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Abstract
In this paper, we propose a new customized proximal point algorithm for linearly
constrained convex optimization problem, and further extend the proposed method
to separable convex optimization problem. Unlike the existing customized proximal
point algorithms, the proposed algorithms do not involve relaxation step, but still
ensure the convergence. We obtain the particular iteration schemes and the unified
variational inequality perspective. The global convergence and O(1/k)-convergence
rate of the proposed methods are investigated under some mild assumptions. Numer-
ical experiments show that compared to some state-of-the-art methods, the proposed
methods are effective.
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1 Introduction

1.1 Proximal Point Algorithm

Proximal point algorithm (PPAfor short) dates back toMoreau [1],whichwas extended
byRockafellar [2],Bertsekas andTseng [3], andKaplan andTichatschke [4], etc. Itwas
introduced to optimization community by Martinet [5]. The PPA possesses a robust
convergence for very general problems in finite and infinite-dimensions (Kassay [6]
andGlüer [7]), and is also the basis for the splittingmethods (Spingarn [8] andHan [9]).

Consider a convex minimization problem with linear constraints of the form

min{θ(x)|Ax = b, x ∈ X }, (1.1)

whereX ⊂ R
n is a bounded closed convex and nonempty set, θ : X → R is a convex

(not necessarily smooth) function, A ∈ R
m×n , b ∈ R

m . The solution set of (1.1),
denoted by X ∗, is assumed to be nonempty.

For solving problem (1.1), the primal-dual hybrid gradient (PDHG) algorithm pro-
posed by Zhu and Chan [10] has the following iterative scheme:{

xk+1 = argminx∈X
{
θ(x) + r

2

∥∥(x − xk) − 1
r A

Tλk
∥∥2},

λk+1 = λk − 1
t (Ax

k+1 − b),
(1.2)

where λ ∈ R
m is the Lagrange multiplier vector, r , t > 0 are iteration parameters. Let

w := (x, λ), and W := X × R
m . Then, by the first optimality condition of iteration

(1.2), for wk+1 ∈ W we have that

θ(x) − θ(xk+1) + (w − wk+1)T
[
F(wk+1) + P(wk+1 − wk)

]
≥ 0, ∀ w ∈ W,

(1.3)

where

F(w) =
( −ATλ

Ax − b

)
, P =

(
r In AT

0m×n t Im

)
,

and In denotes a n × n-dimensional identity matrix, 0m×n is am × n-dimensional null
matrix. However, He [11] showed that the PDHG algorithm could not be necessarily
convergent, and gave a counter example, see Sect. 3 of [11].

He, Fu and Jiang [12] proposed a PPA using a linear proximal term (LPPA). For
solving (1.1), theLPPA (Procedure 4.1 in [12]) first produces a predictor w̃k = (x̃ k, λ̃k)
via ⎧⎨

⎩ x̃ k = argminx∈X
{
θ(x) + 1

2

∥∥A(x − xk) − λk
∥∥2},

λ̃k = λk − (Ax̃k − b).
(1.4)

By the first-order optimality conditions of (1.4), for w̃k ∈ W , we have

θ(x) − θ(x̃ k) + (w − w̃k)T
[
F(w̃k) + P1(w̃

k − wk)
]

≥ 0, ∀ w ∈ W, (1.5)
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where

F(w) =
( −ATλ

Ax − b

)
, P1 =

(
ATA AT

−A Im

)
. (1.6)

To ensure the convergence, the new iteratewk+1 = (xk+1, λk+1) of LPPA is generated
by a simple relaxation step

wk+1 = wk − ρk P1(w
k − w̃k),

where ρk = τρ∗
k and

ρ∗
k = (wk − w̃k)TP1(wk − w̃k)

‖P1(wk − w̃k)‖2 , τ ∈ [1, 2).

He, Yuan and Zhang [13] proposed a customized proximal point algorithm (CPPA)
by using matrix P2 instead of matrix P1 in (1.5), where

P2 =
(
r In −AT

−A t Im

)
.

To guarantee convergence, thematrix P2 should be positive definite. As a consequence,
it requires r t > ρ(ATA), where ρ(ATA) is the spectral radius of matrix ATA. The
corresponding iterative scheme of CPPA first produces a predictor w̃k = (x̃ k, λ̃k) via{

λ̃k = λk − 1
t (Ax

k − b),

x̃ k = argminx∈X
{
θ(x) + r

2

∥∥(x − xk) − 1
r A

T(2λ̃k − λk)
∥∥2}, (1.7)

and then takes a simple relaxation step

wk+1 = wk − γ (wk − w̃k), (1.8)

where γ ∈ (0, 2) is a relaxation factor. Various numerical experiments show that
γ > 1 provides the fast convergence. For distinction in this paper, the CPPA (1.7)-
(1.8) with γ = 1 is called original-CPPA or CPPA for short, while the CPPA with
γ > 1 is called relax-CPPA or rCPPA for short.

The augmented Lagrangian method of multipliers (ALM) is another efficient
method for convex optimization, see Hestenes [14] and Powell [15]. Let β > 0 be a
penalty parameter of ALM, the iterative scheme of the ALM to the problem (1.9) is{

xk+1 = argminx∈X
{
θ(x) + β

2

∥∥Ax − b − 1
β
λk
∥∥2},

λk+1 = λk − β(Axk+1 − b).

Rockafellar [16] showed that the ALM is exactly an application of PPA to the dual
problem of (1.1), owning the compact inequality (1.3) where P is replaced by

P3 =
(
0n×n, 0n×m

0m×n
1
β
Im

)
.
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However, He, Yuan and Zhang [13] showed that the CPPA is more efficient than
the ALM when the objective function θ(x) is simple in the sense that its resolvent
operator of θ(x), defined by (I + 1

r ∂θ)−1, has a close-form representation, where ∂θ

is the subdifferential of θ .

1.2 Proximal Point Algorithm for Separable Problem

Consider a separable convex optimization problem of the form

min
{
θ1(x) + θ2(y)

∣∣∣Ax + By = b, x ∈ X , y ∈ Y
}
, (1.9)

where X ⊂ R
n1 and Y ⊂ R

n2 are bounded closed and convex nonempty sets, θ1 :
X → R and θ2 : Y → R are convex (not necessarily smooth) functions, A ∈ R

m×n1 ,
B ∈ R

m×n2 and b ∈ R
m . The solution set of (1.9), denoted by X ∗ × Y∗, is assumed

to be nonempty.
The augmented Lagrangian-basedmethods, especially some splitting forms includ-

ing alternating directionmethod ofmultipliers (ADMMfor short) and parallel splitting
algorithm [17], are verified to be very efficient for problem (1.9). The iterative scheme
of the ALM to the problem (1.9) is

⎧⎨
⎩

λk+1 = λk − β(Axk + Byk − b),

(xk+1, yk+1) = argminx∈X ,y∈Y
{
θ1(x) + θ2(y) + β

2

∥∥Ax + By − b − 1
β
λk+1

∥∥2}.
(1.10)

In the second subproblem of scheme (1.10), the coupled variable (x, y) makes it
intractable. As a splitting version of the ALM, the ADMM originally proposed by
Glowinski [18] and Gabay [19], is as follows:

⎧⎪⎪⎨
⎪⎪⎩
xk+1 = argminx∈X

{
θ1(x) + β

2

∥∥Ax + Byk − b − 1
β
λk
∥∥2},

yk+1 = argminy∈Y
{
θ2(y) + β

2

∥∥Axk+1 + By − b − 1
β
λk
∥∥2},

λk+1 = λk − β(Axk+1 + Byk+1 − b).

