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Abstract
Based on the matrix unfolding technique of a tensor, three easily checkable sufficient
conditions for the M-positive definiteness of fourth-order partially symmetric tensors
are given. Numerical examples show that the proposed results are efficient.
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1 Introduction

The equilibrium equations [1,2]

ci1i2i3i4(1 + ∇u)ui3,i4i2 = 0 (1.1)

are of great importance in the theory of elasticity [3], where ui (X)(i = 1, 2, 3) is the
displacement field (X is the coordinate of a material point in the reference configura-
tion), ci1i2i3i4 is the component of elastic modulus tensor C = (ci1i2i3i4) ∈ R

3×3×3×3

and has the following property:

ci1i2i3i4 = ci2i1i3i4 = ci1i2i4i3 = ci3i4i1i2 , ∀i1, i2, i3, i4 ∈ 〈3〉 = {1, 2, 3}.
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and Eq. (1.1) is strongly elliptic if and only if

Cxyxy =
3∑

i1,i2,i3,i4=1

ci1i2i3i4xi1 yi2xi3 yi4 > 0 (1.2)

holds for all unit vector x ∈ R
3 and y ∈ R

3. For common usage, (1.2) is called the
strong ellipticity condition. In the past several decades, considerable effort has been
made to seek the sufficient or necessary criteria for the strong ellipticity condition
such as literatures [4–9]. However, easily verifiable criteria are few because Cxyxy
in (1.2) can be equivalently written as Axyxy, where A = (ai1i2i3i4) ∈ R

3×3×3×3

is a partially symmetric tensor, that is, ai1i2i3i4 = ai3i2i1i4 = ai1i4i3i2 = ai3i4i1i2 and
ai1i2i3i4 = 1

4 (ci1i2i3i4 + ci3i2i1i4 + ci1i4i3i2 + ci3i4i1i2). In 2009, Qi et al. [10] presented
that the strong ellipticity condition holds if and only if the partially symmetric tensor
A is M-positive definite which is defined as follows. Without loss of generality, in this
paper, we consider a more general partially symmetric tensor, that is,A = (ai1i2i3i4) ∈
R
m×n×m×n with

ai1i2i3i4 = ai3i2i1i4 = ai1i4i3i2 = ai3i4i1i2 ,∀i1, i3 ∈ 〈m〉 = {1, 2, . . . ,m}, ∀i2, i4 ∈ 〈n〉.

Definition 1.1 [10] A partially symmetric tensor A = (ai1i2i3i4) ∈ R
m×n×m×n is

called an M-positive definite tensor, if

Axyxy =
m∑

i1,i3=1

n∑

i2,i4=1

ai1i2i3i4xi1 yi2xi3 yi4 > 0 (1.3)

holds for any unit vectors x = (xi ) ∈ R
m and y = (yi ) ∈ R

n .

Qi et al. [10] proved that a fourth-order real partially symmetric tensor is M-positive
definite if and only if its smallest M-eigenvalue is positive, whereas the computation
for the M-eigenvalues of a partially symmetric tensor is difficult. To derive checkable
criteria for the M-positive definiteness of partially symmetric tensors, we use another
method to seek these criteria in this paper. Specifically, using the matrix unfolding
technique of a tensor, we give three easily verifiable sufficient conditions for the M-
positive definiteness of fourth-order partially symmetric tensors. Numerical examples
show that the proposed results are efficient.

2 Main Results

We first give one checkable criterion to identify the M-positive definiteness of fourth-
order real partially symmetric tensors.

Theorem 2.1 Let A = (ai1i2i3i4) ∈ R
m×n×m×n be a partially symmetric tensor with

positive diagonal entries {ai ji j }m,n
i, j=1. Then A is M-positive definite, if
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ai ji j >
∑

i3∈〈m〉,i4∈〈n〉,
ςi j i3i4=0

|ai ji3i4 |, ∀i ∈ 〈m〉, ∀ j ∈ 〈n〉, (2.1)

where

ςi j i3i4 =
{
1, i3 = i and i4 = j,
0, otherwise.

