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Abstract
A new definition of connectedness of an object in a category with respect to a closure
operator is given. It is shown that many of the classical results about connectedness of
topological spaces, under mild conditions, hold in an arbitrary category. In particular
it is shown that the image of a connected object is connected; that the union and the
product of connected objects are connected. Several illustrative examples are provided.
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1 Introduction and Preliminaries

Closure operators and connectedness of objects in a category with respect to a closure
operator have been investigated by several authors, [2–8,12,13], among others.

In the current paper, we give yet another definition of connectedness of an object
in a category with respect to a closure operator.

In [13], the definition of connectedness is based on the idea that a topological space
is connected if there is no nontrivial closed subset A of X , such that X\A is closed
too.

The definition given in this paper is based on the idea that a topological space is
connected if there are no two non-empty closed subsets A and B of X , such that
A ∩ B = ∅ and X = A ∪ B (or equivalently X\(A ∪ B) = ∅).
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It turns out that in a category, the connectedness (given in this paper) is generally
stronger than that given in [13], and that under certain conditions the two coincide.

In [13], the category is assumed to befinitely complete and the classMofmonomor-
phisms, on which the closure operator is defined, is assumed to be the right part of a
proper and stable factorization structure; while in this paper, there is no assumption
on the category and the class M is not as restricted.

We give several classical results about connectedness under mild hypotheses. In
particular in Sect. 2, we give the definition of connectedness of an object in a category,
providing several examples; in Sect. 3, we prove that the image of a connected object
under a morphism is connected; in Sect. 4, we define two kind of unions (joins) and
we prove that the union of mutually disjoint connected objects is connected; and in
Sect. 5, we show that the product of two connected objects is connected.

Under conditions that the connectedness here and the one given in [13] coincide,
the results not provided in [13], such as connectedness of union and connectedness of
product of objects, can be deduced.

To this end, in the rest of this section, we establish some notation and give some
preliminaries needed in the subsequent sections.

For a classM of morphisms, we denote byM/X the class of isomorphism classes
of monomorphisms inM with codomain X .

Denoting by a ∧ b the diagonal of the pullback of a along b and calling it meet of
a and b, we have:

Definition 1.1 A classM of monomorphisms in a category C is called a domain, if:

(1) it contains all the identities;
(2) it is stable under pullbacks, i.e., for all m ∈ M/X and f : Y X in C, the

pullback f −1(m) of m along f exists and is inM/Y ;
(3) for all X ∈ C,M/X is closed under binary meets;
(4) for all X ∈ C,M/X has a minimum (also called zero).

A class M that satisfies only (1)–(3) is called a weak domain; and a domain that is
closed under composition is called a strong domain.

We remark that conditions 1 and 2 yield thatM contains all the isomorphisms and is
closed under composition with isomorphisms, on both sides and that the meet induces
a preorder, denoted by ≤, onM/X which is up to isomorphism a partial order.

Denoting the minimum ofM/X by oX : OX −→ X , we have:

Lemma 1.2 Let M be a strong domain.

(a) Suppose that in the commutative triangle:

A
i

j

C

B

m

i, j , and m are inM. Then, i = oC if and only if j = oB. In this case, OB = OC.
(b) For all C ∈ C, oOC = 1OC .
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Proof (a) Suppose i = oC . Given k ∈ M/B, we have mk ∈ M/C . Therefore,
i ≤ mk, implying mj ≤ mk. Therefore, j ≤ k. Hence, j = oB .

Now, suppose that j = oB . Given k ∈ M/C , we havem−1(k) ∈ M/B. Therefore,
j ≤ m−1(k), implying that mj ≤ mm−1(k). Therefore, i = mj ≤ mm−1(k) =
kk−1(m) ≤ k.

(b) Given C ∈ C, let B = OC and m = oC : B C . By part (a), we have
moB = oC . Therefore, moB = m, implying that oB = 1B , as required. 	


For a, b ∈ M/X , defining the joint negation ¬{a, b} to be the largest element of
M/X whose meet with both a and b is oX and the negation ¬a to be the largest
element of M/X whose meet with a is oX , we have:

Lemma 1.3 Let M be a strong domain in C and a, b ∈ M/X. Then:

(a) for all f ∈ C, f −1(a ∧ b) = f −1(a) ∧ f −1(b).
(b) for all m : M −→ X inM, m−1(oX ) = oM.
(c) for all m ∈ M, m−1(¬{a, b}) = ¬{m−1(a),m−1(b)}.
Proof All parts can be proved by straightforward computations. Parts (b) and (c) use
Lemma 1.2. That M be a strong domain is needed only in (c). 	