The ADMM overcomes the drawback of ALM stated above by discoupling variable
(x, y). Gabay [20] expressed the ADMMas essentially an application of the Douglas–
Rachford splitting method [21]. Cai, Gu and He [22] provided a novel and simple PPA
way to understand ADMM, and proposed a generalized ADMM (gADMM) which
producing firstly a predictor w̃k = (x̃ k, ỹk, λ̃k) via

⎧⎪⎪⎨
⎪⎪⎩
x̃ k = argminx∈X

{
θ1(x) + β

2

∥∥Ax + Byk − b − 1
β
λk
∥∥2},

λ̃k = λk − β(Ax̃k + Byk − b),

ỹk = argminy∈Y
{
θ2(y) + β

2

∥∥Ax̃k + By − b − 1
β
λ̃k
∥∥2}.

(1.11)
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Let v = (y, λ) and w := (x, v) ∈ W = X × Y × R
m , and then the new iterate

wk+1 = (xk+1, vk+1) of the gADMM is generated by a relaxation step:

xk+1 = x̃ k, vk+1 = vk − γ (vk − ṽk), γ ∈ (0, 2).

The iterative scheme (1.11) can be recovered by a compact form: find w̃k ∈ W such
that

θ(u) − θ(ũk) + (w − w̃k)
T
{
F(w̃k) + P4(w̃

k − wk)
}

≥ 0, ∀ w ∈ W, (1.12)

where u = (x, y), w = (u, λ) ∈ W and θ(u) = θ1(x) + θ2(y) and

u =
(
x
y

)
, w =

⎛
⎝x
y
λ

⎞
⎠ , F(w) =

⎛
⎝ −ATλ

−BTλ

Ax + By − b

⎞
⎠ ,

and the customized matrix P4 is as follows:

P4 =
⎛
⎜⎝
0n1×n1 0n1×n2 0n1×m

0n2×n1 βBTB −BT

0m×n1 −B 1
β
Im

⎞
⎟⎠ .

The special structure of matrix P4 implies that variable x may not be involved in the
iteration of the gADMM. The following matrix

P̄4 =
(

βBTB −BT

−B 1
β
Im

)
,

which removes zero-elements from P4, is required to be symmetric and positive
semidefinite to ensure the convergence of the gADMM. The gADMMwas verified to
be faster than ADMM because some approximate computation is permitted.

Let P ′
4 ∈ R

n1+n2+m be a matrix such that P ′
4(w

k − w̃k) be a descent direction, He
and Yuan [23,24] presented a general relaxation step as follows:

wk+1 = wk − γ P ′
4(w

k − w̃k),

where γ is the steplength. Let H = P̄4(P ′
4)

−1 and G = (P̄4)T + P̄4 − γ (P ′
4)

TH(P ′
4).

One can relax the conventional proposition on P̄4, but ensure symmetric and posi-
tive semidefinite property of G. In [23,24], He and Yuan established the worst-case
convergence rateO(1/k) and non-ergodic convergence rate of the Douglas–Rachford
alternating direction method of multipliers.

1.3 Contributions

From above analysis, there are many PPAs for problem (1.1) and (1.9).
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The relaxation steps are very effective used inPPAs. For example, the relaxation step
of CPPA accelerates the algorithm for problem (1.1), the relaxation step of LPPA and
gADMM ensures the convergence for problem (1.1) and (1.9), respectively. However,
the relaxation step might be unacceptable or even not permitted in some practical
applications. These applications include real time control system, decision-making on
flow line production, supply chain management and decision-making, and so on. For
an instance, in the decision-making framework for supply chain management [25–27],
each firm on the chain makes decision independently in a proper sequence, and the
decision is immediately executed whenever it is given. Hence, all firms cannot adjust
their decision at the end, correspondingly the relaxation step in the simulation method
has not any actual meaning.

To adapt these real circumstances, we prefer to modify the prediction step rather
than to take a relaxation step, and propose two novel customized proximal point
algorithmswithout the relaxation step. The proposedmethods are generalized versions
of the CPPA proposed in [13,28] for both convex and separable convex problems,
respectively. The global convergence and theO(1/k)-convergence rate of the proposed
methods will be established under somemild assumptions.We also verify that the new
methods have a better numerical performance in practice comparing to some state-of-
the-art methods within the relaxation step.

The rest of the paper is organized as follows. In Sect. 2, we propose two new
customized proximal point algorithms without relaxation step for problems (1.1) and
(1.9), respectively. The convergence of proposed methods will be proven in Sect. 2. In
Sect. 3, some preliminary numerical results, comparing to the state-of-the-artmethods,
are presented to show the high efficiency of the new methods. Section 4 concludes
this paper with some final remarks.

2 Two New Customized Proximal Point Algorithms

2.1 The Generalized Customized Proximal Point Algorithm

The Lagrangian function of problem (1.1) is

L(x, λ) = θ(x) − λT(Ax − b). (2.1)

If x∗ ∈ X is a solution of problem (1.1), then there exists λ∗ ∈ R
m such that the pair

(x∗, λ∗) is a saddle point of (2.1) satisfying{
L(x, λ∗) − L(x∗, λ∗) ≥ 0, ∀ x ∈ X ,

L(x∗, λ∗) − L(x∗, λ) ≥ 0, ∀ λ ∈ R
m .

Consequently,

x∗ = arg min
x∈X

L(x, λ∗), λ∗ = arg max
λ∈Rm

L(x∗, λ). (2.2)

By Lemma 2.1 in [11], the first-order optimality conditions of problem (2.2) are as
follows:
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{
θ(x) − θ(x∗) − (x − x∗)T(ATλ∗) ≥ 0, ∀ x ∈ X ,

(λ − λ∗)T(Ax∗ − b) ≥ 0, ∀ λ ∈ R
m .

