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Abstract
In this work, we prove a simple fixed point theorem in non-Archimedean (n, β)-
Banach spaces, by applying this fixed point theorem, we will study the stability and
the hyperstability of the kth radical-type functional equation:

f

(
k
√
xk + yk

)
= f (x) + f (y),

where f is a mapping on the set of real numbers and k is a fixed positive integer.
Furthermore, we give some important consequences from our main results.
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1 Introduction

In 1940, during a conference at Wisconsin University, Ulam [35] presented the fol-
lowing question concerning stability of group homomorphisms: Let (G1, �), (G2, ∗)

be two groups and d : G2 × G2 → [0,∞) be a metric. Given ε > 0, does
there exist δ > 0, such that if a function g : G1 → G2 satisfies the inequal-
ity d(g(x�y), g(x) ∗ g(y)) ≤ δ for all x, y ∈ G1, then there is a homomorphism
h : G1 → G2 with d(g(x), h(x)) ≤ ε for all x ∈ G1?

When the homomorphisms are stable? Therefore, we are interested in this ques-
tion, that is, if a mapping is almost a homomorphism, then there exists an exact
homomorphism that must be close. In following year, Hyers [24] was the first to give
an affirmative answer to Ulam’s question for the case where G1 and G2 are Banach
spaces. The famous Hyers stability result that appeared in [24] was generalized in
the stability involving a sum of powers of norms by Aoki [3]. In 1978, Rassias [32]
provided a generalization of Hyers’ theorem that allows the Cauchy difference to
become unbounded. For the last decades, stability problems of various functional
equations have been extensively investigated and generalized by many mathemati-
cians [6,11,13,15,22,30,33,34,37]. The theory of 2-normed spaces was first developed
by Gähler [20] in the mid-1960s, while that of 2-Banach spaces was studied later by
Gähler [21] and White [36]. In 1897, Hensel [23] introduced a normed space which
does not have the Archimedean property. It turns out that non-Archimedean spaces
have many nice applications (see [4,25,28,31]).

The first hyperstability result appears to be due to Bourgin [5]. However, the term
hyperstability was used for the first time in [29]. Quite often, hyperstability is confused
with superstability, which admits also bounded functions. Numerous papers on this
subject have been published and we refer to [7,12,14,16,18,19]. Recently, the stability
problem and hyperstability results for the functional equations of the radical type in
2-Banach spaces and in some other generalized spaces have been also studied; for
example, see [1,2,8,10,16–18,26,27].

The functional equation:

f

(√
x2 + y2

)
= f (x) + f (y) (1.1)

is called a radical quadratic functional equation. Kim et al. [27] investigated the gen-
eralized Hyers–Ulam–Rassias stability of Eq. (1.1) in quasi-β-Banach spaces using
the direct method.

In thewhole paper,N andR denote the sets of all positive integers and real numbers,
respectively; we putN0 := N∪{0},R0 := R\{0}, andR+ = [0,∞), andwewriteBA

to mean the family of all functions mapping from a nonempty set A into a nonempty
set B.

This work is organized as follows: in Sect. 2, we discuss some basic definitions
and lemmas used in later sections to prove the stabilities on non-Archimedean (n, β)-
Banach spaces. In Sect. 3, we introduce and solve the kth radical-type functional
equation:
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f

(
k
√
xk + yk

)
= f (x) + f (y), x, y ∈ R, (1.2)

in the class of functions f fromR into a vector space, where k ∈ N is fixed. In Sect. 4,
we prove the fixed point theorem [9, Theorem 1] in non-Archimedean (n, β)-Banach
space. In Sect. 5, we will apply the fixed point method to study the stability and the
hyperstability of (1.2) in non-Archimedean (n, β)-Banach space. In Sect. 6, we will
give some consequences from ourmain results. Our results are improvements and gen-
eralizations of many main results referred to in [1,2,16–18,26] on non-Archimedean
(n, β)-Banach spaces.

2 Preliminaries

In this section, we will introduce some basic concepts concerning the non-
Archimedean (n, β)-normed space.

Definition 2.1 By a non-Archimedean field, we mean a fieldK equipped with a func-
tion (valuation) | · |∗ : K → [0,∞) such that for all r , s ∈ K, the following conditions
hold:

(1) |r |∗ = 0 if and only if r = 0;
(2) |rs|∗ = |r |∗|s|∗;
(3) |r + s|∗ ≤ max(|r |∗, |s|∗) for all r , s ∈ K.

Clearly, |1|∗ = | − 1|∗ = 1 and |n|∗ ≤ 1 for all n ∈ N. The function | · |∗ is called
the trivial valuation if |r |∗ = 1, ∀r ∈ K, r 	= 0, and |0|∗ = 0.

Definition 2.2 Let E be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | · |∗. A function ‖ · ‖∗ : E → R+ is non-Archimedean norm
(valuation) if it satisfies the following conditions:

(1) ‖x‖∗ = 0 if and only if x = 0;
(2) ‖r x‖∗ = |r |∗‖x‖∗ for all r ∈ K and x ∈ E ;
(3) ‖x + y‖∗ ≤ max(‖x‖∗, ‖y‖∗) for all x, y ∈ E .

Then, (E, ‖ · ‖∗) is called a non-Archimedean space or an ultrametric normed space.
Due to the fact that:

‖xm − xn‖∗ ≤ max{‖x j+1 − x j‖∗ : m ≤ j ≤ n − 1},

in which n > m, the sequence {xn} is Cauchy if and only if {xn+1 − xn} converges
to zero in a non-Archimedean normed space. In a complete non-Archimedean space,
every Cauchy sequence is convergent.

