |=n−k

(∑
i∈I ai

)n into two parts, in the form

(−1)k
∑

I ,|I |=n−k, j∈I

(
∑

i∈I
ai

)n

+ (−1)k
∑

I ,|I |=n−k, j /∈I

(
∑

i∈I
ai

)n

.

Since a j = 0, the first sigma can be written as

(−1)k
∑

I ,|I |=n−k−1, j /∈I

(
∑

i∈I
ai

)n

.

Similarly, the sigma (−1)k−1 ∑
I ,|I |=n−(k−1)

(∑
i∈I ai

)n splits into two parts:

(−1)k−1
∑

I ,|I |=n−(k−1), j∈I

(
∑

i∈I
ai

)n

+ (−1)k−1
∑

I ,|I |=n−(k−1), j /∈I

(
∑

i∈I
ai

)n

.
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Since a j = 0, the first sigma is, in fact, equal to

(−1)k−1
∑

I ,|I |=n−k, j /∈I

(
∑

i∈I
ai

)n

,

which cancels out with the term (−1)k
∑

I ,|I |=n−k, j /∈I
(∑

i∈I ai
)n

.

With the argument above, all terms in S cancels out when a j = 0, and hence S = 0.
Since

∑
σ∈Sn aσ(1)aσ(2) · · · aσ(n) = 0 in this case, we have

S =
∑

σ∈Sn
aσ(1)aσ(2) · · · aσ(n), (2.1)

whenever a j = 0 for some j .
We now show that (1) is also valid even if all elements a1, a2, . . . , an ∈ A are

non-zero. For x ∈ A, let

P(x) =
n−1∑

k=0

(−1)k
∑

I ,|I |=n−k

(
∑

i∈I
(ai − x)

)n

and

Q(x) =
∑

σ∈Sn
(aσ(1) − x)(aσ(2) − x) · · · (aσ(n) − x).

Clearly, P(x) and Q(x) are polynomials of x with degree n and their coefficients are
integers. Moreover, by the previous discussion, the elements a1, a2, . . . , an are the
roots of these polynomials. Hence, they can be represented in the following forms:

P(x) = λnx
n + λn−1x

n−1 + · · · + λ1x + λ0 = λn(x − a1)(x − a2) · · · (x − an),

Q(x) = μnx
n + μn−1x

n−1 + · · · + μ1x + μ0 = μn(x − a1)(x − a2) · · · (x − an).

We now show that λn = μn . It is clear that μn = (−1)nn!. On the other hand, we
have

λn = (−1)n
n−1∑

k=0

(−1)k
(

n

n − k

)
(n − k)n .

Now let S(m)
n be the number of ways of partitioning a set of n elements into m non-

empty subsets. By [1, Page 824, 24.1.4], we have

m!S(m)
n =

m∑

k=0

(−1)m−k
(
m

k

)
kn .
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Since S(n)
n = 1, we conclude that

n−1∑

k=0

(−1)k
(

n

n − k

)
(n − k)n = n!.

Therefore, λn = μn and hence P(x) = Q(x) for all x ∈ A. In particular, P(0) =
Q(0), which shows that formula (1) holds for arbitrary elements a1, a2, . . . , an . This
completes the proof of the theorem. ��

By applying the theorem above, we obtain the following interesting result, which
has also been mentioned in [10].

Theorem 2.2 Let A and B be two rings and f : A → B be an n-Jordan homomor-
phism. Then,

f

⎛

⎝
∑

σ∈Sn
aσ(1)aσ(2) · · · aσ(n)

⎞

⎠ =
∑

σ∈Sn
f (aσ(1)) f (aσ(2)) · · · f (aσ(n)).

Proof By Theorem 2.1 we have

f

⎛

⎝
∑

σ∈Sn
aσ(1)aσ(2) · · · aσ(n)

⎞

⎠

= f

⎛

⎝
n−1∑

k=0

(−1)k
∑

I ,|I |=n−k

(
∑

i∈I
ai

)n
⎞

⎠

=
n−1∑

k=0

(−1)k
∑

I ,|I |=n−k

f

(
∑

i∈I
ai

)n

=
n−1∑

k=0

(−1)k
∑

I ,|I |=n−k

(
∑

i∈I
f (ai )

)n

=
∑

σ∈Sn
f (aσ(1)) f (aσ(2)) · · · f (aσ(n)).