Definition 2.1 The solution set of (1.1), denoted byW∗ ⊂ W , consists of allw∗ ∈ W
satisfying

θ(u) − θ(u∗) + (w − w∗)TF(w∗) ≥ 0, ∀ w ∈ W, (2.3)

where

u = x, w =
(
x
λ

)
, F(w) =

( −ATλ

Ax − b

)
. (2.4)

The generalized customized proximal point algorithm for problem (1.1) is proposed
as follows.

Algorithm 2.2: Generalized customized proximal point algorithm, gCPPA

For a given wk ∈ W , the gCPPA produces the new iterate wk+1 ∈ W via solving

{
λk+1 = λk − α

t (Ax
k − b),

xk+1 = argminx∈X
{
θ(x) + r

2

∥∥(x − xk) − 1
r A

T[(1 + α)λk+1 − αλk]∥∥2},
(2.5)

where α ∈ (0.5, 1).

By the first-order optimality conditions of iteration subproblem (2.5), we have

⎧⎨
⎩

θ(x) − θ(xk+1) + (x − xk+1)T
{

− AT[(1 + α)λk+1 − αλk] + r(xk+1 − xk)
}

≥ 0,

(λ − λk+1)T
{
α(Axk − b) + t(λk+1 − λk)

}
= 0,

which implies that ∀ w ∈ W the following variational inequality holds:

θ(u) − θ(uk+1) + (α − 1)(λ − λk+1)T(Axk+1 − b)

+
(
x − xk+1

λ − λk+1

)T [( −ATλk+1

Axk+1 − b

)
+
(

r In −αAT

−αA t Im

)(
xk+1 − xk

λk+1 − λk

)]
≥ 0.

In a compact form, we have

θ(u) − θ(uk+1) + t(α − 1)

α
(λ − λk+1)T(λk+1 − λk+2)

+ (w − wk+1)
T
[
F(wk+1) + Q(wk+1 − wk)

]
≥ 0, for any w ∈ W, (2.6)
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where F(w) is defined by (2.4), and

Q =
(

r In −αAT

−αA t Im

)
. (2.7)

Lemma 2.3 Let w∗ ∈ W∗ be a solution defined by (2.3), and {wk} be a sequence
generated by the gCPPA method. Then we have

(w∗ − wk+1)TQ(wk+1 − wk) ≥ t(1−α)
α

(λ∗ − λk+1)T(λk+1 − λk+2). (2.8)

Proof By setting u = u∗, w = w∗ in (2.6), we get

(w∗ − wk+1)TQ(wk+1 − wk)

≥ θ(uk+1) − θ(u∗) + (wk+1 − w∗)TF(wk+1)

+ t(1−α)
α

(λ∗ − λk+1)T(λk+1 − λk+2). (2.9)

By the monotonicity of F(w),1. we have

(wk+1 − w∗)TF(wk+1) ≥ (wk+1 − w∗)TF(w∗). (2.10)

Since w∗ ∈ W∗ is a solution, it follows

θ(uk+1) − θ(u∗) + (wk+1 − w∗)TF(w∗) ≥ 0. (2.11)

Adding (2.10) and (2.11) yields

θ(uk+1) − θ(u∗) + (wk+1 − w*)TF(wk+1) ≥ 0. (2.12)

Substituting (2.12) into (2.9), we obtain (2.8) and complete the proof. 
�
In the current subsection, let

M = r In − α2

t
ATA. (2.13)

It is easy to show that if r , t > 0 and r t ≥ α2ρ(ATA), where α ∈ (0.5, 1), then Q
and M are positive semidefinite. We use the notation ‖w‖2H := wTHw ≥ 0 if H is
symmetric and positive semidefinite.

Lemma 2.4 For the sequence {wk} generated by the gCPPA method we have

∥∥xk − xk+1∥∥2
M + t(2α − 1)

α
‖λk+1 − λk+2‖2

≤ ∥∥w∗ − wk∥∥2
Q + t(1−α)

α ‖λ∗ − λk+1‖2 −
[∥∥w∗ − wk+1∥∥2

Q + t(1−α)
α ‖λ∗ − λk+2‖2

]
.

(2.14)

1 The mapping F(w) is affine with a skew-symmetric matrix, and thus it is monotone; see He and Yuan
[23]
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Proof By the identity

(a − b)TQ(c − d) = 1
2

(‖a − d‖2Q − ‖a − c‖2Q + ‖c − b‖2Q − ‖d − b‖2Q
)
,

we have

(w∗ − wk+1)TQ(wk+1 − wk)

= 1

2

(∥∥w∗ − wk
∥∥2
Q − ∥∥w∗ − wk+1

∥∥2
Q − ∥∥wk − wk+1

∥∥2
Q

)
, (2.15)

and

(λ∗ − λk+1)T(λk+1 − λk+2)

= 1

2

(
‖λ∗ − λk+2‖2 − ‖λ∗ − λk+1‖2 − ‖λk+1 − λk+2‖2

)
. (2.16)

Combining (2.15), (2.16) and (2.8), we obtain

∥∥wk − wk+1
∥∥2
Q − t(1−α)

α

∥∥λk+1 − λk+2
∥∥2

≤ ∥∥w∗ − wk
∥∥2
Q − ∥∥w∗ − wk+1

∥∥2
Q + t(1−α)

α

(∥∥λ∗ − λk+1
∥∥2 − ∥∥λ∗ − λk+2

∥∥2).
(2.17)

By the definition of Q in (2.7), it follows

∥∥wk − wk+1
∥∥2
Q = r

∥∥xk − xk+1
∥∥2 − 2α(xk − xk+1)TAT(λk − λk+1)

+ t
∥∥λk − λk+1

∥∥2. (2.18)

Applying λ-iteration of (2.5), we get

− 2α(xk − xk+1)TAT(λk − λk+1) + t‖λk − λk+1‖2

= t
∥∥∥[α

t (Ax
k − b) − α

t (Ax
k+1 − b)

] − (λk − λk+1)

∥∥∥2 − α2

t

∥∥xk − xk+1
∥∥2
ATA

= t
∥∥∥[(λk − λk+1) − (λk+1 − λk+2)

] − (λk − λk+1)

∥∥∥2 − α2

t

∥∥xk − xk+1
∥∥2
ATA

= t
∥∥λk+1 − λk+2

∥∥2 − α2

t

∥∥xk − xk+1
∥∥2
ATA. (2.19)

Combining (2.18) with (2.19), it follows

∥∥wk − wk+1
∥∥2
Q = ∥∥xk − xk+1

∥∥2
M + t

∥∥λk+1 − λk+2
∥∥2. (2.20)

Substituting (2.20) into (2.17), we obtain (2.14) immediately and complete the proof.

�
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Theorem 2.5 Suppose α ∈ (0.5, 1), r , t > 0 and rt ≥ α2ρ(ATA), the sequence {wk}
is generated by the gCPPA method. Then we have

lim
k→∞ ‖wk+1 − wk‖ = 0, (2.21)

and {wk} globally converges to an element of solution setW∗ satisfying (2.3).