Example 2.3 Fix a prime number p. For any nonzero rational number x , there exists a
unique positive integer nx , such that x = a

b p
nx , where a and b are positive integers not

divisible by p. Then, |x |p := p−nx defines a non-Archimedean norm onQ (the set of
rational numbers). The completion ofQwith respect to the metric d(x, y) = |x − y|p
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is denoted by Qp, which is called the p-adic number field. In fact, Qp is the set of all
formal series x = ∑∞

k≥nx ak p
k , where |ak | ≤ p − 1. The addition and multiplication

between any two elements of Qp are defined naturally. The norm
∣∣∣∑∞

k≥nx ak p
k
∣∣∣ =

p−nx is a non-Archimedean norm on Qp and Qp is a locally compact field.

Definition 2.4 Let X be a real vector space with dim X ≥ n over a scalar field K

with a non-Archimedean nontrivial valuation | · |∗, where n ∈ N and β ∈ (0, 1] is
a fixed number. A function ‖·, . . . , ·‖∗,β : Xn → R+ is called a non-Archimedean
(n, β)-norm on X if and only if it satisfies:

(N1) ‖x1, x2, . . . , xn‖∗,β = 0 if and only if x1, x2, . . . , xn are linearly dependent;
(N2) ‖x1, x2, . . . , xn‖∗,β is invariant under permutations of x1, x2, . . . , xn ;

(N3) ‖λx1, x2, . . . , xn‖∗β = |λ|β∗ ‖x1, x2, . . . , xn‖β ;
(N4) ‖x + y, x2, . . . , xn‖∗,β ≤ max

{‖x, x2, . . . , xn‖∗,β , ‖y, , x2, . . . , xn‖∗β

}
for all x, y, x1, x2, . . . , xn ∈ X and λ ∈ K. Then, the pair (X , ‖·, . . . , ·‖∗,β) is called
a non-Archimedean (n, β)-normed space.

Example 2.5 Let K be a non-Archimedean field equipped with a non-trivial valuation
| · |∗. For n = 2, λ ∈ K and x = (x1, x2), y = (y1, y2) ∈ X = K

2 with x + y =
(x1 + y1, x2 + y2) and λx = (λx1, λx2), the non-Archimedean (2, β)-norm on X is
defined by:

‖x, y‖∗,β = |x1y2 − x2y1|β∗ ,

where β ∈ (0, 1] is a fixed number.

It follows from the preceding definition that the non-Archimedean (n, β)-normed
space is a non-Archimedean n-normed space if β = 1, and a non-Archimedean β-
normed space if n = 1, respectively.

Lemma 2.6 Let (X , ‖·, . . . , ·‖∗,β) be a non-Archimedean (n, β)-normed space, such
that n ≥ 2 and 0 < β ≤ 1. Then:

(1) if x ∈ X and ‖x, x2, . . . , xn‖∗,β = 0 for all x2, . . . , xn ∈ X, then x = 0;
(2) a sequence {xm} in a non-Archimedean (n, β)-normed space X is a Cauchy

sequence if and only if {xm+1 − xm} converges to zero in X.

Proof For (1), suppose that x 	= 0. Since dim X ≥ n, choose x2, . . . , xn ∈ X , such
that {x, x2, . . . , xn} is linearly independent and so by (N1) in Definition 2.4, we have:

‖x, x2, . . . , xn‖∗,β 	= 0.

This is a contradiction and thus x should be a zero vector. For (2), it follows from (N4)
that:

‖xm − xk , x2, . . . , xn‖∗,β ≤ max
{‖x j+1 − x j , x2, . . . , xn‖∗,β : k ≤ j ≤ m − 1

}
, (m > k)

for all x2, . . . , xn ∈ X . Therefore, a sequence {xm} is a Cauchy sequence in X if and
only if {xm+1 − xm} converges to zero in X . �
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Definition 2.7 (a) A sequence {xm} in a non-Archimedean (n, β)-normed space X is
called a convergent sequence if there exists an element x ∈ X , such that limm→∞ ‖xm−
x, x2, . . . , xn‖∗,β = 0 for all x2, . . . , xn ∈ X . In this case, wewrite limm→∞ xm := x,
and we have

lim
m→∞ ‖xm, x2, . . . , xn‖∗,β = ‖ lim

m→∞ xm, x2, . . . , xn‖∗,β

for all x2, . . . , xn ∈ X .
(b) A non-Archimedean (n, β)-normed space in which every Cauchy sequence is

a convergent sequence is called a non-Archimedean (n, β)-Banach space.

3 Solution of Eq. (1.2)

In this section, we give the general solution of functional equation (1.2).

Theorem 3.1 Let Y be a linear space. A function f : R → Y satisfies Eq. (1.2) if and
only if there exists an additive function T : R → Y , such that:

f (x) = T (xk), x ∈ R, (3.1)

for each fixed k ∈ N.