��
Aswe have indicated before, the next result has already been obtained byGselmann

in [8], but by applying the theorem above, we present a proof which is much shorter
than her long proof.

Theorem 2.3 Let f : A → B be an n-Jordan homomorphism between two commuta-
tive rings A and B with char(B) > n. Then f is an n-homomorphism.

Proof Since A and B are commutative, by Theorem 2.2 we have

f (n!a1a2 · · · an) = n! f (a1) f (a2) · · · f (an),
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for all a1, a2, . . . , an ∈ A. Since char(B) > n, we obtain

f (a1a2 · · · an) = f (a1) f (a2) · · · f (an),

that is, f is an n-homomorphism. ��
By applying Theorem 2.2, we can prove many results on the connection between n-

Jordan homomorphisms and n-homomorphisms on rings and algebras. We may either
provide a shorter proof for the known results or extend the previous results to more
general cases.

We first present a useful lemma, which can be deduced from Theorem 2.2.

Lemma 2.4 Let f : A → B be an n-Jordan homomorphism between rings A and B
such that char(B) > n − 1. Then for every x, y ∈ A we have

f (xyn−1 + yxyn−2 + · · · + yn−1x)

= f (x) f (y)n−1 + f (y) f (x) f (y)n−2 + · · · + f (y)n−1 f (x).

In particular, when B is commutative and char(B) > n, f is a (2n − 1)-Jordan
homomorphism.

Proof Let x, y ∈ A and take a1 = x and a2 = a3 = · · · = an = y. Then,

∑

σ∈Sn
aσ(1)aσ(2) · · · aσ(n)

= (n − 1)!
(
xyn−1 + yxyn−2 + y2xyn−3 + · · · + yn−1x

)
,

and similarly

∑

σ∈Sn
f (aσ(1)) f (aσ(2)) · · · f (aσ(n))

= (n − 1)!( f (x) f (y)n−1 + f (y) f (x) f (y)n−2 + · · · + f (y)n−1 f (x)).

Since char(B) > n − 1, using Theorem 2.2 we have

f (xyn−1 + yxyn−2 + · · · + yn−1x)

= f (x) f (y)n−1 + f (y) f (x) f (y)n−2 + · · · + f (y)n−1 f (x).

If B is commutative, by taking x = an and y = a, for an arbitrary a ∈ A, we have
f (na2n−1) = n f (an) f (a)n−1.

Since char(B) > n, we conclude that f (a2n−1) = f (a)2n−1. ��
An algebra A is called integral domain if it is commutative and whenever ab = 0

for a, b ∈ A, it follows that either a = 0 or b = 0.
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Theorem 2.5 Let A be a ring and B be an integral domain. If f : A → B is an
n-Jordan homomorphism, then f (a2)n−1 = f (a)2n−2 for all a ∈ A. In particular, if
B = C then for each a ∈ A there exists γa ∈ C such that γ n−1

a = 1 and f (a2) =
γa f (a)2.

Proof For a ∈ A, take x = a and y = a2 in Lemma 2.4. Then f (a2n−1) =
f (a) f (a2)n−1. Again if we take x = an+1 and y = a, we have

f (a2)n = f (a2n) = f (an+1) f (a)n−1.

If f (a) = 0 then f (a2)n = 0 and so f (a2) = 0, since B is an integral domain.
Therefore, the conclusion of the theorem is satisfied in this case. On the other hand,
by Lemma 2.4, it follows that

f (a)2n−1 = f (a2n−1) = f (a) f (a2)n−1

and hence f (a)( f (a2)n−1 − f (a)2n−2) = 0. Since B is an integral domain,
f (a2)n−1 = f (a)2n−2, whenever f (a) �= 0 and hence the conclusion of the the-
orem is satisfied in this case too.