2 Connectedness

Recall that, [8]:

Definition 2.1 Let M be a weak domain in C. A closure operator c, on C, relative to
M is a family c = (cX )X∈C of maps cX : M/X → M/X , such that for every X ∈ C:
(1) (Extension) m ≤ cX (m) for all m ∈ M/X ;
(2) (Monotonicity) if m ≤ m′ inM/X , then cX (m) ≤ cX (m′);
(3) (Continuity) cX ( f −1(n)) ≤ f −1(cY (n)) for all f : X Y and n ∈ M/Y .

A morphism m ∈ M/X is called c-closed if cX (m) = m and c-dense if cX (m) = 1X .
Note that for any morphism f : X Y , if n ∈ M/Y is c-closed, then so is

f −1(n) ∈ M/X ; and that the conditions on M are weaker than those in [8], where
M is assumed to be part of a factorization structure.

Definition 2.2 (a) LetM be a domain in C and a, b ∈ M/X . b is said to be a quasi-
complement of a if a ∧ b = oX and ¬{a, b} = oX . In this case, we also say that
a and b are quasi-complements.

(b) With a closure operator c on C relative to M, we say that a and b are c-closed
quasi-complements, if they are c-closed and quasi-complements.

Remark 2.3 The pseudo-complement ¬a of a (if it exists), see [13], is a quasi-
complement of a.

Definition 2.4 LetM be a domain in C and c be a closure operator on C relative toM.
An object X of C is said to be c-connected if whenever a and b inM/X are c-closed
quasi-complements, then a = oX or b = oX .
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Remark 2.5 If an object X is connected, then the only closed quasi-complement of
a non-zero closed subobject of X must be oX . Therefore, by Remark 2.3, the closed
pseudo-complement of a non-zero closed subobject of X (if it exists) is oX . Therefore,
X is connected in the sense of [13]. The converse holds whenever for all non-zero
closed subobjects a of X , if a non-zero closed quasi-complement of a exists, then the
pseudo-complement of a exists and is closed.

Therefore, if the category C satisfies the conditions of [13], and the above condition
holds, then the connectedness here and the one given in [13] coincide.

Example 2.6 Let C be the category Top of topological spaces.

(1) LetM be the collection of initial monos and c be the Kuratowski closure operator.
Then, a topological space is c-connected if and only if it is connected in the
classical sense.

(2) Let M be the collection of all monos. For each X ∈ C and a in M/X , define

cX (a) to be the inclusion Īa X with induced topology, where Ia is the

image of A under a and Īa is the Kuratowski closure of Ia . One can verify that
c = {cX (a) : X ∈ C, a ∈ M/X} is a closure operator on C relative to M.
Since a ∈ M/X is c-closed if and only if it is initial and closed with respect
to Kuratowsky closure operator, the c-connectedness coincides with the classical
one.

Recalling that a preradical r in the category R-mod of R-modules is a subfunctor
of the identity functor of R-mod, any preradical r gives a closure operator cr of R-
mod, such that for a mono m : B A , crA(B) = π−1(r(A/Im)), where Im is
the image and π is the cokernel of m, [8].

Example 2.7 Let C be the category Ab of abelian groups and M be the collection of
all monos.

(1) For the preradical t defined by the torsion subgroup,

t(A) = {a ∈ A : (∃n ∈ Z)n > 0 and na = 0}
the corresponding closure operator ct , for m ∈ M/A is given by:

ctA(m) = {a ∈ A : (∃n ∈ Z)n > 0 and na ∈ Im}.
(a) Any abelian group A for which t(A) = 0 is ct -connected because for any

ct -closed m and n in M/A, m ∧ n = 0. Therefore, by Remark 2.5, it is
connected in the sense of [13]. While for A = Z2 ⊕ Z, for which t(A) = 0,
it is not connected in the sense of [7].

(b) The free abelian group Z of integers is ct -connected, because every non-zero
m ∈ M/Z is ct -dense. Therefore, it is connected in the sense of [13]. It can
be verified that it is not in the sense of [7].

(c) The group A = Z ⊕ Z, where ⊕ denotes the direct sum, is ct -connected,
because if b and c are any two non-zero ct -closed members of M/A, such
that b ∧ c = 0, then for some integers m, n, r , s ∈ Z, Ib = 〈(m, n)〉 and
Ic = 〈(r , s)〉, and so for d : 〈(m + r , n + s)〉 A , we have d ∧ b =
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d ∧ c = 0, implying that ({b, c} ⇒ 0A) = 0A if it exists.

Connectedness in the sense of [13] follows. It can be shown that it is not
connected in the sense of [7].

(2) For the preradical f defined by the Frattini subgroup:

f (A) = ∩{M : M is a maximal (proper) subgroup of A}
the corresponding closure operator c f , for m ∈ M/A is given by:

c f
A(m) = ∩{M : M is a maximal subgroup of A containing Im }.

(a) Zp is c f -connected, because it does not have any nontrivial subgroup. There-
fore, it is connectedness in the sense [13]. Simple verification shows that it is
not in the sense of [7].