Proof (See [8, page 127]). �

Remark 3.2 (i) The function f (x) = cxk satisfies Eq. (1.2) for all x ∈ R, where

k ∈ N and c ∈ R are fixed numbers.
(ii) If f satisfies Eq. (1.2), then f (r p/k x) = r p f (x) for all x ∈ R and integers

p, where r ∈ Q\{0} (Q :=, the set rational numbers) if k is odd and r ∈ Q
+

(Q+ := the set of positive rational numbers) if k is even.
(iii) If f satisfies Eq. (1.2) and continuous, then f (x) = xk f (1) for all x ∈ R if k is

odd and f (x) = xk f (1) for all x ∈ R+ if k is even.

4 Fixed Point Theorem

In this section, we rewrite the fixed point theorem [9, Theorem 1] in non-Archimedean
(n, β)-Banach space. For it, we need to introduce the following hypotheses.

(H1) W is a nonempty set and X is a non-Archimedean (n, β)-Banach space.
(H2) f1, . . . , f j : W → W and K1, . . . , K j : W × Xn−1 → R+ are given maps.

(H3) � : R+W×Xn−1 → R
W×Xn−1

+ is a non-decreasing operator defined by:

(�δ)(x, x2, . . . , xn) := max
1≤i≤ j

Ki (x, x2, . . . , xn)δ( fi (x), x2, . . . , xn)

for all δ ∈ R
W×Xn−1

+ , (x, x2, . . . , xn) ∈ W × Xn−1.
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(H4) T : XW → XW is an operator satisfying the inequality:

‖T ξ(x) − T μ(x), x2, . . . , xn‖∗,β ≤ max
1≤i≤ j

Ki (x, x2, . . . , xn) ‖ξ( fi (x))

−μ( fi (x)), x2, . . . , xn‖∗,β

for all ξ, μ ∈ XW and (x, x2, . . . , xn) ∈ W × Xn−1.

The basic tool in this paper is the following fixed point theorem.

Theorem 4.1 Assume that hypotheses (H1)–(H4) are satisfied. Suppose that there are
functions ε : W × Xn−1 → R+ and ϕ : W → X, such that:

∥∥T ϕ(x) − ϕ(x), x2, . . . , xn
∥∥∗,β

≤ ε(x, x2, . . . , xn), (x, x2, . . . , xn) ∈ W × Xn−1,

(4.1)

and

lim
m→∞ �mε(x, x2, . . . , xn) = 0, (x, x2, . . . , xn) ∈ W × Xn−1, (4.2)

then, for every x ∈ W, the limit:

ψ(x) := lim
m→∞(T mϕ)(x)

exists and the function ψ ∈ XW , defined in this way, is a fixed point of T with:

‖ϕ(x) − ψ(x), x2, . . . , xn‖∗,β ≤ sup
m∈N0

(�mε)(x, x2, . . . , xn) (4.3)

for all (x, x2, . . . , xn) ∈ W × Xn−1. Moreover, if

�
(
sup
m∈N0

(�mε)
)
(x, x2, . . . , xn) ≤ sup

m∈N0

(�m+1ε)(x, x2, . . . , xn)

for all (x, x2, . . . , xn) ∈ W × Xn−1, then ψ is the unique fixed point of T satisfying
(4.3).

Proof First, we show by induction that, for any m ∈ N0:

∥∥(T m+1ϕ)(x) − (T mϕ)(x), x2, . . . , xn
∥∥∗,β

≤ (�mε)(x, x2, . . . , xn), (4.4)

(x, x2, . . . , xn) ∈ W × Xn−1.

Clearly, by (4.1), the case m = 0 is trivial. Now, fix m ∈ N0 and suppose that (4.4) is
valid. Then, using (H3) and (H4), for any (x, x2, . . . , xn) ∈ W × Xn−1, we obtain:
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∥∥(T m+2ϕ)(x) − (T m+1ϕ)(x), x2, . . . , xn
∥∥∗,β

= ∥∥T (T m+1ϕ)(x) − T (T mϕ)(x), x2, . . . , xn
∥∥∗,β

≤ max
1≤i≤ j

Ki (x, x2, . . . , xn)
∥∥T m+1ϕ( fi (x)) − T mϕ( fi (x)), x2, . . . , xn

∥∥∗,β

≤ max
1≤i≤ j

Ki (x, x2, . . . , xn)(�
mε)( fi (x), x2, . . . , xn)

= (�m+1ε)(x, x2, . . . , xn),

and therefore, (4.4) holds for every m ∈ N0.
By (4.2), (4.4) and Lemma 2.6, we get

{
(T mϕ)(x)

}
m∈N is a Cauchy sequence in

X . Thus, the fact that X is a non-Archimedean (n, β)-Banach space implies that the
limit ψ(x) exists for every x ∈ W , i.e., ψ(x) := limm→∞(T mϕ)(x) for any x ∈ W .
Moreover, (4.4) shows that, for any k ∈ N,m ∈ N0 and (x, x2, . . . , xn) ∈ W × Xn−1 :

∥∥(T mϕ)(x) − (T m+kϕ)(x), x2, . . . , xn
∥∥∗,β

≤ max
�∈{0,···k−1}

∥∥(T m+�ϕ)(x) − (T m+�+1ϕ)(x), x2, . . . , xn
∥∥∗,β

≤ max
�∈{0,···k−1}(�

m+�ε)(x, x2, . . . , xn)

≤ sup
�≥m

(��ε)(x, x2, . . . , xn).