Proof Since α ∈ (0.5, 1), r , t > 0 and r t ≥ α2ρ(ATA), it holds that

∥∥xk − xk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2

≥
(
r − α2ρ(ATA)

t

)
‖xk − xk+1‖2 + t(2α−1)

α
‖λk+1 − λk+2‖2 ≥ 0, (2.22)

where M is defined by (2.13). Summing (2.14) from 0 to K > 1, it yields

K∑
k=0

(∥∥xk − xk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2

)

≤ ∥∥w∗−w0
∥∥2
Q + t(1−α)

α
‖λ∗−λ1‖2−

[∥∥w∗ − wK+1
∥∥2
Q + t(1−α)

α
‖λ∗ − λK+2‖2

]
.

(2.23)

On one hand, we get from (2.22) and (2.23) that

∥∥w∗ − w0
∥∥2
Q + t(1−α)

α
‖λ∗ − λ1‖2 ≥ ∥∥w∗ − wK+1

∥∥2
Q + t(1−α)

α
‖λ∗ − λK+2‖2

(2.24)

holds for ∀K > 1. Since the objective function of problem (1.1) is a closed convex
function, the solution set W∗ is a bounded closed convex nonempty set.

On the other hand, by taking limits on the both side of (2.23), we get

∞∑
k=0

(∥∥xk − xk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2

)
≤ d, (2.25)

where d := ∥∥w∗ − w0
∥∥2
Q + t(1−α)

α
‖λ∗ − λ1‖2. Thus

lim
k→∞ ‖xk − xk+1‖2M = 0, lim

k→∞ ‖λk+1 − λk+2‖2 = 0,

which implies (2.21), i.e.,

lim
k→∞ ‖xk − xk+1‖2 = 0, lim

k→∞ ‖λk − λk+1‖2 = 0, (2.26)

The sequence {wk} has at least one cluster point. Let w∞ be a cluster point of {wk},
i.e., there exists a subsequence {wk j }k j∈K such that w∞ = limk j→∞,k j∈K wk j . Then
by taking limit on (2.6) as k → ∞, and applying (2.26) we have
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θ(u) − θ(u∞) + (w − w∞)TF(w∞) ≥ 0,∀ w ∈ W,

which implies that w∞ ∈ W∗ is a solution satisfying (2.3) and completes the proof. 
�
Theorem 2.6 If the conditions of Theorem 2.5 hold, then the sequence {wk} generated
by the gCPPA method has a worst-case convergence rate O(1/k).

Proof Substituting a = wk−1 − wk and b = wk − wk+1 to the identity

‖a‖2Q − ‖b‖2Q = 2aTQ(a − b) − ‖a − b‖2Q,

we obtain

∥∥wk−1 − wk
∥∥2
Q − ∥∥wk − wk+1

∥∥2
Q

= 2(wk−1 − wk)TQ
{
wk−1 − wk − (wk − wk+1)

}
−
∥∥∥wk−1 − wk − (wk − wk+1)

∥∥∥2
Q
. (2.27)

Letting w := wk in (2.6), we get

θ(uk) − θ(uk+1) + t(α − 1)

α
(λk − λk+1)T(λk+1 − λk+2)

+(wk − wk+1)
T
[
F(wk+1) + Q(wk+1 − wk)

]
≥ 0. (2.28)

Since (2.6) also holds at the (k − 1)th iteration, we have

θ(u) − θ(uk) + t(α − 1)

α
(λ − λk)T(λk − λk+1)

+(w − wk)
T
[
F(wk) + Q(wk − wk−1)

]
≥ 0, ∀ w ∈ W.

Setting w := wk+1 in the above inequality, we obtain

θ(uk+1) − θ(uk) + t(α − 1)

α
(λk+1 − λk)T(λk − λk+1)

+(wk+1 − wk)
T
[
F(wk) + Q(wk − wk−1)

]
≥ 0. (2.29)

Adding (2.28) and (2.29), it yields

(wk − wk+1)TQ
{
wk−1 − wk − (wk − wk+1)

}
≥ (wk+1 − wk)T

[
F(wk+1) − F(wk)

]
+ t(1−α)

α
(λk − λk+1)T

[
λk+1 − λk+2 − (λk − λk+1)

]
.
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By the monotonicity of F(w), we get from the above inequality that

(wk − wk+1)TQ
{
wk−1 − wk − (wk − wk+1)

}
≥ t(1−α)

α
(λk − λk+1)T

[
λk+1 − λk+2 − (λk − λk+1)

]
. (2.30)

Adding
∥∥wk−1 − wk − (wk − wk+1)

∥∥2
Q to the both sides of (2.30), it follows

(wk−1 − wk)TQ
{
wk−1 − wk − (wk − wk+1)

}
≥
∥∥∥wk−1 − wk − (wk − wk+1)

∥∥∥2
Q

+ t(1−α)
α

(λk − λk+1)T
[
λk+1 − λk+2 − (λk − λk+1)

]
. (2.31)

It is easy to derive that

2(λk − λk+1)T
[
λk+1 − λk+2 − (λk − λk+1)

]
= −

∥∥∥λk − λk+1 − (λk+1 − λk+2)

∥∥∥2 + ∥∥λk+1 − λk+2
∥∥2 − ∥∥λk − λk+1

∥∥2.
(2.32)

Combining (2.27) with (2.31) and (2.32), we have

∥∥wk−1 − wk∥∥2
Q + t(1−α)

α

∥∥λk − λk+1∥∥2 −
(∥∥wk − wk+1∥∥2

Q + t(1−α)
α

∥∥λk+1 − λk+2∥∥2)
≥
∥∥∥wk−1−wk − (wk−wk+1)

∥∥∥2
Q

− t(1−α)
α

∥∥∥λk − λk+1 − (λk+1 − λk+2)
∥∥∥2. (2.33)

By the definition of Q in (2.7), it follows

∥∥∥wk−1−wk−(wk−wk+1)

∥∥∥2
Q

= r
∥∥∥xk−1−xk−(xk−xk+1)

∥∥∥2 + t
∥∥∥λk−1−λk−(λk−λk+1)

∥∥∥2
− 2α

[
xk−1−xk−(xk−xk+1)

]T
AT

[
λk−1−λk−(λk−λk+1)

]
.