(b) Consider the abelian group A = Zp ⊕Zq . Since (Zp ⊕Zq)/(Zp ⊕ 0) ≡ Zq ,
f ((Zp ⊕Zq)/(Zp ⊕ 0)) ≡ f (Zq) = 0, implying that a : Zp ⊕ 0 A

is c f -closed. Similarly, b : 0 ⊕ Zq A is c f -closed. Since A is cyclic,

the only nontrivial subgroups of A are Zp ⊕ 0 and 0 ⊕ Zq . Therefore, if for
m ∈ M/A, m ∧ a = 0 and m ∧ b = 0, then m = 0. This shows (a, b) is
a c f -closed partition of A. Therefore, A is not c f -connected in the sense of
[13], and therefore not c f -connected. It can be shown that it is not connected
in the sense of [7].

(c) Let A = Zpn and n ≥ 2. The subgroups of Zpn are 〈pi 〉 for i = 0, ..., n.
Since Zpn/〈pi 〉 = Z pi , we have f (Zpn/〈pi 〉) = f (Zpi ). If i ≥ 2, then
f (Zpi ) = 0. Therefore, the only c f -closed subgroup of Zpn is 〈p〉. Thus,
Zpn is c f -connected. Therefore, it is c f -connected in the sense of [13]. It is
not connected in the sense of [7].

The following example shows connectedness and connectedness in the sense of
[13] are not the same, due to non-existence of pseudo-complements.

Example 2.8 Let C be the category generated by the following preordered set:

A1
a1

A2

a2

A3
a3

O X

B1

b1

B2

b2

B3

b3

M be the collection of all morphisms and consider the identity closure operator c on
C, relative toM.

One can verify that an∧bm = oX and¬{an, bm} = oX . Since an and bm are c-closed
and non-zero, X is not c-connected. However. for all n, An and Bn are c-connected.

Since neither an nor bn has a pseudo-complement, there is no c-closed partition of
X . Thus. X is c-connected in the sense of [13]. One can verify that it is c-connected
in the sense of [7].
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In the following example, connectedness and connectedness in the sense of [13]
are not the same, this time due to non-closedness of pseudo-complement.

Example 2.9 Let C be the category generated by the following preordered set:

A
b

g

B
e

O

a

c

X

C
d

h

D
f

where the two triangles commute.
WithM the collection of all morphisms, we define the closure operator c as follows:
In C/O, C/A, C/B, C/C , and C/D, all morphisms are c-closed, while in C/X , e

and f are c-dense and the rest are c-closed.
The only c-closed subobjects of X are oX , g, h and 1X . One can easily verify

that g ∧ h = oX and ¬{g, h} = oX , so that g and h are non-zero c-closed quasi-
complements. Hence, X is not c-connected. However,¬g = f and¬h = e. Therefore,
in the sense of [13], X is c-connected.

3 Image of a Connected Object is Connected

In this section, we introduce the notion of fine epi and use it to show that the image of
a connected object under a fine epi is connected.

Definition 3.1 Let M be a domain in C. A morphism f : X Y is said to be

M-fine epi, if for any i : I � Y inM, f −1(i) = oX implies i = oY .
When the domainM is the collection of all the monos whose pullback along every

morphism exist, then M-fine epi is also called fine epi.

Example 3.2 Let M be a domain and f : X Y be a morphism in C.

(1) If f −1(oY ) = oX , then f isM-fine epi.

This follows from the fact that for i ∈ M/Y , f −1(oY ) ≤ f −1(i).
(2) If f is a retraction, then it is M-fine epi.

Let i : B Y inM/Y be given, such that the following square is a pullback.

OX
i−1( f )

f −1(i)=oX

B

i

X
f

Y
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Since i−1( f ) is a retraction, there is s : B OX , such that i−1( f )s = 1B .

To show i = oY , let a : A Y be given inM/Y . Since oX ≤ f −1(a), there
is h, such that oX = f −1(a)h. We have aa−1( f )hs = f f −1(a)hs = f oX s =
i i−1( f )s = i , implying that i ≤ a, as desired.

(3) Suppose that all morphisms in C with domain OX are mono. If f is stable regular
epi, then f isM-fine epi.

With i as in part 2, i−1( f ) is regular epi. Since it is by hypothesis mono, it is an
isomorphism. An argument similar to part 2 shows that i = oY .

(4) Suppose that C is balanced and all morphisms in C with domain OX are mono. If
f is stable epi, then f isM-fine epi.

(5) With C the following poset, O → A is epi but not M-fine epi, while A → B is
both epi and M-fine epi.

O A B .

Extending the concept of essential module, [9], to essential homomorphism, by
calling an R-module homomorphism f : X Y essential if Y is an essential
extension of f (X), which is equivalent to, for all y ∈ Y , f (X) ∩ Ry = 0 yields
y = 0, we have:

Example 3.3 In the category Rmod of R-modules, with R a commutative ring with
identity, a morphism f : X Y is fine epi, if and only if it is not mono or it is
essential mono. In particular, every essential, hence epi, is fine epi.