Letting now k → ∞, we see that for any m ∈ N0 and (x, x2, . . . , xn) ∈ W × Xn−1,
we have:

∥∥(T mϕ)(x) − ψ(x), x2, . . . , xn
∥∥∗,β

≤ sup
�≥m

(��ε)(x, x2, . . . , xn). (4.5)

Puttingm = 0 in (4.5), we see that inequality (4.3) holds. Moreover, using (H3)–(H4)
and (4.5), we obtain:

∥∥(T ψ)(x) − (T m+1ϕ)(x), x2, . . . , xn
∥∥∗,β

≤ max
1≤i≤ j

Ki (x, x2, . . . , xn)
∥∥ψ( fi (x)) − T mϕ( fi (x)), x2, . . . , xn

∥∥∗,β

≤ max
1≤i≤ j

Ki (x, x2, . . . , xn) sup
�≥m

(��ε)( fi (x), x2, . . . , xn)

= �
(
sup
�≥m

(��ε)
)
(x, x2, . . . , xn) (4.6)

for all (x, x2, . . . , xn) ∈ W × Xn−1. From (4.2) and (4.6), we get:

T (ψ)(x) = lim
m→∞(T m+1ϕ)(x) = ψ(x), x ∈ W .

To prove the statement on the uniqueness of ψ , suppose that ψ1, ψ2 ∈ XW are two
fixed points of T satisfies (4.3). Then, for each (x, x2, . . . , xn) ∈ W ×Xn−1, we have:

‖ψ1(x) − ψ2(x), x2, . . . , xn‖∗,β ≤ sup
m∈N0

(�mε)(x, x2, . . . , xn),
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and as in the proof of (4.4), for any (x, x2, . . . , xn) ∈ W × Xn−1 and k ∈ N0, we get:

‖ψ1(x) − ψ2(x), x2, . . . , xn‖∗,β = ‖(T kψ1)(x) − (T kψ2)(x), x2, . . . , xn‖∗,β

≤ sup
m∈N0

(�m+kε)(x, x2, . . . , xn). (4.7)

Letting m → ∞ in (4.7) and from (4.2), we finally get ψ1 = ψ2. �


5 A New Stability Result for Eq. (1.2)

The following theorem is the main result of this paper. It has been motivated by the
issue of Ulam stability, which concerns approximate solutions of a functional equation
(1.2) in non-Archimedean (n, β)-Banach spaces by applying the fixed point theorem
4.1.

Theorem 5.1 Let X be a non-Archimedean (n, β)-Banach space. Let f : R → X,
c : N → R+ and L : R0 × R0 × Xn−1 → R+ be functions satisfying the following
three conditions:

M := {m ∈ N | am := max
{
c(mk), c(1 + mk)

}
< 1} 	= ∅, (5.1)

L
(
t xk, t yk, x2, . . . , xn

) ≤ c(t)L
(
xk, yk, x2, . . . , xn

)
,

t ∈ {
mk, 1 + mk}, m ∈ M, (5.2)∥∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y), x2, . . . , xn

∥∥∥∥∗,β

≤ L
(
xk, yk, x2, . . . , xn

)

(5.3)

for all x, y ∈ R0 and x2, . . . , xn ∈ X , with k ∈ N is fixed. Then, there exists a unique
additive function T : R → X (i.e., T (x + y) = T (x) + T (y) for all x, y ∈ R), such
that:
∥∥∥ f (x) − T (xk), x2, . . . , xn

∥∥∥∗,β
≤ φL(x, x2, . . . , xn), x ∈ R0, x2, . . . , xn ∈ X ,

(5.4)

where:

φL(x, x2, . . . , xn) := inf
m∈M

L
(
xk,mkxk, x2, . . . , xn

)
. (5.5)

Proof Taking y = mx in (5.3), we get:

∥∥∥ f
(

k
√

(1 + mk)xk
)

− f (mx) − f (x), x2, . . . , xn
∥∥∥∗,β

≤ L
(
xk,mkxk, x2, . . . , xn

)
=: εm(x, x2, . . . , xn) (5.6)
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for all x ∈ R0 and x2, . . . , xn ∈ X , with m ∈ N. For each m ∈ N, we will define an
operator Tm : XR → XR by:

Tmξ(x) := ξ
(

k
√

(1 + mk)xk
)

− ξ(mx), ξ ∈ XR, x ∈ R.

Then:

T �
m f (0) = 0, �,m ∈ N, (5.7)

and inequality (5.6) takes the form:

‖Tm f (x) − f (x), x2, . . . , xn‖∗,β ≤ εm(x, x2, . . . , xn)

for all x ∈ R0, x2, . . . , xn ∈ X , and m ∈ N.

Let �m : RR0×Xn−1

+ → R
R0×Xn−1

+ be an operator which is defined by:

�mδ(x, x2, . . . , xn) = max
{
δ
(

k
√

(1 + mk)xk, x2, . . . , xn
)

, δ(mx, x2, . . . , xn)
}

for all δ ∈ R
R0+ , x ∈ R0 and x2, . . . , xn ∈ X . Then, it is easily seen that, for each

m ∈ N, the operator � := �m has the form described in (H3), with j = 2, W = R0
and:

f1(x) = k
√

(1 + mk)xk, f2(x) = mx, K1(x, x2, . . . , xn) = K2(x, x2, . . . , xn) = 1

for all x ∈ R0 and x2, . . . , xn ∈ X . Moreover, for every ξ, μ ∈ XR0 , m ∈ N, x ∈ R0,
and x2, . . . , xn ∈ X , we obtain:

