ORIGINAL PAPER

Some Notes on *b***-Weakly Compact Operators**

Masoumeh Mousavi Amiri1 · Kazem Haghnejad Azar¹

Received: 8 January 2019 / Revised: 23 November 2019 / Accepted: 5 December 2019 / Published online: 26 December 2019 © Iranian Mathematical Society 2019

Abstract

The main aim of this paper is studying the family $W_b(E, F)$ of *b*-weakly compact operators between two Banach lattices. For an order dense sublattice *G* of a vector lattice E , if $T : G \to F$ is a *b*-weakly compact operator between two Banach lattices, then $T \in W_b(E, F)$ whenever the norm of *E* is order continuous and $T : E \to F$ is a positive operator. We also investigate the relationship between $W_b(E, F)$ and some other classes of operators like $L_c^{(1)}(E, F)$ and $L_c^{(2)}(E, F)$.

Keywords Banach lattice · Order continuous norm · *b*-weakly compact operator

Mathematics Subject Classification 46B42 · 47B60

1 Introduction and Preliminaries

An operator *T* from a Banach lattice *E* to a Banach space *X* is said to be *b*-weakly compact, if the image of every *b*-order bounded subset of *E* (that is, order bounded in the topological bidual E'' of E) under T is relatively weakly compact. The authors in [\[8](#page-4-0)] proved that an operator *T* from a Banach lattice *E* into a Banach space *X* is *b*weakly compact if and only if ${T x_n}_n$ is norm convergent for every positive increasing sequence $\{x_n\}_n$ of the closed unit ball B_E of *E*. The class of all *b*-weakly compact operators between *E* and *X* will be denoted by $W_b(E, X)$. The class of *b*-weakly compact operators was firstly introduced by Alpay et al. [\[3\]](#page-4-1). One of the interesting properties of the class of *b*-weakly compact operators is that it satisfies the domination property. Some more investigations on $W_b(E, X)$ were done by [\[3](#page-4-1)[–5](#page-4-2)[,7](#page-4-3)[,8](#page-4-0)].

Masoumeh Mousavi Amiri masoume.mousavi@gmail.com

Communicated by Hamid Reza Ebrahimi Vishki.

 \boxtimes Kazem Haghnejad Azar haghnejad@uma.ac.ir

¹ Department of Mathematics and Applications, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

In this paper, we continue the investigation on $W_b(E, X)$. In the first section, we provide some prerequisites. The second section is devoted to the main results. We mainly focus on the inclusion relationship between $W_b(E, X)$ with some known class of operators. We also study those Banach lattices for which the modulus of an order bounded operator is *b*-weakly compact.

1.1 Some Basic Definitions

Let *E* be a vector lattice. An element $e > 0$ in *E* is said to be an order unit whenever for each $x \in E$ there exists a $\lambda > 0$ with $|x| \leq \lambda e$. A sequence (x_n) in a vector lattice is said to be disjoint whenever $|x_n| \wedge |x_m| = 0$ holds for $n \neq m$. A vector lattice is called Dedekind complete whenever every nonempty bounded above subset has a supremum. For an operator $T : E \to F$ between two vector lattices, we shall say that its modulus |*T*| exists whenever $|T| := T \vee (-T)$ exists in the sense that |*T*| is the supremum of the set $\{-T, T\}$. An operator $T : E \to F$ between two vector lattices is called order bounded if it maps order bounded subsets of *E* into order bounded subsets of *F*. An operator $T : E \to F$ is said to be positive if $T(x) \ge 0$ in *F* whenever $x \ge 0$ in *E*. Note that each positive linear operator on a Banach lattice is continuous and order bounded. A Banach lattice E has order continuous norm if $||x_{\alpha}|| \rightarrow 0$ for every decreasing net (x_α) with $\inf_\alpha x_\alpha = 0$. If *E* is a Banach lattice, its topological dual *E'*, endowed with the dual norm and dual order, is also a Banach lattice. A Banach lattice *E* is said to be an *AM*-space if for each *x*, $y \in E^+$ such that $x \wedge y = 0$, we have $||x \lor y|| = max(||x||, ||y||)$. A Banach lattice *E* is said to be a *K B*-space whenever each increasing norm bounded sequence of E^+ is norm convergent. It is known that every reflexive Banach lattice is a *K B*-spaces. Moreover, each *K B*-space has order continuous norm. Recall that an operator *T* from a Banach lattice *E* into a Banach space *X* is said to be order weakly compact, if it maps each order bounded subset of *E* into a relatively weakly compact subset of *X*, i.e., $T[-x, x]$ is relatively weakly compact in *X* for each $x \in E^+$.