Suppose that f : X Y is fine epi and mono. Let y ∈ Y , such that f (X) ∩
Ry = 0. Since f is mono, we get f −1(Ry) = 0. Since f is fine epi, Ry = 0 and so
y = 0. Hence, f is essential mono.

Conversely if f is not mono, then f −1(0) = 0. Therefore, by part (1) of Exam-
ple 3.2, f is fine epi and if it is essential mono, then let i : B Y be mono, such
that f −1(i) = 0. For b ∈ B, set y = i(b). Since f −1(Ry) = 0,we get f (X)∩Ry = 0.
Therefore, y = 0 and thus, b = 0. Hence, B = 0 as desired.

Example 3.4 In the category Set of sets, a morphism is fine epi if and only if it is epi.
Suppose f is fine epi. Let i : Y − f (X) Y be the inclusion. Then, f −1(i) =

∅. Thus, Y − f (X) = ∅, and so, Y = f (X). Hence, f is epi. The converse is true by
part 4 of Example 3.2.

Example 3.5 Let (C, | |) be a concrete category over X , [1],MC be a domain in C and
M be a domain in X . Suppose that | | takes MC elements to M elements, preserves
pullbacks, and preserves and reflects zeros. If | f | is M-fine epi, then f is MC-fine
epi. If in addition structured M elements lift to MC elements, then the converse is
true.

In particular, in the construct Top of topological spaces, a morphism is fine epi if
and only if it is surjective.

Let i : B Y be in MC/Y , such that f −1(i) = oX . Since | | preserves
pullbacks and zeros, | f |−1(|i |)) = o|X |. Now, | f | is M-fine epi, so |i | = o|Y |. Since
| | reflects zeros, we get i = oY .
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For the converse, let i ′ : B ′ |Y | be in M/|Y |, such that | f |−1(i ′) = o|X |.
Let i : B Y be a lift in MC , of i ′. By preservation of pullbacks, we have
| f −1(i)| = | f |−1(i ′) = o|X |, and so, f −1(i) = oX . Since f is MC-fine epi, i = oY .
Therefore, i ′ = |i | = o|Y |.

Definition 3.6 A (weak, strong) domain M in C is said to have images, if for all

f : X Y , the map f −1() : M/Y M/X has a left adjoint f ().

Example 3.7 Let M be a strong domain with images. If f : X → Y is a morphism,
such that for any i : B → Y in M/Y for which f −1(i) = oX , (i−1( f ))(1OX ) = 1B ,
then f isM-fine epi.

Let the morphism i : B Y in M/Y be such that f −1(i) = oX . The map

i−1( f )() : M/OX M/B being a left adjoint, preserves zeros and by part (2)

of Lemma 1.2, oOX = 1OX . Therefore, oB = i−1( f )(oOX ) = i−1( f )(1OX ) = 1B .
Thus, by part 1 of Lemma 1.2, oY = ioB = i1B = i .

Recalling that a collection M of morphisms is called a quasi-right factorization
structure in C, [11], if, for every f ∈ C, there is a smallest m ∈ M, called a quasi-
right part of f , such that f ≤ m; and that when M is a collection of monos whose
pullbacks along every morphism exits, then a quasi-right factorization structure is a
right factorization structure, we have:

Proposition 3.8 A weak domain M is a (quasi) right factorization structure in C if
and only if it is a weak domain with images.

Proof The proof for quasi-right factorization structure follows from the fact that for
each f ∈ C and i ∈ M, such that f i is defined, a quasi-right part of f i corresponds
to f (i), [11]. Since, when M consists of monos, as is the case here, quasi-right
factorization structures are right factorization structures, the result follows. 	

Example 3.9 Let the domain M be a quasi-right factorization structure in C that is
closed under composition. If f : X → Y is amorphism, such that for any i : B → Y in
M/Y for which f −1(i) = oX , a quasi,right part of i−1( f ) is 1B , then by Example 3.7,
f isM-fine epi.
AlsoM is a right factorization structure, and since it is closed under composition,

by [8], there is a collection E , such that (E,M) is a factorization structure. Therefore,
if f : X → Y is a morphism, such that for any i : B → Y in M/Y for which
f −1(i) = oX , the map i−1( f ) is in E , then f is M-fine epi. In particular, if E is
pullback stable, then every E-morphism isM-fine epi.

Saying a morphism f reflects (closed) quasi-complements, if whenever a and b are
(closed) quasi-complements, then so are f −1(a) and f −1(b), we have:

Theorem 3.10 LetM be a domain in C and c be a closure operator on C relative toM.
Suppose that f : X Y isM-fine epi and f reflects closed quasi-complements.
If X is c-connected, then so is Y .
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Proof Let a and b inM/Y be closed quasi-complements. Since X is c-connected and
f −1(a) and f −1(b) are c-closed, f −1(a) = oX or f −1(b) = oX . f being a fine epi,
yields a = oY or b = oY . Therefore, Y is c-connected. 	