Proof Suppose thatA is not M-positive definite, by Definition 1.1, there exist at least
one x ∈ R

m\{0} and one y ∈ R
n\{0} such that

0 ≥ Axyxy =
∑

i1,i3∈〈m〉,
i2,i4∈〈n〉

ai1i2i3i4xi1 yi2xi3 yi4 . (2.2)

To derive contradiction, we unfold the tensor A = (ai1i2i3i4) ∈ R
m×n×m×n into a

matrix A = (akh) ∈ R
mn×mn by the following bijective mapping:

akh = ai1i2i3i4 , (2.3)

where

k = i1 + (i2 − 1)m, h = i3 + (i4 − 1)m,

and we unfold the nonzero matrix xyT = (xi y j ) ∈ R
m×n into a vector w = (wk) ∈

R
mn\{0}, where wk = xi1 yi2 . Obviously, the unfolding matrix A is symmetric since

the partial symmetry of A, and Axyxy can be equivalently rewritten as wTAw, i.e.
Axyxy = wTAw. From (2.2), we know that 0 ≥ wTAw, whichmeans that the unfold-
ing matrix A is not positive definite. By the properties of positive definite matrices
[11], we know that A is not a strictly diagonal dominant matrix, i.e. there is at least
one index k′ = i ′1 + (i ′2 − 1)m such that

ak′k′ ≤
mn∑

h 
=k′,
h=1

|ak′h |. (2.4)

Note that (2.4) is equivalent to

ai ′1i ′2i ′1i ′2 ≤
∑

i3∈〈m〉,i4∈〈n〉,
ςi ′1i ′2i3i4=0

|ai ′1i ′2i3i4 |,

which contradicts with (2.1). Hence, A is M-positive definite. ��
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Remark 2.2 From the proof of Theorem 2.1, we conclude that the positive definiteness
of the unfoldingmatrix A implies theM-positive definiteness of the partially symmetric
tensor A. Hence, using other properties of the positive definite matrices, we can give
other criteria for the M-positive definiteness of fourth-order real partially symmetric
tensors.

For instance, based on the fact that double strictly diagonal dominant symmetric
matrices [11] with positive diagonal entries are positive definite, the second criterion
for the M-positive definiteness of fourth-order real partially symmetric tensors can be
easily obtained.

Corollary 2.3 Let A = (ai1i2i3i4) ∈ R
m×n×m×n be a partially symmetric tensor with

positive diagonal entries {ai ji j }m,n
i, j=1. Then A is M-positive definite, if

ai ji j · aklkl >

⎛

⎜⎜⎝
∑

i3∈〈m〉,i4∈〈n〉,
ςi j i3i4=0

|ai ji3i4 |

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝
∑

i3∈〈m〉,i4∈〈n〉,
ςkli3i4=0

|akli3i4 |

⎞

⎟⎟⎠ (2.5)

holds for all i, k ∈ 〈m〉, j, l ∈ 〈n〉 and ςi jkl = 0.

Proof Assume that A is not M-positive definite, then similar to the proof of The-
orem 2.1, we know that the unfolding matrix A is not positive definite. From the
properties of positive definite matrices, we confirm that A is not a double strictly
diagonal dominant symmetric matrix, i.e. there are at least two different indexes
j ′ = i ′1 + (i ′2 − 1)m, k′ = l ′1 + (l ′2 − 1)m, where i ′1, l ′1 
= k′ ∈ 〈m〉 and i ′2, l ′2 ∈ 〈n〉,
such that

a j ′ j ′ · ak′k′ ≤

⎛

⎜⎜⎝
mn∑

h 
= j ′,
h=1

|a j ′h |

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝
mn∑

h 
=k′,
h=1

|ak′h |

⎞

⎟⎟⎠ . (2.6)

By (2.3), we know that (2.6) is equivalent to

ai ′1i ′2i ′1i ′2 · al ′1l ′2l ′1l ′2 ≤

⎛

⎜⎜⎜⎝
∑

i3∈〈m〉,i4∈〈n〉,
ςi ′1i ′2i3i4=0

|ai ′1i ′2i3i4 |

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝
∑

i3∈〈m〉,i4∈〈n〉,
ςl′1l′2i3i4=0

|al ′1l ′2i3i4 |

⎞

⎟⎟⎟⎠ ,

which contradicts with (2.5). Therefore, A is M-positive definite. ��
Remark 2.4 Given a partially symmetric tensorA = (ai1i2i3i4) ∈ R

m×n×m×n , it is not
difficult to see that the criterion (2.1) holds implies that the criterion (2.5) must hold,
but the converse is not necessarily true.