∥∥Tmξ(x) − Tmμ(x), x2, . . . , xn
∥∥∗,β

=
∥∥∥∥ξ

(
k
√

(1 + mk)xk
)

− ξ(mx) − μ

(
k
√

(1 + mk)xk
)

+ μ(mx), x2, . . . , xn

∥∥∥∥∗,β

≤ max
{∥∥ξ( f1(x)) − μ( f1(x)), x2, . . . , xn

∥∥∗,β
,
∥∥ξ( f2(x)) − μ( f2(x)), x2, . . . , xn

∥∥∗,β

}

= max
1≤i≤2

Ki (x, x2, . . . , xn)
∥∥(ξ − μ)( fi (x)), x2, . . . , xn

∥∥∗,β
,

where (ξ − μ)(x) ≡ ξ(x) − μ(x). Therefore, (H4) is valid for Tm with m ∈ N. Note
that, in view of (5.2), we have:

�mεl(x, x2, . . . , xn) ≤ amεl(x, x2, . . . , xn), l,m ∈ N, x ∈ R0, x2, . . . , xn ∈ X .

(5.8)

Using mathematical induction, we will show that for each x ∈ R and x2, . . . , xn ∈ X ,
we have:
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��
mεl(x, x2, . . . , xn) ≤ a�

mεl(x, x2, . . . , xn) (5.9)

for all � ∈ N and m ∈ M. From (5.8), we obtain that the inequality (5.9) holds for
� = 1. Next, we will assume that (5.9) holds for � = r , where r ∈ N. Then, we have:

�r+1
m εl(x, x2, . . . , xn) =�m

(
�r

mεl(x, x2, . . . , xn)
)

= max
{
�r

mεl

(
k
√

(mk + 1)xk , x2, . . . , xn
)

,�r
mεl (mx, x2, . . . , xn)

}

≤ arm max
{
εl

(
k
√

(mk + 1)xk , x2, . . . , xn
)

, εl (mx, x2, . . . , xn)
}

≤ ar+1
m εl(x, x2, . . . , xn).

This shows that (5.9) holds for � = r + 1. Now, we can conclude that the inequality
(5.9) holds for all � ∈ N. Therefore, by (5.9), we obtain that:

lim
�→∞ ��

mεm(x, x2, . . . , xn) = 0

for all x ∈ R0 and m ∈ M. Furthermore, for each � ∈ N0, m ∈ M, x ∈ R0 and
x2, . . . , xn ∈ X , we have:

sup
�∈N0

��
mεm(x, x2, . . . , xn) = εm(x, x2, . . . , xn),

sup
�∈N0

��+1
m εm(x, x2, . . . , xn) = �mεm(x, x2, . . . , xn).

Consequently, by Theorem 4.1 (with W = R0 and ϕ = f ), for each m ∈ M the
mapping F ′

m : R0 → X , given by F ′
m(x) = lim�→∞ T �

m f (x) for x ∈ R0, is a fixed
point of Tm , that is:

F ′
m(x) = F ′

m

(
k
√

(mk + 1)xk
)

− F ′
m(mx), x ∈ R0, m ∈ M.

Moreover:

∥∥ f (x) − F ′
m(x), x2, . . . , xn

∥∥∗,β
≤ sup

�∈N0

��
mεm(x, x2, . . . , xn)

for all x ∈ R0, x2, . . . , xn ∈ X , and m ∈ M0.

Define Fm : R → X by Fm(0) = F ′
m(0) and Fm(x) = F ′

m(x) for x ∈ R0 and
m ∈ M. Then, it is easily seen that, by (5.7):

Fm(x) = lim
�→∞ T �

m f (x), x ∈ R, m ∈ M.

Next, we show that:

∥∥∥T �
m f

(
k
√
xk + yk

)
− T �

m f (x) − T �
m f (y), x2, . . . , xn

∥∥∥∗,β
≤ a�

mL
(
xk , yk , x2, . . . , xn

)
(5.10)
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for every x, y ∈ R0, x2, . . . , xn ∈ X , � ∈ N0, and m ∈ M.
Clearly, if � = 0, then (5.10) is simply (5.3). Therefore, fix � ∈ N0 and suppose that

(5.10) holds for n and every x, y ∈ R0 and x2, . . . , un ∈ X . Then, for every x, y ∈ R0
and x2, . . . , un ∈ X :

∥∥∥T �+1
m f

(
k
√
xk + yk

)
− T �+1

m f (x) − T �+1
m f (y), x2, . . . , xn

∥∥∥∗,β

=
∥∥∥T �

m f
(

k
√

(mk + 1)(xk + yk)
)

− T �
m f

(
m k

√
xk + yk

)
− T �

m f
(

k
√

(mk + 1)xk
)

+ T �
m f (mx)

− T �
m f

(
k
√

(mk + 1)yk
)

+ T n
m f (my), x2, . . . , xn

∥∥∥∗,β

≤ max

{∥∥∥T �
m f

(
k
√

(mk + 1)(xk + yk)
)

− T �
m f

(
k
√

(mk + 1)xk
)

− T �
m f

(
k
√

(mk + 1)yk
)
, x2, . . . , xn

∥∥∥∗,β
,

∥∥∥T �
m f

(
m k

√
xk + yk

)
− T �

m f (mx)

− T �
m f (my), x2, . . . , xn

∥∥∥∗,β

}

≤ max
{
a�
mL

(
(1 + mk)xk , (1 + mk)yk , x2, . . . , xn

)
, a�

mL
(
mkxk ,mk yk , x2, . . . , xn

)}

≤ a�+1
m L

(
xk , yk , x2, . . . , xn

)
.