Example 3.11 Since in the category Top and in every Topos, [10], implications and
zeros are stable under pullbacks, every morphism reflects quasi-complements. There-
fore, by Theorem 3.10, every fine epi preserves connectedness.

4 Union of Connected Objects is Connected

In this section, we first define two different joins (unions), and then, we show that the
union of connected objects is connected in both cases, each under certain conditions.

Definition 4.1 Let M be a domain in C. For i and j in M/X , define i � j if for any
k ∈ M/X , k ∧ j = oX implies k ∧ i = oX . We write i ∼ j , whenever i � j and
j � i .

Lemma 4.2 (M/X ,�) is a preordered class.

Proof Obvious. 	

Definition 4.3 Let M be a domain in C and {aα : α ∈ I } ⊆ M/X . a ∈ M/X is
called:

(a) a join of {aα}, denoted by ∨aα , if it is a join relative to the preorder ≤.
(b) a prime join of {aα}, denoted by �paα , if for any b ∈ M/X , b ∧ a = oX if and

only if for all α ∈ I , b ∧ aα = oX .

Proposition 4.4 Let M be a domain in C and {aα : α ∈ I } ⊆ M/X.

(a) Both join and prime join, if they exist, are unique up to ∼.
(b) For any b ∈ M/X, b ∧ �paα ∼ �p (b ∧ aα).
(c) If ∨aα exists and commutes with meet, then ∨aα is a prime join.

Proof Follows from straightforward computations. 	

Example 4.5 Let C be the category Top of topological spaces.

(1) LetM be the collection of allmonos. for a : A X inM/X , let Ia = a(A)

be the set image of A under a. One can easily verify that:

(a) a ∧ b is the inclusion Ia ∩ Ib X , where for i = a−1(b) and j =
b−1(a), the topology of Ia∩ Ib is generated by the subbase {i−1(G), j−1(H) :
G open in A and H open in B}.

(b) a ≤ b if and only if Ia ⊆ Ib and that the inclusion Ia Ib is continuous,
where Ia and Ib have topologies induced by the isomorphisms Ia ∼= A and
Ib ∼= B, respectively.

(c) a � b if and only if Ia ⊆ Ib.
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(d) The negations of a and {a, b} in M/X are respectively the inclusions
¬a : X − Ia X and ¬{a, b} : X − (Ia ∪ Ib) X with induced
topologies.

(e) ∨aα is the inclusion ∪Iaα X , with the coinduced topology from all
IAα .

(f) �paα is the inclusion ∪Iaα X , with any topology containing the
induced topology.

(2) Let M be the collection of all initial monos, i.e., monos with induced topology.

(a) a ∧ b is the inclusion Ia ∩ Ib X , with induced topology.

(b) a ≤ b if and only if Ia ⊆ Ib. In this case, the inclusion Ia Ib is initial,
where Ia and Ib have topologies induced by the isomorphisms Ia ∼= A and
Ib ∼= B, respectively.

(c) a � b if and only if Ia ⊆ Ib, i.e., a � b if and only if a ≤ b.
(d) The negations of a and {a, b} in M/X are, respectively, the inclusions

¬a : X − Ia Xand ¬{a, b} : X − (Ia ∪ Ib) X with induced
topologies.

(e) ∨aα = �paα is ∪Iaα X , with induced topology.

Example 4.6 Let C be the category Rmod of R-modules over a commutative ring R
with identity andM be the collection of all monos. for a : A X inM/X , let
Ia = a(A) be the set image of A under a. One can easily verify that:

(1) a ∧ b is Ia ∩ Ib X , with submodule structure.

(2) a ≤ b if and only if Ia ⊆ Ib and that the inclusion Ia Ib is a module
homomorphism, where Ia and Ib have module structures induced by the isomor-
phisms Ia ∼= A and Ib ∼= B, respectively.

(3) a � b if and only if Ia ∩ Ib Ia is essential.
(4) The negations, ¬a and ¬{a, b}, do not exist in general.
(5) ∨aα is the inclusion � Iaα X with submodule structure, where for each

α, Iaα has the module structure induced by the isomorphism Iaα
∼= Aα .

(6) The existence of �paα , in general, is not known.

Example 4.7 Let C be the category generated by the following preordered set:

A1
a1

A2

a2

A3
a3

O X

B1

b1

B2

b2

B3

b3

which has pullbacks. Let M be the collection of all morphisms, A = {ai : i ∈ N} ⊆
M/X and ∅ = A′ ⊆ A.