By λ-iteration of (2.5), we get

− 2α
[
xk−1−xk−(xk−xk+1)

]T
AT

[
λk−1−λk−(λk−λk+1)

]
+ t

∥∥∥λk−1−λk−(λk−λk+1)

∥∥∥2
= t

∥∥∥α
t A

[
xk−1−xk−(xk−xk+1)

]−[
λk−1−λk−(λk−λk+1)

]∥∥∥2
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− α2

t

∥∥∥xk−1−xk−(xk−xk+1)
∥∥∥2
ATA

= t
∥∥∥λk − λk+1 − (λk+1 − λk+2)

∥∥∥2 − α2

t

∥∥∥xk−1 − xk − (xk − xk+1)

∥∥∥2
ATA

,

which implies

∥∥∥wk−1−wk−(wk−wk+1)

∥∥∥2
Q

=
∥∥∥xk−1−xk − (xk−xk+1)

∥∥∥2
M

+ t
∥∥∥λk−λk+1−(λk+1−λk+2)

∥∥∥2. (2.34)

Substituting (2.20) and (2.34) into (2.33), we have

∥∥xk−1 − xk
∥∥2
M + t

α
‖λk − λk+1‖2 −

(∥∥xk − xk+1
∥∥2
M + t

α
‖λk+1 − λk+2‖2

)
≥
∥∥∥xk−1−xk − (xk−xk+1)

∥∥∥2
M

+ t(2α−1)
α

∥∥∥λk − λk+1 − (λk+1 − λk+2)

∥∥∥2.
(2.35)

Adding
(
t(2α−1)

α
− t

α

)[
‖λk − λk+1‖2 − ‖λk+1 − λk+2‖2

]
to the both side of (2.35),

we obtain

∥∥xk−1 − xk
∥∥2
M + t(2α−1)

α
‖λk − λk+1‖2 −

(∥∥xk − xk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2

)
≥
∥∥∥xk−1 − xk − (xk − xk+1)

∥∥∥2
M

+ t(2α−1)
α

∥∥∥λk − λk+1 − (λk+1 − λk+2)

∥∥∥2
− 2t(1−α)

α

[
‖λk − λk+1‖2 − ‖λk+1 − λk+2‖2

]
=
∥∥∥xk−1 − xk − (xk − xk+1)

∥∥∥2
M

+ t
α

∥∥∥(2α − 1)(λk − λk+1) − (λk+1 − λk+2)

∥∥∥2
+4(2 − α)t‖λk − λk+1‖2.

Recall that M is positive semidefinite and α ∈ (0.5, 1), it follows

∥∥xk − xk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2 ≤ ∥∥xk−1 − xk

∥∥2
M + t(2α−1)

α
‖λk − λk+1‖2.

(2.36)

Which implies
{∥∥xk − xk+1

∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2

}
is monotonically nonin-

creasing whenever k ≥ 0. Summing (2.36) from 1 to K + 1, it yields

(1 + K )
(∥∥xK − xK+1

∥∥2
M + t(2α−1)

α
‖λK+1 − λK+2‖2

)

≤
K+1∑
k=1

(∥∥xk−1 − xk
∥∥2
M + t(2α−1)

α
‖λk − λk+1‖2

)
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=
K∑

k=0

(∥∥xk − xk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2

)
.

Combing with (2.23), (2.24) and (2.1), we have

(1 + K )
(∥∥xK − xK+1

∥∥2
M + t(2α−1)

α
‖λK+1 − λK+2‖2

)
≤ d.

Hence, for any ε > 0 there exists K such that

∥∥xK − xK+1
∥∥2
M + t(2α−1)

α
‖λK+1 − λK+2‖2 ≤ d

1 + K
< ε. (2.37)

Let �d/ε� means the maximal integer not greater that d/ε. Then, inequality (2.37)
implies that the gCPPA needs at most �d/ε� iterations to ensure that

(
r − α2ρ(ATA)

t

)∥∥xK − xK+1
∥∥2 < ε,

t(2α−1)
α

‖λK+1 − λK+2‖2 < ε,

which implies the sequence {wk} generated by the gCPPA method has a worst-case
convergence rate O(1/k) in a non-ergodic sense. The proof of Theorem 2.6 is com-
pleted. 
�

2.2 Extended gCPPA to Separable ConvexMinimization Problems

The Lagrangian function of problem (1.9) is

L(x, y, λ) = θ1(x) + θ2(y) − λT(Ax + By − b). (2.38)

If a pair of (x∗, y∗) ∈ X ×Y is a solution of problem (1.9), then there exists λ∗ ∈ R
m

such that (x∗, y∗, λ∗) is a saddle point of (2.38) satisfying

⎧⎨
⎩
L(x, y∗, λ∗) − L(x∗, y∗, λ∗) ≥ 0, ∀ x ∈ X ,

L(x∗, y, λ∗) − L(x∗, y∗, λ∗) ≥ 0, ∀ y ∈ Y,

L(x∗, y∗, λ∗) − L(x∗, y∗, λ) ≥ 0, ∀ λ ∈ R
m .

(2.39)

Consequently, by (2.39) it follows

x∗ = arg min
x∈X

L(x, y∗, λ∗), y∗ = argmin
y∈Y

L(x∗, y, λ∗),

λ∗ = arg max
λ∈Rm

L(x∗, y∗, λ). (2.40)
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According to Lemma 2.1 in [11], we have the first-order optimality conditions of
problem (2.40):

⎧⎨
⎩

θ1(x) − θ1(x∗) − (x − x∗)T(ATλ∗) ≥ 0, ∀ x ∈ X ,

θ2(y) − θ2(y∗) − (y − y∗)T(BTλ∗) ≥ 0, ∀ y ∈ Y,

(λ − λ∗)T(Ax∗ + By∗ − b) ≥ 0, ∀ λ ∈ R
m .

(2.41)

By a compact form of (2.41), the solution set of problem (1.9), also denoted byW∗ ⊂
W , consists of all w∗ ∈ W satisfying (2.3), where W := X × Y × R

m , θ(u) :=
θ1(x) + θ2(y) and

u :=
(
x
y

)
, w :=

⎛
⎝x
y
λ

⎞
⎠ , F(w) :=

⎛
⎝ −ATλ

−BTλ

Ax + By − b

⎞
⎠ . (2.42)

We are in the position to propose the extended gCPPA for separable convex optimiza-
tion problem (1.9).

Algorithm 2.7: An extension of the gCPPA to separable convex optimization,
eCPPA

For a given wk , the eCPPA produces the new iterate wk+1 ∈ W via solving:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λk+1 = λk − α
t (Ax

k + Byk − b),

xk+1 = arg min
x∈X

{
θ1(x) + r

2

∥∥∥(x − xk) − 1
r A

T
[
(α + 1)λk+1 − αλk

]∥∥∥2},
yk+1 = argmin

y∈Y

{
θ2(y) + s

2

∥∥∥(y − yk) − 1
s B

T
[
(α + 1)λk+1 − αλk

]∥∥∥2},
(2.43)

where α ∈ (0.5, 1) is a constant.