Thus, by induction, we have shown that (5.10) holds for all x, y ∈ R0, x2, . . . , xn ∈ X
and for all � ∈ N0. Letting � → ∞ in (5.10), we obtain that:

Fm

(
k
√
xk + yk

)
= Fm(x) + Fm(y), x, y ∈ R0, m ∈ M. (5.11)

Therefor, we have proved that for each m ∈ M, there exists a function Fm : R → X
satisfying (1.2) for x, y ∈ R0, such that:

∥∥ f (x) − Fm(x), x2, . . . , xn
∥∥∗,β

≤ sup
�∈N0

��
mεm(x, x2, . . . , xn) = εm(x, x2, . . . , xn)

(5.12)

for all x ∈ R0, x2, . . . , xn ∈ X , and m ∈ M.
Now, we show that Fm = Fl for all m, l ∈ M. Therefore, fix m, l ∈ M. Note

that Fl satisfies (5.11) with m replaced by l. Hence, taking y = mx in (5.11), we get
TmFj = Fj for j = m, l and:

∥∥Fm(x) − Fl(x), x2, . . . , xn
∥∥∗,β

≤ max{εm(x, x2, . . . , xn), εl(x, x2, . . . , xn)}

for all x ∈ R0 and x2, . . . , xn ∈ X . Whence, by (5.9):
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∥∥Fm(x) − Fl (x), x2, . . . , xn
∥∥∗,β

= ∥∥T �
mFm(x) − T �

mFl (x), x2, . . . , xn
∥∥∗,β

≤ max
{
��
mεm(x, x2, . . . , xn),�

�
mεl (x, x2, . . . , xn)

}
≤ a�

m max
{
εm(x, x2, . . . , xn), εl (x, x2, . . . , xn)

}

for all x ∈ R0, x2, . . . , xn ∈ X and � ∈ N0. Letting � → ∞, we get Fm = Fl =: F .
Thus, in view of (5.12), we have proved that:

∥∥ f (x) − F(x), x2, . . . , xn
∥∥∗,β

≤ εm(x, x2, . . . , xn), x ∈ R0, x2, . . . , xn ∈ X , m ∈ M.

Since, in view of (5.11), it is easy to notice that F is a solution to (1.2) and, by
Theorem 3.1, the function F : R → X has the form F(x) = T

(
xk

)
with some

additive function T . Therefore, we derive (5.4).
It remains to prove the statement concerning the uniqueness of F . Therefore, let

G : R → X be also a solution of (1.2) and:

∥∥ f (x) − G(x), x2, . . . , xn
∥∥∗,β

≤ φL(x, x2, . . . , xn), x ∈ R0, x2, . . . , xn ∈ X .

Then:

∥∥F(x) − G(x), x2, . . . , xn
∥∥∗,β

≤ φL(x, x2, . . . , xn), x ∈ R0, x2, . . . , xn ∈ X .

Further TmG = G for each m ∈ N. Consequently, with a fixed m ∈ M:

∥∥F(x) − G(x), x2, . . . , xn
∥∥∗,β

= ∥∥T �
m F(x) − T �

mG(x), x2, . . . , xn
∥∥∗,β

≤ ��
mφL(x, x2, . . . , xn)

≤ ��
mεm(x, x2, . . . , xn)

≤ a�
mεm(x, x2, . . . , xn)

for all x ∈ R0, x2, . . . , xn ∈ X and � ∈ N0. Letting � → ∞, we get F = G. This also
confirms the uniqueness of T . The proof of the theorem is complete. �


The following hyperstability result can be deduced from Theorem 5.1. This result
is a generalization of many works referenced in [16–18].

Corollary 5.2 Let X be a non-Archimedean (n, β)-Banach space. Let f : R → X,
c : N → R+ and L : R0 × R0 × Xn−1 → R+ be functions and the conditions (5.1),
(5.2), and (5.3) be valid. Assume that:

inf
m∈M

L
(
xk,mkxk, x2, . . . , xn

) = 0 (5.13)

for all x ∈ R0 and x2, . . . , xn ∈ X, where k ∈ N is fixed. Then, f satisfies (1.2) for
all x, y ∈ R.
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Proof In view of (5.13), φL(x, x2, · · · , xn) = 0 for each x ∈ R0, x2, . . . , xn ∈ X ,
where φL is defined by (5.5). Hence, from Theorems 3.1 and 5.1, we easily derive that
f is a solution of (1.2) for all x, y ∈ R. �

Corollary 5.3 Let X be a non-Archimedean (n, β)-Banach space. Let c : N → R+
and L : R0 × R0 × Xn−1 → R+ be functions and the conditions (5.1), (5.2) and
(5.13) be valid. Let f : R → X and F : R2 → X be two functions, such that:

∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y)−F(x, y), x2, . . . , xn

∥∥∥∗,β
≤ L

(
xk, yk, x2 . . . , xn

)
,

x, y ∈ R0, x2, . . . , xn ∈ X ,

where k ∈ N is fixed. Assume that the functional equation:

h

(
k
√
xk + yk

)
= h(x) + h(y) + F(x, y), x, y ∈ R0 (5.14)

admits a solution f0 : R → X for x, y ∈ R0, with F(0, 0) = − f0(0). Then, f is a
solution of (5.14) for all x, y ∈ R.