Every ai is a prime join of A′. If A′ is finite, then the join of A′ is the ai ∈ A′
with maximum index, which is a stable join as well; and ifA′ is infinite, then the join
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of A′ is 1X , which is not a stable join. Since for any b j ,
∨

ai∈A′(ai ∧ b j ) = O , but
(
∨

ai∈A′ ai ) ∧ b j = 1X ∧ b j = b j , we conclude that 1X is not a prime join of A′.
For any ai and b j , ai ∨ b j = 1X , which is not stable because (ai ∨ b j ) ∧ ai+1 =

1X ∧ ai+1 = ai+1, but (ai ∧ ai+1) ∨ (b j ∧ ai+1) = ai ∨ 0 = ai . One can verify that
1X is also a prime join of ai and b j

Example 4.8 Let C be the category generated by the preordered set:

B
b

0 A

a

a′
C

c
X

D
d

which has pullbacks. LetM be the collection of all morphisms. One can easily verify
that inM/X , 1X is the join of b and c, and that ca′, b and c are prime joins of b and c.

Example 4.9 Let C be the category generated by the preordered set:

A

0 B ... D2 D1

C

which has pullbacks. Let M be the collection of all morphisms. Denoting the maps
from A to Di by ai , etc, and the maps from Di to D1 by di , consider a1 and b1 in
M/D1. Neither a join nor a prime join of a1 and b1 exists.

Lemma 4.10 Let M be a strong domain in C. Then, every m : M −→ X in M/X
reflects quasi-complements.

Proof Let a, b ∈ M/X be quasi-complements. Using Lemma 1.3, we have
m−1(a) ∧ m−1(b) = m−1(a ∧ b) = m−1(oX ) = oM , and ¬{m−1(a),m−1(b)} =
m−1(¬{a, b}) = m−1(oX ) = oM . Hence, m−1(a) and m−1(b) are quasi-
complements. 	

Theorem 4.11 LetM be a strong domain in C and c be a closure operator on C relative
to M. Suppose that m : M → X in M is c-dense and for any k ∈ M/X, m � k
implies cX (m) ≤ cX (k). If M is c-connected, then so is X.

Proof Let i and j inM/X be closed quasi-complements. Using Lemma 4.10,m−1(i)
and m−1( j) are closed quasi-complements. Since M is c-connected, m−1(i) = oM
or m−1( j) = oM . In case m−1(i) = oM , by Lemma 1.2, we get m ∧ i = oX . Now,
m � j , because if k ∧ j = oX , then k ∧ m ∧ i = oX and k ∧ m ∧ j = oX implies
k ∧ m = oX . Now, by hypothesis, cX (m) ≤ cX ( j). Since m is dense and j is closed,
1X ≤ j , implying that j = 1X . Since i ∧ j = oX , we get i = oX . Similarly, in case
m−1( j) = oM , we get j = oX . Hence, X is c-connected. 	
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Calling a collection {aα} ⊆ M/X mutually intersecting if for allα andβ, aα∧aβ =
oX , we have:

Theorem 4.12 LetM be a strong domain in C and c be a closure operator on C relative
toM. Suppose that the mutually intersecting collection {aα : Aα → X} ⊆ M/X has
a join a : A → X that commutes with meet. If for every α, Aα is c-connected, then so
is A.

Proof Without loss of generality, we assume for all α, aα = oX . Let i and j in
M/A be closed quasi-complements. Since a is a join of {aα}, for each α, a morphism
bα : Aα A exists, such that aα = abα . By the fact that for every α, bα is in

M, Lemma 4.10 implies b−1
α (i) and b−1

α ( j) are closed quasi-complements. Since Aα

is connected, for each α, b−1
α (i) = oAα or b−1

α ( j) = oAα .
If there is α0, such that b−1

α0
(i) = oAα0

, and there is α1, such that b−1
α1

( j) = oAα1
,

then by above b−1
α0

( j) = oAα0
and b−1

α1
(i) = oAα1

. By Lemma 1.2, it follows that
(bα0 ∧ bα1) ∧ i = oA and (bα0 ∧ bα1) ∧ j = oA. Therefore, bα0 ∧ bα1 = oA. Thus,
aα0 ∧ aα1 = a(bα0 ∧ bα1) = oX , which is a contradiction whether α0 = α1 or not.
Therefore, either for every α, b−1

α (i) = oAα or for every α, b−1
α ( j) = oAα .

If for every α, b−1
α (i) = oAα , then aα ∧ (ai) = (abα) ∧ (ai) = a(bα ∧ i) = oX .

Since a commutes with binary meet, a ∧ (ai) = oX . Therefore, ai = oX , implying
that i = oA. Similarly if for every α, b−1

α ( j) = oAα , then j = oA. Hence, either
i = oA or j = oA. 	

Example 4.13 Let Top be the category of topological spaces, M be the collection of
initial monos, and c be the Kuratowski closure operator. By Example 2.6 and the fact
that all the requirements of Theorem 4.12 are met, the theorem gives the known classic
result about topological spaces.