Finally, Let B = C and take the (n−1)st root of both sides of f (a2)n−1 = f (a)2n−2

to obtain

f (a2) = γa f (a)2,

where γa is a complex number such that γ n−1
a = 1. This completes the proof of the

theorem. ��
In the following result, we show that γa in the theorem above is, in fact, independent

of a.

Theorem 2.6 Let A be a ring and f : A → C be an n-Jordan homomorphism. Then,
there exists a fixed γ ∈ C, independent of x, such that γ n−1 = 1 and f (x2) = γ f (x)2

for all x ∈ A.

Proof By Theroem 2.5, for each x ∈ A there exists γx ∈ C such that γ n−1
x = 1 and

f (x2) = γx f (x)
2.

In particular, f (x2) = 0 for all x ∈ A with f (x) = 0. That is, the equality
f (x2) = γ f (x)2 holds for all γ ∈ C and every x ∈ A with f (x) = 0. Hence to
complete the proof, we have to show that γx = γy for every x, y ∈ A with f (x) �= 0
and f (y) �= 0.

Let f (x) �= 0 and f (y) �= 0. Then, for each k ∈ N, we have

f
(
(kx + y)2

)
= γkx+y f (kx + y)2.
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Since

k2 f (x2) + f (y2) + k f (xy + yx) = k2γx f (x)
2 + γy f (y)

2 + k f (xy + yx),

it follows that

k2
(
γx − γkx+y

)
f (x)2 + (

γy − γkx+y
)
f (y)2

= k
(
2γkx+y f (x) f (y) − f (xy + yx)

)
.

Dividing both sides by k2, we get

(
γx − γkx+y

)
f (x)2 + 1

k2
(
γy − γkx+y

)
f (y)2

= 1

k

(
2γkx+y f (x) f (y) − f (xy + yx)

)
.

Since |γkx+y | = 1 for each k, we have limk→∞(γx − γkx+y) f (x)2 = 0.
Since f (x) �= 0, we conclude that γx = limk→∞ γkx+y . But γ

n−1
kx+y = 1 and hence

γkx+y can only take n − 1 values on the unit circle. Therefore, for large enough k,
γkx+y = γx and hence, by the previous formula

(γy − γx ) f (y)
2 = k(2γx f (x) f (y) − f (xy + yx)),

for large enough k. By taking limit when k → ∞, it follows that 2γx f (x) f (y) =
f (xy + yx). Since f (y) �= 0 we conclude that γx = γy . ��
Lemma 2.7 Let f : A → C be an additive map on a ring A. If there exists a non-
zero γ ∈ C such that f (x2) = γ f (x)2 for every x ∈ A, then f (a1a2 · · · an) =
γ n−1 f (a1) f (a2) · · · f (an) for all a1, a2, . . . , an ∈ A, where n ≥ 2.

Proof Let x, y ∈ A. Then, f
(
(x + y)2

) = γ f (x + y)2 and hence

f (xy + yx) = 2γ f (x) f (y). (2.2)

Thus

f (xy2 + y2x) = 2γ f (x) f (y2) = 2γ 2 f (x) f (y)2.

Again substituting x by xy + yx in (2), we obtain

f ((xy + yx)y + y(xy + yx)) = 2γ f (xy + yx) f (y).

Hence f (xy2 + 2yxy + y2x) = 4γ 2 f (x) f (y)2 and so f (yxy) = γ 2 f (x) f (y)2.
Similarly, we have f (xyx) = γ 2 f (y) f (x)2. Substituting x by xy and y by yx in (2),
we conclude that

f (xy2x + yx2y) = 2γ f (xy) f (yx). (2.3)
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Moreover, we have

f (yx2y) = γ 2 f (x2) f (y)2 = γ 3 f (x)2 f (y)2,

and

f (xy2x) = γ 2 f (y2) f (x)2 = γ 3 f (y)2 f (x)2.