A positive linear operator $T : E \to F$ is called almost interval preserving if $T[0, x]$ is dense in [0, Tx] for every $x \in E^+$. Let *E* be a vector lattice. A sequence $(x_n) \subset E$ is called order convergent to *x* if there exists a sequence (y_n) such that $y_n \downarrow 0$ and for some n_0 , $|x_n - x| \le y_n$ for all $n \ge n_0$. We will write $x_n \xrightarrow{o_1} x$ when (x_n) is order convergent to *x*. A sequence (x_n) in a vector lattice *E* is strongly order convergent to $x \in E$, denoted by $x_n \stackrel{o_2}{\longrightarrow} x$ whenever there exists a net (y_β) in *E* such that $y_\beta \downarrow 0$ and that for every β , there exists a n_0 such that $|x_n - x| \leq y_\beta$ for every $n \geq n_0$. It is clear that every order convergent sequence is strongly order convergent.

For more information concerning the Banach lattice and the related topics, we refer the reader to [\[2](#page-4-4)[,10\]](#page-5-0).

2 Results

We commence with the following result showing that if an operator is *b*-weakly compact on some order dense sublattice, then it will be *b*-weakly compact on the whole space.

Theorem 2.1 *Let E and F be two Banach lattices such that the norm of E is order continuous and let* $T : E \rightarrow F$ *be a positive operator. Then, for an order dense sublattice G* of *E*, if $T \in W_b(G, F)$ *then* $T \in W_b(E, F)$ *.*

Proof. Let (*xn*) be a bounded positive increasing sequence in *E*. Since *G* is order dense in *E*, from [\[2,](#page-4-4) Theorem 1.34] we have $\{y \in G : 0 \le y \le x_n\} \uparrow x_n$, for every *n*. Let $(y_{mn})_m \subset G$ with $0 \le y_{mn} \uparrow x_n$ for every *n* and set $z_{mn} = \vee_{i=1}^n y_{mi}$. It follows that $z_{mn} \uparrow_m x_n$ and $\sup_{m,n} \|z_{mn}\| \leq \sup_n \|x_n\| < \infty$. Now, if $T \in W_b(G, F)$, then (Tz_{mn}) is norm convergent to some $y \in F$. Then, from

$$
||Tx_n - Tz_{mn}|| \le ||T|| ||x_n - z_{mn}|| \le ||T|| ||x_n - y_{mn}|| \to 0,
$$

we get

$$
||Tx_n - y|| \le ||Tx_n - Tz_{mn}|| + ||Tz_{mn} - y||;
$$

and this completes the proof.

Definition 2.2 Let *E* and *F* be two vector lattices. We define $L_c^{(1)}(E, F)$ (resp. $L_c^{(2)}(E, F)$) as the collection of all order bounded operators *T* for which $x_n \stackrel{o_1}{\rightarrow} 0$ (resp. $x_n \stackrel{o_2}{\rightarrow} 0$) implies $Tx_{n_k} \stackrel{o_1}{\rightarrow} 0$ (resp. $Tx_{n_k} \stackrel{o_2}{\rightarrow} 0$) for some subsequence (x_{n_k}) of (*xn*).

It should be noted that $L_c^{(1)}(E, F) = L_c^{(2)}(E, F)$ when *F* is Dedekind complete, see for example [\[1](#page-4-5)], in which there are also examples showing that these two collections can be different.