Definition 4.14 LetM be a (weak) domain in C. A closure operator c on C relative to
M is said to be strongly continuous if for a : A → X inM/X satisfying a ∼ 1X , we
have acA(i) = cX (ai), for every i ∈ M/A.

Remark 4.15 If the preorders � and ≤ onM/X coincide, then every closure operator
relative toM is strongly continuous.

Example 4.16 Let C be the category Top of topological spaces.

(1) LetM be the collection of all initial monos, [1]. Then, any closure operator rela-
tive to M, in particular the Kuratowski closure operator, is strongly continuous,
because for a ∈ M/X , a ∼ 1X if and only if a ∼= 1X .

(2) LetM be the collection of all monos and c be as in Example 2.6. c is not strongly
continuous, because for a = 1X : (X , T1) (X , T2) , where T1 ⊇ T2, a ∼
1(X ,T1), but it is not necessarily closed.

Example 4.17 Let C be the category Ab of abelian groups.

(1) The closure operator ct introduced in Example 2.7 is not strongly continuous,
because for a : {0̄, 2̄} ↪→ Z4, a ∼ 1Z4 , but it is not c

t -closed.
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(2) Also the closure operator c f introduced in Example 2.7 is not strongly continuous
because for a : 4Z ↪→ Z, a ∼ 1Z, but it is not c f -closed.

Lemma 4.18 LetM be a strong domain in C. Consider the following pullback square:

D

a−1(b)

b−1(a)
B

b

A a X

If a � b, then

(a) a−1(b) ∼ 1A.
(b) Let c be a strongly continuous closure operator on C relative toM. If j ∈ M/B

is c-closed, then so is a−1(bj).

Proof (a) Let k ∧ a−1(b) = oA. We have (ak) ∧ b = a(k ∧ a−1(b)) = aoA = oX .
Since a � b, (ak) ∧ a = oX . Therefore, ak = oX , and thus, by Lemma 1.2,
k = oA.

(b) Let d = b−1(a). Since j is c-closed, d−1( j) is c-closed. By part (a), we
have a−1(bj) = a−1(b)d−1( j) = a−1(b)cD(d−1( j)) = cA(a−1(b)d−1( j))
= cA(a−1(bj)), as required.

	

Lemma 4.19 Let M be a strong domain in C, and let a : A X and

b : B X be inM/X, such that a � b. If i, j ∈ M/B are quasi-complements,
then so are a−1(bi) and a−1(bj).

Proof Using Lemma 1.3, we have a−1(bi)∧ a−1(bj) = a−1(b(i ∧ j)) = a−1(oX ) =
oA. To show¬{a−1(bi), a−1(bj)} = oA, let k ∈ M/A, such that k∧a−1(bi) = oA and
k∧a−1(bj) = oA. The former yields b(b−1(ak)∧i) = ak∧bi = a(k∧a−1(bi)) = oX
and so by Lemma 1.2, b−1(ak) ∧ i = oB ; and the latter gives b−1(ak) ∧ j = oB . We
get b−1(ak) = oB . Therefore, ak ∧ b = bb−1(ak) = oX . Since a � b, ak ∧ a = oX ,
and since ak ≤ a, ak = oX . Thus, k = oA. 	


Note that the above Lemma holds, when the inequality a � b is replaced by the
stronger inequality a ≤ b.

Theorem 4.20 LetM be a strong domain in C and c be a strongly continuous closure
operator on C relative to M. Suppose that the mutually intersecting collection {aα :
Aα → X} ⊆ M/X has a prime join a : A → X. If for every α, Aα is c-connected,
then so is A.

Proof Without loss of generality, we assume for all α, aα = oX . Let i, j ∈ M/A be
closed quasi-complements. Now suppose i = oA and j = oA. By Lemma 1.2, we have
ai ∧ a = ai = oX and aj ∧ a = aj = oX . Since a is a prime join, there exist α0 and
α1, such that ai ∧ aα0 = oX and aj ∧ aα1 = oX . The former yields aα0a

−1
α0

(ai) = oX ,
implying that a−1

α0
(ai) = oAα0

and the latter gives a−1
α1

(aj) = oAα1
. Since aα0 � a and
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aα1 � a, by Lemma 4.19, a−1
α0

(ai) and a−1
α0

(aj) inM/Aα0 and a
−1
α1

(ai) and a−1
α1

(aj)
inM/Aα1 , are closed quasi-complements.

Since Aα0 and Aα1 are c-connected, a−1
α0

(ai) = oAα0
and a−1

α1
(aj) = oAα1

, we

get a−1
α0

(aj) = oAα0
and a−1

α1
(ai) = oAα1 . We have a(a−1(aα1) ∧ i) = aα1 ∧ ai =

aα1a
−1
α1

(ai) = aα1oAα1
= oX , implying that a−1(aα1)∧ i = oA. Similarly, a−1(aα0)∧

j = oA. So a−1(aα0 ∧ aα1) ∧ i = oA and a−1(aα0 ∧ aα1) ∧ j = oA, and thus,
a−1(aα0 ∧aα1) = oA. Therefore, a∧ (aα0 ∧aα1) = oX , implying that aα0 ∧aα1 = oX ,
which is a contradiction whether α0 = α1 or not. Therefore, either i = oA or j = oA,
as desired. 	