Proof Let g(x) := f (x) − f0(x) for x ∈ R. Then:

∥∥∥g
(

k
√
xk + yk

)
− g(x) − g(y), x2, . . . , xn

∥∥∥∗,β

=
∥∥∥ f

(
k
√
xk + yk

)
− f0

(
k
√
xk + yk

)
− f (x) + f0(x) − f (y)

− F(x, y) + f0(y) + F(x, y), x2, . . . , xn
∥∥∥∗,β

≤ max

{∥∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y) − F(x, y), x2, . . . , xn

∥∥∥∥∗,β

,

∥∥∥∥ f0

(
k
√
xk + yk

)
− f0(x) − f0(y) − F(x, y), x2, . . . , xn

∥∥∥∥∗,β

}

=
∥∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y) − F(x, y), x2, . . . , xn

∥∥∥∥∗,β

≤ L
(
xk , yk , x2, . . . , xn

)
, x2, . . . , xn ∈ X , x, y ∈ R0.

It follows from Corollary 5.2 that g satisfies the functional equation (1.2) for all
x, y ∈ R. Therefore:

f

(
k
√
xk + yk

)
− f (x) − f (y) − F(x, y) = g

(
k
√
xk + yk

)
− g(x) − g(y)

+ f0

(
k
√
xk + yk

)
− f0(x) − f0(y) − F(x, y) = 0

for all x, y ∈ R. �
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6 Some Consequences

According to Theorem 5.1 and Corollaries 5.2, 5.3, we derive three natural examples
of functions L and c satisfying the conditions (5.1) and (5.2). Namely, for:

(i) L(x, y, x2, . . . , xn) := ε|x |p|y|q‖z, x2, . . . , xn‖∗,β;
(ii) L(x, y, x2, . . . , xn) := ε

(|x |p|y|q + |x |p+q + |y|p+q
)‖z, x2, . . . , xn‖∗,β;

(iii) L(x, y, x2, . . . , xn) := ε
(
α1|x |s1 + α2|y|s2

)w‖z, x2, . . . , xn‖∗,β

for all x, y ∈ R0, x2, . . . , xn ∈ X , and for some arbitrary element z ∈ X and
ε, p, q, si , w ∈ R, such that ε ≥ 0, p + q < 0, αi > 0 and wsi < 0 for i = 1, 2.

Corollary 6.1 Let X be a non-Archimedean (n, β)-Banach space and ε, p, q ∈ R,

with ε ≥ 0 and p + q < 0. Suppose that f : R → X satisfies the inequality:

∥∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y), x2, . . . , xn

∥∥∥∥∗,β

≤ ε|x |p|y|q‖z, x2, . . . , xn‖∗,β

for all x, y ∈ R0 and x2, . . . , xn ∈ X and for some arbitrary element z ∈ X , with
k ∈ N is fixed. Then, the following two statements are valid.

(a) If q ≥ 0, then there exists a unique additive function T : R → X for all x, y ∈ R,

such that:
∥∥∥ f (x) − T (xk), x2, . . . , xn

∥∥∥∗,β
≤ ε|x |p+q‖z, x2, . . . , xn‖∗,β ,

x ∈ R0, x2, . . . , xn ∈ X .

(b) If q < 0, then f satisfies (1.2) for all x, y ∈ R.

Proof Let L
(
xk, yk, x2, . . . , xn

) := ε|x |p|y|q‖z, x2, . . . , xn‖∗,β and c(t) = t (p+q)/k

in Theorem 5.1 for all x, y ∈ R0 and x2, . . . , xn ∈ X and for some arbitrary element
z ∈ X , where t ∈ N and p, q, ε ∈ R, such that ε ≥ 0 and p + q < 0, then we get
that the condition (5.2) is valid. Obviously, (5.13) holds if q < 0, but if q ≥ 0, then
infm∈M L

(
xk,mkxk, x2, . . . , xn

) = L
(
xk, xk, x2, . . . , xn

)
. On the other hand, there

exists m0 ∈ N, such that:

max{c(mk), c(mk + 1)} = mp+q < 1, m ≥ m0.

Therefore, we obtain (5.1), as well. Then, by Theorem 5.1 and Corollary 5.2, we get
the desired results. �

Corollary 6.2 Let X be a non-Archimedean (n, β)-Banach space and ε, p, q ∈ R,

such that ε ≥ 0, p + q < 0 and q < 0. Let f : R → X and F : R2 → X be two
functions, such that:

∥∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y) − F(x, y), x2, . . . , xn

∥∥∥∥∗,β

≤ ε|x |p|y|q‖z, x2, . . . , xn‖∗,β
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for all x, y ∈ R0 and x2, . . . , xn ∈ X and for some arbitrary element z ∈ X , with
k ∈ N is fixed. Assume that the functional equation:

g

(
k
√
xk + yk

)
= g(x) + g(y) + F(x, y), x, y ∈ R0 (6.1)

admits a solution g0 : R → X for x, y ∈ R0 with F(0, 0) = −g0(0). Then, f is a
solution of (6.1) for all x, y ∈ R.

Corollary 6.3 Let X be a non-Archimedean (n, β)-Banach space and ε, p, q ∈ R,

such that ε ≥ 0 and p + q < 0. Suppose that f : R → X satisfies the inequality:

∥∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y), x2, . . . , xn

∥∥∥∥∗,β

≤ ε
(|x |p |y|q + |x |p+q + |y|p+q )‖z, x2, . . . , xn‖∗,β

for all x, y ∈ R0 and x2, . . . , xn ∈ X and for some arbitrary element z ∈ X , with
k ∈ N is fixed. Then, the following two statements are valid.