By the first-order optimality conditions of iteration subproblem (2.43), we have
that, for wk+1 ∈ W generated by the eCPPA and ∀ w ∈ W , we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ(x) − θ(xk+1) + (x − xk+1)T
{

− AT[(1 + α)λk+1 − αλk ] + r(xk+1 − xk)
}

≥ 0,

θ(y) − θ(yk+1) + (y − yk+1)T
{

− BT[(1 + α)λk+1 − αλk ] + s(yk+1 − yk)
}

≥ 0,

(λ − λk+1)T
{
α(Axk + Byk − b) + t(λk+1 − λk)

}
= 0.

(2.44)

By notations (2.42), inequality (2.44) can be rewritten to the compact form (2.6) in
which

Q =
⎛
⎝ r In1 0n1×n2 −αAT

0n2×n1 s In2 −αBT

−αA −αB t Im

⎞
⎠ . (2.45)
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Lemma 2.8 Let w∗ ∈ W∗ be a solution satisfying (2.3), then we have

(w* − wk+1)TQ(wk+1 − wk) ≥ t(1−α)
α

(λ∗ − λk+1)T(λk+1 − λk+2). (2.46)

Proof Themapping F(w) is affine with a skew-symmetric matrix, and thus it is mono-
tone. The rest of the proof is as same as that of Lemma 2.3. 
�

In this subsection, let

M =
(
r In1 − α2ATA

t −α2ATB
t

−α2BTA
t s In2 − α2BTB

t

)
. (2.47)

If r , s, t > 0 and r t ≥ 2α2ρ(ATA), st ≥ 2α2ρ(BTB), where α ∈ (0.5, 1), it is easy
to verify that Q and M are positive semidefinite.

Lemma 2.9 For the sequence {wk} generated by the gCPPA method, we have

∥∥uk − uk+1∥∥2
M + t(2α − 1)

α

∥∥λk+1 − λk+2∥∥2
≤ ∥∥w∗ − wk∥∥2

Q + t(1−α)
α ‖λ∗ − λk+1‖2 −

[∥∥w∗ − wk+1∥∥2
Q + t(1−α)

α ‖λ∗ − λk+2‖2
]
.

(2.48)

Proof Similar to Lemma 2.4, we also get (2.17). By notation Q in (2.45), it holds

∥∥wk − wk+1∥∥2
Q = r

∥∥xk − xk+1∥∥2 + s
∥∥yk − yk+1∥∥2 − 2α(xk − xk+1)TAT(λk − λk+1)

−2α(yk − yk+1)TBT(λk − λk+1) + t
∥∥λk − λk+1∥∥2.

From λ-iteration of (2.43), we get

− 2α(xk − xk+1)TAT(λk − λk+1) − 2α(yk − yk+1)TBT(λk − λk+1) + t
∥∥λk − λk+1∥∥2

= t
∥∥∥[α

t (Axk + Byk − b) − α
t (Axk+1 + Byk+1 − b)

] − (λk − λk+1)
∥∥∥2

− α2

t

∥∥∥A(xk − xk+1) + B(yk − yk+1)
∥∥∥2

= t
∥∥∥[(λk − λk+1) − (λk+1 − λk+2)

] − (λk − λk+1)
∥∥∥2

− α2

t

∥∥∥A(xk − xk+1) + B(yk − yk+1)
∥∥∥2

= t
∥∥λk+1 − λk+2∥∥2 − α2

t

∥∥∥A(xk − xk+1) + B(yk − yk+1)
∥∥∥2,

which implies

∥∥wk − wk+1
∥∥2
Q = ∥∥uk − uk+1

∥∥2
M + t

∥∥λk+1 − λk+2
∥∥2, (2.49)
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where ∥∥uk − uk+1
∥∥2
M = r

∥∥xk − xk+1
∥∥2 + s

∥∥yk − yk+1
∥∥2

−α2

t

∥∥∥A(xk−xk+1)+B(yk−yk+1)

∥∥∥2.
Substituting (2.49) into (2.17), we obtain (2.14) immediately and complete the proof.


�
Theorem 2.10 Suppose that r , s, t > 0 and rt ≥ 2α2ρ(ATA), st ≥ 2α2ρ(BTB),
where α ∈ (0.5, 1). Then, for the sequence {wk} is generated by the eCPPA method,
we have

lim
k→∞ ‖wk+1 − wk‖ = 0, (2.50)

and {wk} globally converges to an element of solution setW∗ satisfying (2.41).

Proof Since r t ≥ 2α2ρ(ATA), st ≥ 2α2ρ(BTB), it follows

∥∥uk−uk+1
∥∥2
M ≥

(
r− 2α2ρ(ATA)

t

)∥∥xk+1−xk+2
∥∥2

+
(
s− 2α2ρ(BTB)

t

)∥∥yk+1−yk+2
∥∥2 ≥ 0. (2.51)

Notice that t > 0, α ∈ (0.5, 1), we get

∥∥uk − uk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2 ≥ 0. (2.52)

Summing (2.48) from 0 to K > 1, it yields

K∑
k=0

(∥∥uk − uk+1∥∥2
M + t(2α−1)

α ‖λk+1 − λk+2‖2
)

≤ ∥∥w∗ − w0∥∥2
Q + t(1−α)

α ‖λ∗ − λ1‖2 −
[∥∥w∗ − wK+1∥∥2

Q + t(1−α)
α ‖λ∗ − λK+2‖2

]
.

(2.53)

By (2.52) and (2.53), it is easy to derive (2.24) and

∞∑
k=0

(∥∥uk − uk+1
∥∥2
M + t(2α−1)

α
‖λk+1 − λk+2‖2

)
≤ d,

which implies that

lim
k→∞ ‖xk − xk+1‖2 = 0, lim

k→∞ ‖yk − yk+1‖2 = 0, lim
k→∞ ‖λk − λk+1‖2 = 0.

Hence, there exists a subsequence {wk j }k j∈K such that w∞ = limk j→∞,k j∈K wk j is
a solution satisfying (2.3) and completes the proof. 
�
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Theorem 2.11 If the conditions of Theorem 2.10 hold, then the sequence {wk} gener-
ated by the eCPPAmethod has a worst-case convergence rateO(1/k) in a non-ergodic
sense.

Proof It holds obviously that

∥∥∥wk−1−wk−(wk−wk+1)

∥∥∥2
Q

=
∥∥∥uk−1−uk−(uk−uk+1)

∥∥∥2
M

+ t
∥∥∥λk−λk+1−(λk+1−λk+2)

∥∥∥2. (2.54)

By (2.49) and (2.54), we have

∥∥uk−1 − uk
∥∥2
M + t(2α−1)

α ‖λk − λk+1‖2 −
(∥∥uk − uk+1∥∥2

M + t(2α−1)
α ‖λk+1 − λk+2‖2

)
≥
∥∥∥uk−1 − uk − (uk − uk+1)

∥∥∥2
M

+ t
α

∥∥∥(2α − 1)(λk − λk+1) − (λk+1 − λk+2)
∥∥∥2

+4(2 − α)t‖λk − λk+1‖2.