Besides, according to the position of the eigenvalue inclusion sets [12] of the unfold-
ing matrix in the complex plane, we can judge whether the corresponding partially
symmetric tensor A is M-positive definite or not.
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Corollary 2.5 Let A = (ai1i2i3i4) ∈ R
m×n×m×n be a partially symmetric tensor. Then

A is M-positive definite, if

�(A)
⋂

C
− = ∅ or K(A)

⋂
C

− = ∅, (2.7)

where

�(A) =
⋃

i∈〈m〉, j∈〈n〉

⎧
⎪⎪⎨

⎪⎪⎩
z ∈ C : |z − ai ji j | ≤

∑

i3∈〈m〉,i4∈〈n〉,
ςi j i3i4=0

|ai ji3i4 |

⎫
⎪⎪⎬

⎪⎪⎭
,

K(A) =
⋃

i,k∈〈m〉, j,l∈〈n〉,
ςi jkl=0

⎧
⎪⎪⎨

⎪⎪⎩
z ∈ C : |z − ai ji j ||z − aklkl | ≤

⎛

⎜⎜⎝
∑

i3∈〈m〉,i4∈〈n〉,
ςi j i3i4=0

|ai ji3i4 |

⎞

⎟⎟⎠

·

⎛

⎜⎜⎝
∑

i3∈〈m〉,i4∈〈n〉,
ςkli3i4=0

|akli3i4 |

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
,

and C
− = {z ∈ C : Re(z) ≤ 0}.

Proof Provided that A is not M-positive definite, by the proof of Theorem 2.1, we
know that the unfolding matrix A is not positive definite. According to the eigenvalue
properties of positive definite matrices, we confirm that both regions of the GerLsgorin
set [12] �(A) and the Brauer set [12] K(A) of A cannot be located only in the right
half complex plane, i.e.

�(A)
⋂

C
− 
= ∅ and K(A)

⋂
C

− 
= ∅, (2.8)

where

�(A) =
⋃

k∈〈mn〉

⎧
⎪⎪⎨

⎪⎪⎩
z ∈ C : |z − akk | ≤

∑

j∈〈mn〉,
j 
=k

|akj |

⎫
⎪⎪⎬

⎪⎪⎭
,

and

K(A) =
⋃

k,h∈〈mn〉,
h 
=k

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
z ∈ C : |z − akk ||z − ahh | ≤

⎛

⎜⎜⎜⎝
∑

j∈〈mn〉,
j 
=k

|ak j |

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝
∑

j∈〈mn〉,
j 
=h

|ahj |

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.
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Using (2.3) and replacing A with A in (2.8), we have

�(A)
⋂

C
− 
= ∅ and K(A)

⋂
C

− 
= ∅,

which contradicts with (2.7). Hence, A is M-positive definite. ��
Next we use two examples to illustrate that above criteria are efficient.

Example 2.6 Consider the partially symmetric tensor A1 = (ai1i2i3i4) ∈ R
3×3×3×3

with

a1111 = 6, a2211 = 0.2, a3211 = 1.5, a3311 = 2, a1221 = 0.2, a2121 = 1,

a1231 = 1.5, a1331 = 2, a3131 = 4, a1212 = 3, a2112 = 0.2, a3112 = 1.5,

a3212 = 0.2, a1122 = 0.2, a2222 = 1, a3222 = −0.2, a3322 = −0.2,

a1132 = 1.5, a1232 = 0.2, a2232 = −0.2, a2332 = −0.2, a3232 = 4.3,

a1313 = 3, a3113 = 2, a2323 = 2, a3223 = −0.2, a1133 = 2, a2233 = −0.2,

a3333 = 5 and ai1i2i3i4 = 0, otherwise.
By computing, we find thatA1 satisfies both the condition (2.1) of Theorem 2.1 and

the condition (2.5) of Corollary 2.3; therefore,A1 is M-positive definite. Additionally,
we draw the regions generated by the set K(A1) and the set �(A1) in Fig. 1. From
Fig. 1, we know that

K(A1) ⊂ �(A1) and �(A1)
⋂

C
− = ∅,

whichmeans thatA1 satisfies the condition (2.7) of Corollary 2.5; so, we also conclude
that A1 is M-positive definite.