Since γ �= 0, by (3) it follows thatγ 2 f (x)2 f (y)2 = f (xy) f (yx). On the other
hand, by (2) we have

f (xy)2 + f (yx)2 + 2 f (xy) f (yx) = 4γ 2 f (x)2 f (y)2 = 4 f (xy) f (yx).

Therefore, f (xy) = f (yx) = γ f (x) f (y), for every x, y ∈ A.
Now let a1, a2, . . . , an ∈ A and take x = a1, y = a2a3 in the formula above. Then,

f (a1a2a3) = γ f (a1) f (a2a3) = γ 2 f (a1) f (a2) f (a3).

Continuing in this way, we conclude that

f (a1a2 · · · an) = γ n−1 f (a1) f (a2) · · · f (an).

��
We now obtain the following result, which is an extension of Theorem 1.2.

Theorem 2.8 Let A be a ring and f : A → C be an n-Jordan homomorphism. Then,
f is an n-homomorphism. In particular, if A is a Banach algebra and f is also linear,
then f is automatically continuous.

Proof By Theorem 2.6, there exists γ ∈ C such that γ n−1 = 1 and f (x2) = γ f (x)2

for all x ∈ A. Hence, by Lemma 2.7, f (a1a2 · · · an) = f (a1) f (a2) · · · f (an) for all
a1, a2, . . . , an ∈ A. that is, f is an n-homomorphism. When A is a Banach algebra f
is automatically continuous by [11, Theorem 2.7] or [7, Theorem 2.4]. ��
We now extend the theorem above to more general cases.

Theorem 2.9 Let A and B be rings such that MB, the set of all non-zero additive and
multiplicative complex functionals on B, is non-empty and moreover,

⋂
ϕ∈MB

kerϕ =
{0}. Then every n-Jordan homomorphism f : A → B is an n-homomorphism.

Proof Let ϕ ∈ MB and define ψ : A → C by ψ = ϕ ◦ f . Clearly, ψ is additive and

ψ(xn) = ϕ( f (xn)) = ϕ( f (x)n) = (ϕ( f (x)))n = (ψ(x))n .

By Theorem 2.8, ψ is an n-homomorphism and hence

ψ(a1a2 · · · an) = ψ(a1)ψ(a2) · · · ψ(an)
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for a1, a2, . . . , an ∈ A. Therefore,

ϕ( f (a1a2 · · · an)) = ϕ( f (a1))ϕ( f (a2)) · · · ϕ( f (an)) = ϕ( f (a1) f (a2) · · · f (an)).

Consequently, ϕ( f (a1a2 · · · an) − f (a1) f (a2) · · · f (an)) = 0, that is,

f (a1a2 · · · an) − f (a1) f (a2) · · · f (an) ∈ kerϕ.

Since ϕ ∈ MB is arbitrary,

f (a1a2 · · · an) − f (a1) f (a2) · · · f (an) ∈ ∩ϕ∈MBkerϕ = {0}.

That is, f (a1a2 · · · an) = f (a1) f (a2) · · · f (an). ��
Corollary 2.10 Let A be a ring and B be a unital commutative semisimple Banach
algebra. Then every n-Jordan homomorphism f : A → B is an n-homomorphism.
In particular, if A is a unital Banach algebra and moreover f is linear, then f is
automatically continuous.

Proof Since B is a unital commutative semisimple Banach algebra �B �= φ, where
�B is the set of all nonzero multiplicative linear functionals on B. Since �B � MB

and B is semisimple, we have

∩ϕ∈MBkerϕ � ∩ϕ∈�B kerϕ = rad(B) = {0}.

Therefore, by the theorem f is an n-homomorphism. If A is a unital Banach algebra
and f is also linear, then it is a multiple of a homomorphism by [9, Proposition 2.2].
Hence, f is automatically continuous by a classical result of Shilov, which states that
every homomorphism from a Banach algebra into a commutative semisimple Banach
algebra is automatically continuous. ��

Note that Theorem 2.9 and Corollary 2.10 are extensions of Theorem 1.1, which is
due to Żelazko.
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