Then, for any ε > 0 there exists K such that

∥∥uK − uK+1
∥∥2
M + t(2α−1)

α
‖λK+1 − λK+2‖2 ≤ d

1 + K
< ε. (2.55)

By (2.51), inequality (2.55) implies that the eCPPA needs at most �d/ε� iterations to
ensure that(

r − 2α2ρ(ATA)
t

)∥∥xK − xK+1
∥∥2 < ε,

(
s − 2α2ρ(BTB)

t

)∥∥yK − yK+1
∥∥2 < ε,

t(2α−1)
α

‖λK+1 − λK+2‖2 < ε,

which implies that the sequence {wk} generated by the eCPPA method has a worst-
case convergence rate O(1/k) in a non-ergodic sense. The proof of Theorem 2.11 is
completed. 
�

3 Numerical Results

The section focuses on the numerical performance of the gCPPA and eCPPA compar-
ingwith some state-of-the-art methods. Allmethods are coded inMATLAB2012b and
run on anHP desktop computer with Intel(R) Core(TM) i5-6500 CPU 3.20GHz, RAM
8G. The termination criterion of gCPPA is set to max

{‖xk − xk+1‖, ‖λk − λk+1‖} ≤
ε, and that of eCPPA is set to max

{‖xk − xk+1‖, ‖yk − yk+1‖, ‖λk − λk+1‖} ≤ ε,
where ε > 0 is a small real number. By the global convergence of the gCPPA and
eCPPA methods, we have lim

k→∞ ‖wk − wk+1‖2 = 0, which means that for any given

ε > 0 the corresponding algorithm will stop in finite iterations.
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To adjust parameters r , s and t simultaneously, we introduce αr , αt > 0 satisfying
αrαt = α2. Take r = αr R, t > αtρ(ATA)/R in gCPPA such that r t ≥ α2ρ(ATA),
and take r = √

2αr R, s = √
2αr Rρ(BTB)/ρ(ATA), t >

√
2αtρ(ATA)/R in

eCPPA such that r t ≥ 2α2ρ(ATA), st ≥ 2α2ρ(BTB), where R > 0 is a selected
constant.

Example 3.1 The first test problem is a correlation matrices calibrating problem
selected from [11,29], which has the form

min

{
1

2
‖X − C‖2F

∣∣ diag(X) = e, X ∈ Sn+
}
, (3.1)

whereC ∈ R
n×n is a symmetrical matrix, e = (1, 1, . . . , 1)T ∈ R

n×1 and Sn+ = {H ∈
R
n×n

∣∣ HT = H , H � 0}. Problem (3.1) can be reformulated to problem (1.1) with
ρ(ATA) = 1, where A is a projection matrix for the linear constraint diag(X) = e
(see Example 2 in [11]).

Let z ∈ R
n be the Lagrange multiplier to the linear equality constraint of problem

(3.1).
We compare the performance of the gCPPA to the CPPA and rCPPA methods. For

a given (Xk, zk), the gCPPA produces the new iteration (Xk+1, zk+1) as follows:
{
zk+1 = zk − α

t (diag(X
k) − e),

Xk+1 = argminX∈Sn+
{

1
2‖X − C‖2F + r

2

∥∥(X − Xk) − 1
r diag[(1 + α)zk+1 − αzk ]∥∥2F }

.

(3.2)

The X -subproblem of (3.2) is identical to

Xk+1 = argminX∈Sn+

{
1

2

∥∥X − 1

r + 1
{r Xk + diag[(1 + α)zk+1 − αzk] + C}∥∥2F

}
.

It is inherent a projection operator via SVD decomposition. It takes the main compu-
tation load in each iteration. Similarly, the iteration schemes of CPPA and rCPPA for
(3.1) can be written in the form of (1.7) and (1.8).

In our experiments, we take a randommatrixC = (ci j )n×n satisfying ci j ∈ (−1, 1)
and ci j = c ji for all i, j . For each given n, 20 random instances are tested. To be fair,
the initial point X0 is an n × n identity matrix and z0 is n-dimensional zero vector.
For the termination criterion of all methods, we set ε = 10−5.

Let R = 2.00. The proximal parameters of the CPPA and rCPPAmethods are set to
r = R and t = 1.05/R = 0.53, which satisfies r t = 1.05 > ρ(AAT). Set γ = 1.50
in the rCPPA method. The “gCPPA(0.53)” means the gCPPA method with αr = 0.70,
αt = 0.40, so α = √

αrαt ≈ 0.53, r = Rαr = 1.40 and t = 1.05αt/R = 0.29. The
“gCPPA(0.17)” means the gCPPA method with αr = 0.30, αt = 0.10, r = Rαr =
0.60, so α = √

αrαt ≈ 0.17 and t = 1.05αt/R = 0.05.
For easy comparisons, the results of three methods in terms of matrix dimension

n, average iteration number (iter) and average cpu-time (cput in seconds) are put into
Table 1, and displayed in Fig. 1.
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Table 1 Numerical results of CPPA, rCPPA, gCPPA(0.53) and gCPPA(0.17)

n CPPA rCPPA gCPPA(0.53) gCPPA(0.17)

Iter cput Iter cput Iter cput Iter cput

100 31 0.15 23 0.11 26 0.12 19 0.09

200 34 0.97 25 0.70 29 0.82 21 0.63

300 37 2.19 28 1.65 31 1.83 22 1.35

400 38 3.93 27 2.78 32 3.34 23 2.44

500 40 8.18 28 5.70 33 6.88 24 5.09

600 41 14.90 28 10.12 34 12.44 22 8.31

700 42 22.97 29 15.79 35 18.85 23 12.68

800 43 32.99 30 23.01 36 27.45 24 18.72

900 44 36.79 30 24.87 37 30.94 25 21.25

1000 51 78.20 32 49.82 38 58.46 26 40.26
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Fig. 1 Comparisons of CPPA, rCPPA, gCPPA(0.53) and gCPPA(0.17). Left: iteration number. Right: cpu
time

One can conclude from Table 1 and Fig. 1 that: (1) the gCPPA(0.53) takes 80%
iterations and time of the CPPA, but takes more iterations and time than the rCPPA;
(2) the gCPPA(0.17) takes 60% iterations of the CPPA and 80% iterations of the rCPPA,
and spends less cpu-time than the CPPA and rCPPA, especially for the high dimension
problem. In other word, the gCPPA(0.53) and gCPPA(0.17) are better than CPPA, and
gCPPA(0.17) has almost better numerical performance as the rCPPA with γ = 1.50.
However, the convergence of gCPPA(0.17) is not established since α < 0.5. It will be
left to our future research.