In fact, for all x, y ∈ R
3 with xTx = 1 and yTy = 1, we have

A1xyxy = 6x21 y
2
1 + 0.8x1x2y1y2 + 6x1x3y1y2 + 8x1x3y1y3 + x22 y

2
1 + 4x23 y

2
1

+3x21 y
2
2 + 0.4x1x3y

2
2 + x22 y

2
2 − 0.4x2x3y

2
2 − 0.8x2x3y2y3 + 4.3x23 y

2
2

+3x21 y
2
3 + 2x22 y

2
3 + 5x23 y

2
3

Fig. 1 K(A1) ⊂
�(A1) and �(A1)

⋂
C

− = ∅
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= (0.8x1y1 + 0.5x2y2)
2 + (1.6x1y2 + 1.875x3y1)

2 + (2x1y1 + 2x3y3)
2

+(0.5x1y2 + 0.4x3y2)
2 + (0.2x2y2 − x3y2)

2 + (0.8x2y2 − 0.5x3y3)
2

+(1.36x21 + x22 + 0.484375x23 )y
2
1 + (0.19x21 + 0.07x22 + 3.14x23 )y

2
2

+(3x21 + 2x22 + 0.75x23 )y
2
3

> 0.

By Definition 1.1, we know that A1 is M-positive definite, which also illustrates that
the proposed results are efficient.

Example 2.7 Consider the elastic modulus tensor C = (ci1i2i3i4) ∈ R
3×3×3×3 in equi-

librium Eq. (1.1), where C belongs to the rhombic system with nine elasticities [3],
that is,

c1111 = 6, c2222 = 8, c3333 = 10, c1122 = 1, c2211 = 1, c2233 = 2, c3322 = 2,

c1133 = 3, c3311 = 3, c2323 = 4, c3223 = 4, c2332 = 4, c3232 = 4, c1212 = 5,

c2112 = 5, c1221 = 5, c2121 = 5, c1313 = 6, c3113 = 6, c1331 = 6, c3131 = 6

and ci1i2 j1 j2 = 0, otherwise.
To identify whether equilibrium Eq. (1.1) is strongly elliptic or not, we transfer C

into a partially symmetric tensor A2 = (ai1i2i3i4) ∈ R
3×3×3×3 by taking

ai1i2i3i4 = 1

4
(ci1i2i3i4 + ci3i2i1i4 + ci1i4i3i2 + ci3i4i1i2), ∀i1, i2, i3, i4 ∈ 〈3〉.

By computing, we have

a1111 = 6, R11(A2) = 7.5; a1212 = 5, R12(A2) = 3; a1313 = 6, R13(A2) = 4.5;
a2121 = 5, R21(A2) = 3; a2222 = 8, R22(A2) = 6; a2323 = 4, R23(A2) = 3;
a3131 = 6, R31(A2) = 4.5; a3232 = 4, R32(A2) = 3; a3333 = 10, R33(A2) = 7.5.

It is obvious that A2 does not satisfy condition (2.1) of Theorem 2.1 but satisfies
condition (2.5) of Corollary 2.3; hence, A2 is M-positive definite, which means that
equilibrium Eq. (1.1) is strongly elliptic. Additionally, we draw the regions generated
by K(A2) and �(A2) in Fig. 2. From Fig. 2, we know that

K(A2) ⊂ �(A2), �(A2)
⋂

C
− 
= ∅, but K(A2)

⋂
C

− = ∅,

which means that A2 satisfies the condition (2.7) of Corollary 2.5.
Therefore, we conclude that A2 is M-positive definite, and then equilibrium Eq.

(1.1) is strongly elliptic.

Remark 2.8 Examples 2.6 and 2.7 also illustrate the conclusion of Remark 2.4 is
correct.

123



1462 Bulletin of the Iranian Mathematical Society (2020) 46:1455–1463

Fig. 2 K(A2) ⊂ �(A2),
�(A2)

⋂
C

− 
=
∅, but K(A2)

⋂
C

− = ∅

3 Conclusions

We give three easily verifiable sufficient conditions for the M-positive definiteness of
fourth-order real partially symmetric tensors using the matrix unfolding technique of
a tensor. Numerical examples show that the proposed results are efficient. Actually,
except for the above three sufficient conditions, we can give many other checkable cri-
teria for the M-positive definiteness by other subclasses of H-matrices and eigenvalue
inclusion sets of matrices [12,13].
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