Theorem 2.3 *Let E and F be two Banach lattices such that the norm of E is order continuous. Then*

- (1) $W_b(E, F)^+ \subseteq L_c^{(2)}(E, F)$.
- (2) If $W_b(E, F)$ *is a vector lattice and* F *is Dedekind complete, then* $W_b(E, F)$ *is an order ideal of* $L_c^{(1)}(E, F) = L_c^{(2)}(E, F)$.
- *Proof.* (1) Let $T \in W_b(E, F)^+$ and let $(x_n) \subset E$ be a strongly order convergent sequence. Without lose of generality, we assume that $0 \leq x_n \stackrel{o_2}{\rightarrow} 0$, which follows that (x_n) is norm convergent to zero. Set (x_{n_i}) as a subsequence with $\sum_{j=1}^{\infty} ||x_{nj}|| < \infty$. Define $y_m = \sum_{j=1}^m x_{nj}$. Then, (y_m) is bounded and $0 \le y_m$ ↑. Since *T* is a *b*-weakly compact operator, $(T y_m)$ is norm convergent to some point *z* ∈ *F*. Using [\[9,](#page-5-1) Lemma 3.11], $(T y_m)$ has a subsequence $(T y_{m_k})$ strongly order convergent to $z \in F$. Thus, there exists a net $(z_\beta) \subset F^+$ with the property that for each β there exists some n_0 such that if $k \geq n_0$, then $|Ty_{m_k} - z| \leq z_{\beta} \downarrow 0$. Consequently

$$
0 \leq Tx_{n_{m_k}} \leq |Ty_{m_k} - Ty_{m_{k'}}|
$$

\n
$$
\leq |Ty_{m_k} - z| + |Ty_{m_{k'}} - z|
$$

\n
$$
\leq z_{\beta} + z_{\beta} \downarrow 0,
$$

for every $k \ge k' \ge n_0$, which confirms that $T \in L_c^{(2)}(E, F)$ as required.

(2) By [\[2,](#page-4-4) Corollary 4.10], *E* is Dedekind complete, so by Dedekind completeness of *F*, $L_c^{(2)}(E, F) = L_c^{(1)}(E, F)$. Furthermore, since $W_b(E, F)$ is a vector lattice, it follows from part (1) that $W_b(E, F)$ is a subspace of $L_c^{(1)}(E, F)$. Now proof follows from the fact that $W_b(E, F)$ satisfies the domination property.

We need the following elementary lemma in some of the forthcoming results in this section.

Lemma 2.4 *Let E and X be Banach spaces and let T* : $E \rightarrow X$ *be a bounded linear operator with closed range. Then*

- (1) *If T is compact, then T is of finite rank.*
- (2) *If T is weakly compact, then T* (*E*) *is reflexive.*
- *Proof.* (1) If *T* is compact, then $T(U)$ is relatively norm compact, where *U* is the open unit ball in E . On the other hand, by the open mapping theorem, $T(U)$ is open. It follows that the Banach subspace $T(E)$ of X is locally compact, so it must be of finite dimensional, as claimed.
- (2) If *T* is weakly compact, then $T(B)$ is relatively weakly compact, where *B* denotes the closed unit ball in *E*. This fact together with the equality $T(E) = \bigcup_{n \in \mathbb{N}} nT(B)$ implies that the unit closed ball in $T(E)$ is weakly compact. Consequently, $T(E)$ must be reflexive.

Proposition 2.5 *Let E be a Banach lattice and let X be a non-reflexive Banach space. If* $T : E \to X$ *is a surjective b-weakly compact operator, then the norm of* E' *is not order continuous.*

Proof If the norm of E' is order continuous, then by [\[7,](#page-4-3) Theorem 2.2] *T* must be weakly compact and Lemma [2.4](#page-3-0) implies that *X* is reflexive which is a contradiction.

Proposition 2.6 *Let E and F be two Banach lattices such that the norm of F is order continuous. If* $T : E \to F$ *is an injective almost interval preserving and b-weakly compact operator with closed range, then E is reflexive.*

Proof Since *T* has closed range, we may assume, without loss of generality, that *T* is onto. Thus, $T : E \rightarrow F$ is a bijection between two Banach spaces and it follows that $T' : F' \to E'$ is also a bijection. On the other hand, since *T* is almost interval preserving, by $[10,$ Theorem 1.4.19], T' is a lattice homomorphism, so by $[2,$ Theorem 2.15], both T' and $(T')^{-1}$ are positive operators. Since the norm of F' is order continuous, by [\[2](#page-4-4), Theorem 4.59], F' is a KB -space, so T' is *b*-weakly compact and the norm of E' is also order continuous. Since T is *b*-weakly compact, by [\[7,](#page-4-3) Theorem 2.2], T is weakly compact. It follows that T' is also weakly compact. Now Lemma [2.4](#page-3-0) implies that E' must be reflexive, so E is reflexive, as claimed.