(a) If q > 0, then there exists a unique additive function T : R → X for all x, y ∈ R,

such that:

∥∥∥ f (x) − T (xk ), x2, . . . , xn
∥∥∥∗,β

≤ 3ε|x |p+q‖z, x2, . . . , xn‖∗,β , x ∈ R0, x2, . . . , xn ∈ X .

(b) If q = 0, then there exists a unique additive function T : R → X for all x, y ∈ R,
such that:∥∥∥ f (x) − T (xk ), x2, . . . , xn

∥∥∥∗,β
≤ 2ε|x |p+q‖z, x2, . . . , xn‖∗,β , x ∈ R0, x2, . . . , xn ∈ X .

(c) If q < 0, then there exists a unique additive function T : R → X for all x, y ∈ R,
such that:∥∥∥ f (x) − T (xk ), x2, . . . , xn

∥∥∥∗,β
≤ ε|x |p+q‖z, x2, . . . , xn‖∗,β , x ∈ R0, x2, . . . , xn ∈ X .

Proof Let L
(
xk, yk, x2, . . . , xn

) := ε
(|x |p|y|q +|x |p+q +|y|p+q

)‖z, x2, . . . , xn‖∗,β

and c(t) = t (p+q)/k in Theorem 5.1 for all x, y ∈ R0 and x2, . . . , xn ∈ X and for
some arbitrary element z ∈ X , where t ∈ N and ε, p, q ∈ R, such that ε ≥ 0 and
p + q < 0, then we get that the condition (5.2) is valid. Obviously:

inf
m∈M

L
(
xk,mkxk, x2, . . . , xn

) = ε|x |p+q‖z, x2, . . . , xn‖∗,β if q < 0,

inf
m∈M

L
(
xk,mkxk, x2, . . . , xn

) = 2ε|x |p+q‖z, x2, . . . , xn‖∗,β if q = 0

and

inf
m∈M

L
(
xk,mkxk, x2, . . . , xn

) = 3ε|x |p+q‖z, x2, . . . , xn‖∗,β if q > 0.
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On the other hand, there exists m0 ∈ N, such that:

max{c(mk), c(mk + 1)} = mp+q < 1, m ≥ m0.

Therefore, we obtain (5.1), as well. Then, by Theorem 5.1, we get the desired results.
�


Corollary 6.4 Let X be a non-Archimedean (n, β)-Banach space and ε, si , w, αi ∈ R,

such that ε ≥ 0, αi > 0 and wsi < 0 for i = 1, 2. Suppose that f : R → X satisfies
the inequality:

∥∥∥∥ f

(
k
√
xk + yk

)
− f (x) − f (y), x2, . . . , xn

∥∥∥∥∗,β

≤ ε
(
α1|x |s1 + α2|y|s2

)w‖z, x2, . . . , xn‖∗,β

for all x, y ∈ R0 and x2, . . . , xn ∈ X and for some arbitrary element z ∈ X , with
k ∈ N is fixed. Then, the following two statements are valid.

(a) If w > 0, then there exists a unique additive function T : R → X for all
x, y ∈ R, such that:

∥∥∥ f (x) − T (xk), x2, . . . , xn
∥∥∥∗,β

≤ εαw
1 |x |s1w‖z, x2, . . . , xn‖∗,β .

(b) If w < 0, then there exists a unique additive function T : R → X for all
x, y ∈ R, such that:

∥∥∥ f (x) − T (xk), x2, . . . , xn
∥∥∥∗,β

≤ ε(α1 + α2)
w|x |s0w‖z, x2, . . . , xn‖∗,β

for all x ∈ R0, and all x2, . . . , xn ∈ X and for some arbitrary element z ∈ X , where:

s0 :=
{
max{s1, s2} if w > 0;
min{s1, s2} if w < 0.

Proof Let L
(
xk, yk, x2, . . . , xn

) := ε
(
α1|x |s1 + α2|y|s2

)w‖z, x2, . . . , xn‖∗,β and
c(t) = t s0w/k in Theorem 5.1 for all x, y ∈ R0 and x2, . . . , xn ∈ X and for some
arbitrary element z ∈ X , where t ∈ N and ε, αi , si , w ∈ R, such that wsi < 0, αi >

and ε ≥ 0 for i ∈ {0, 1, 2}, with:

s0 :=
{
max{s1, s2} if w > 0;
min{s1, s2} if w < 0.

Then, we get that the condition (5.2) is valid. Obviously:

{
infm∈M L

(
xk ,mkxk , x2, . . . , xn

) = εαw
1 |x |s1w‖z, x2, . . . , xn‖∗,β if w > 0;

infm∈M L
(
xk ,mkxk , x2, . . . , xn

) = ε(α1 + α2)
w|x |s0w‖z, x2, . . . , xn‖∗,β if w < 0.
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On the other hand, there exists m0 ∈ N, such that:

max{c(mk), c(mk + 1)} = mws0 < 1, m ≥ m0.

Therefore, we obtain (5.1), as well. Then, by Theorem 5.1, we get the desired results.
�
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7. Brzdęk, J.: Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hung. 141(1–2),
58–67 (2013)
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