Remark 4.21 If the preorders� and≤ onM/X coincide, then Theorems 4.12 and 4.20
coincide.

The following proposition is needed in the next section.

Proposition 4.22 Let M be a strong domain in C and let c be a strongly continuous
closure operator on C relative to M. For a : A → X and b : B → X in M/X, such
that a ∼ b, if A is c-connected, then so is B.

Proof Let i, j ∈ M/B be closed quasi-complements. Since a � b, by Lemma 4.18,
a−1(bi) and a−1(bj) are c-closed and by Lemma 4.19, they are closed quasi-
complements. Since A is c-connected, a−1(bi) = oA or a−1(bj) = oA. If a−1(bi) =
oA, then by Lemma 1.2, a ∧ bi = oX . Since b � a, b ∧ bi = oX and since bi ≤ b,
bi = oX . Thus, i = oB . Similarly, if a−1(bj) = oA, then j = oB . 	


5 Product of Connected Objects is Connected

In this section, we prove that under certain conditions, the product of connected objects
is connected.

Definition 5.1 Suppose C has a terminal object T and M is a weak domain in C. For
morphisms t : T X and s : T Y inM, an (s, t)-copy of X and Y is a
prime join, in M/X × Y , of 1X × s and t × 1Y .

Definition 5.2 Let C be a category with a strict initial object O . We say that a domain
M in C has a common zero if for each object X , the unique map !X : O −→ X
belongs toM/X .

Note that when M has a common zero, then for each object X , OX = O and
!X = oX : O −→ X .

Proposition 5.3 Suppose C has a strict initial object O and a terminal object T = O.
Let M be a strong domain with a common zero in C and c be a strongly continuous
closure operator on C relative toM. Suppose also that there is a non-empty collection
{ti : T → X |i ∈ I } ⊆ M, a morphism s : T → Y in M and for each i ∈ I , an
(s, ti )-copy, wi : Wi X × Y , of X and Y . If w : W X × Y is a prime
join of all the wi ’s and X and Y are c-connected, then so is W.
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Proof Since X × T ∼= X , by Theorem 3.10, X × T is c-connected. Similarly, T × Y
is c-connected. For each i , the pullback square:

T × T
ti×1T

1T ×s

X × T

1X×s

T × Y
ti×1Y

X × Y

shows that (1X × s) ∧ (ti × 1Y ) = oX×Y . Therefore, by Theorem 4.20, Wi is c-
connected. Now, if wi ∧ w j = oX×Y , then since w j = (1X × s) �p (t j × 1Y ), we
get wi ∧ (1 × s) = oX×Y . This in turn implies (1 × s) ∧ (ti × 1) = oX×Y , which
is a contradiction. Hence, wi s are mutually intersecting. By Theorem 4.20, W is c-
connected. 	


Theorem 5.4 Suppose C has a strict initial object O, a terminal object T = O, and
for any object A = O, there is a morphism T A in C. Let M be a strong
domain with common zero in C and c be a strongly continuous closure operator on
C relative to M. Suppose also that the collection T = {ti : T → X |i ∈ I } of all
morphisms from T to X is contained in M, there exists a morphism s : T → Y in
M, and that for each i ∈ I , there exists an (s, ti )-copy of X and Y . If X and Y are
c-connected, then so is X × Y .

Proof For each i ∈ I , let wi : Wi X × Y be an (s, ti )-copy of X and Y . We

show �pwi = 1X×Y . Let a : A X × Y be inM/X ×Y , such that for all i ∈ I ,
a ∧ wi = oX×Y . So for all i , a ∧ (ti × 1Y ) = oX×Y . If a = oX×Y , then there is

t : T A in C. Now, the composition T
t

A
a

X × Y
π1

X is in
T and so equals, say, t j . In the following diagram, all the squares are pullbacks:

O O T × Y

t j×1Y

T

t j

T
t

t j

A a X × Y
π1

X

This is a contradiction, because pullback of t j along itself is 1T . Therefore, a = oX×Y .
Thus, 1X×Y is a prime join of wi ’s. By Proposition 5.3, X × Y is c-connected. 	


Example 5.5 (1) For C the category Top of topological spaces, it can be easily verified
that the collection M of all the monos whose pullbacks along every morphism
exists is a strong domain with common zero. By Examples 4.5 and 4.16, Theo-
rem 5.4 generalizes the classical result.

(2) For C a topos, [10], in which for any object A = O , there is a morphism
T A , by Theorem 5.4, product of connected objects is connected.
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