Proposition 2.7 *Let E be a Banach lattice, X be a Banach space and let T* : $E \rightarrow$ *X be an injective b-weakly compact operator with closed range. Then, E is finitedimensional when either of the following conditions hold.*

- (1) *E is an AM -space with order continuous norm.*
- (2) *E is an AM -space and E is discrete.*

Proof Similar to the proof of Proposition [2.6,](#page-3-1) we may assume that *T* is onto, so $T' : X' \to E'$ is a also onto. Then by [\[8,](#page-4-0) Proposition 2.3], *T* is a compact operator under either of the conditions (1) and (2). Thus, T' is compact. Now, by Lemma [2.4,](#page-3-0) E' is finite dimensional. Hence, E is finite dimensional.

Theorem 2.8 *For two Banach lattices E and F, if E has order unit and the norm of F* is order continuous, then every order bounded operator $T : E \rightarrow F$ is b-weakly *compact operator.*

Proof Let $T : E \to F$ be a bounded operator and take a bounded increasing sequence (x_n) in *E*. Let $e \in E^+$ be an order unit for *E*. For each $x \in E$, the norm $||x||_{\infty} =$ $\inf{\lambda > 0 : |x| \leq \lambda e}$ on *E* is equivalent to the original norm, so it follows that $\sup_n ||x_n||_{\infty} < \infty$. For each $n \in \mathbb{N}$, there exists a $\lambda_n > 0$ such that $\lambda_n \le ||x_n||_{\infty} + 1$ and $|x_n| \leq \lambda_n e$. Then, we get

$$
0 < \lambda = \sup \lambda_n \le \sup_n \|x_n\|_{\infty} + 1 < \infty.
$$

In particular, $(x_n) \subseteq [-\lambda e, \lambda e]$. Now since *F* has order continuous norm, it is Dedekind complete, and so T^+ exists. It follows that $(T^+x_n) \subseteq T^+[-\lambda e, \lambda e] \subseteq$ $[-T^+\lambda e, T^+\lambda e]$. By [\[2,](#page-4-4) Theorem 4.9], $[-T^+\lambda e, T^+\lambda e]$ is weakly compact, and so there is a subsequence (T^+x_n) of (T^+x_n) which is weakly convergent to some point $z \in F$. Since (T^+x_n) is an increasing sequence, (T^+x_n) is norm convergent to *z*, so *T*⁺ ∈ *W_b*(*E*, *F*). A similar argument reveals that *T*[−] ∈ *W_b*(*E*, *F*). We thus conclude that *T* = *T*⁺ − *T*[−] ∈ *W_b*(*E*, *F*). that $T = T^+ - T^- \in W_b(E, F)$.

Acknowledgements We would like to thank the anonymous referee for his/her very careful reading of the manuscript and bring to our attention the reference [\[6](#page-4-6)] which significantly improved the results.

References

- 1. Abramovich, Y., Sirotkin, G.: On order convergence of nets. Positivity **9**, 287–292 (2005)
- 2. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Berlin (2006)
- 3. Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices. Positivity **7**, 135–139 (2003)
- 4. Alpay, S., Altin, B., Tonyali, C.: A note on Riesz spaces with property-b. Czechoslovak Math. J. **56**, 765–772 (2006)
- 5. Alpay, S., Altin, B.: A note on *b*-weakly compact operators. Positivity **11**, 575–582 (2007)
- 6. Alpay, S., Altin, B.: On Riesz spaces with *b*-property and *b*-weakly compact operators. Vladikavkaz. Mat. Zh. **11**, 19–26 (2009)
- 7. Aqzzouz, B., Elbour, A.: On the weak compactness of *b*-weakly compact operators. Positivity **14**, 75–81 (2010)
- 8. Aqzzouz, B., Moussa, M., Hmichane, J.: Some Characterizations of *b*-weakly compact operators. Math. Rep. **62**, 315–324 (2010)
- 9. Gao, N., Xanthos, F.: Unbounded order convergence and application to martingales without probability. J. Math. Anal. Appl. **415**, 931–947 (2014)
- 10. Meyer-Nieberg, P.: Banach Lattices, Universitex. Springer, Berlin (1991)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.