Example 3.2 The second test problem is the matrix completion problem utilized in
Tao, Yuan and He [30], which is as follows:

min

{
1

2
‖X − C‖2F

∣∣∣ X ∈ Sn+ ∩ SB

}
, (3.3)

where SB = {H ∈ R
n×n

∣∣ HL ≥ H ≥ HU}.
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By introducing an auxiliary variable Y such that X − Y = 0, problem (3.3) can be
reformulated to a separable convex optimization problem of the form

min

{
1

2
‖X − C‖2F + 1

2
‖Y − C‖2F

∣∣∣ X = Y , X ∈ Sn+, Y ∈ SB

}
. (3.4)

Obviously, problem (3.4) is a special case of problem (1.9) in which ρ(ATA) =
ρ(BTB) = 1.

For comparisons, fourmethods are used for solving problem (3.4): classicalADMM
(ADMM for short), gADMM, separable version of CPPA (i.e., Algorithm 2.7 with
α = 1, sCPPA) and eCPPA ( Algorithm 2.7 with 0 < α0 < α < 1). Let Z ∈ R

n×n

be the Lagrange multiplier for linear constraint X −Y = 0. For a given (Xk,Y k, Zk),
the eCPPA produces new iterate (Xk+1,Y k+1, Zk+1) via

⎧⎪⎪⎨
⎪⎪⎩

Zk+1 = Zk − α
t (X

k − Y k),

Xk+1 = argminX∈Sn+
{
1
2

∥∥X − 1
r+1 [r Xk + (1 + α)Zk+1 − αZk + C]∥∥2F},

Y k+1 = argminY∈SB
{
1
2

∥∥Y − 1
s+1 [sY k − (1 + α)Zk+1 + αZk + C]∥∥2F}.

(3.5)

The X -subproblem of iteration (3.5) is inherent a projection operator via SVD decom-
position, and it takes the main computation load in each iteration. The Y -subproblem
of (3.5) is also a projection

Y k+1 = PSB

{
1

s + 1

[
sY k − (1 + α)Zk+1 + αZk + C

]}
,

where PSB denotes the projection onto SB under the Euclidean norm.
In the experiments, we take a randommatrixC = (ci j )n×n satisfying ci j ∈ (−1, 1)

and ci j = c ji for all i, j . For each given n, 20 random instances are tested. To be fair,
X0 and Y 0 are set to n × n identity matrice and z0 is set to n-dimensional zero vector.

For termination criterion of all methods, we set ε = 10−5‖w1 − w0‖∞.
The parameter settings of the used methods are stated as follows: The penalty

parameter is set to β = 1.80 in both ADMM and gADMM, the relaxation parameter
is set to γ = 1.80 in the gADMM. Let R = 3.00, the proximal parameters of the
sCPPA are set to r = s = √

2R ≈ 4.24 and t = 1.02
√
2/R ≈ 0.48, and those of

the eCPPA are set to r = s = √
2αr R ≈ 2.55, t = 1.02

√
2αt/R ≈ 0.24, where

αr = 0.60 and αt = 0.50, and α = √
αrαt ≈ 0.55.

We test all methods on 20 random instances for each fixed n. The average iteration
number and the average cpu-time for problem (3.4) with different n are listed in Table
2 and displayed in Fig. 2.

From Table 2 and Fig. 2, one can conclude that the iteration number of eCPPA is
about 30% of ADMM, and about 70% of gADMM and sCPPA. Moreover, eCPPA
takes less cpu-time than others especially for the high-dimensional problems. Thus,
eCPPA has the best performance for problem (3.4).
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Table 2 Numerical results of ADMM, gADMM, sCPPA and eCPPA

n ADMM gADMM sCPPA eCPPA

Iter cput Iter cput Iter cput Iter cput

100 120 0.65 60 0.34 65 0.35 48 0.26

200 127 4.19 64 2.10 74 2.21 52 1.62

300 146 10.14 74 5.13 80 5.06 56 3.68

400 145 17.54 73 9.34 76 8.91 58 6.78

500 153 29.19 77 14.79 78 14.34 60 11.27

600 169 52.99 84 26.52 80 24.25 62 19.20

700 179 81.60 89 40.67 82 35.66 63 27.98

800 162 107.26 80 53.36 84 53.18 64 42.06

900 180 160.57 89 79.51 86 74.71 66 58.29

1000 183 230.29 90 113.43 88 109.65 68 85.60
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Fig. 2 Comparisons of ADMM, gADMM, sCPPA and eCPPA. Left: iteration number. Right: cpu time

Example 3.3 The third example selected from [13] focuses on thewavelet-based image
inpainting and zooming problems. Let a two-dimensional image x ∈ R

l1×l2 and l = l1 ·
l2. Letting vec(·) be the vectorization operator in the lexicographic order, x = vec(x) ∈
R
l is tackled by vectorizing x as an one-dimensional vector in the lexicographic order.

Let D ∈ R
l×n be a wavelet dictionary, each column of D is the elements of a wavelet

frame. Commonly, the image x possesses a sparse representation under dictionary D,
i.e., x = Dx where x is a sparse vector. Thewavelet-based image processing considers
recovering the real image x from an observation b which might have some missing
pixels or convolutions. The model for wavelet-based image processing can be casted
as

min
{
‖x‖1

∣∣∣BDx = b
}
, (3.6)

where ‖x‖1 is to deduce a sparse representation under the wavelet dictionary, and B
(also called mask) is a typically ill-conditioned matrix representation of convolution
or downsampling operators. For the inpainting problem, matrix B ∈ R

l×l in (3.6)
is a diagonal matrix whose diagonal elements are either 0 or 1, where the locations
of 0 correspond to missing pixels in the image and locations of 1 correspond to the
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pixels to be kept. For the image zooming problem, matrix B ∈ R
m×l can be expressed

as B = SH where S ∈ R
m×l is a downsampling matrix and H ∈ R

l×l is a blurry
matrix. Matrix H can be diagonalized by the discrete consine transform (DCT), i.e.,
H = C−1�C whereC represents the DCT and� is a diagonal matrix whose diagonal
entries are eigenvalues of H .

We compare the gCPPA method to the CPPA and rCPPA methods on 256 × 256
images of Peppers.png and Boat.png for the image inpainting and image zooming
problems, respectively.

The dictionary D is chosen as the inverse discrete Haar wavelet transform with
level 6. Below we give the detail of how the tested images are degraded.

• For the image inpainting problem, the original image Peppers is first blurred by
the out-of-focus kernel with a radius of 7. Then 60% pixels of the blurred images
are lost by implementing a mask operator S. The positions of missing pixels are
located randomly.

• For the image zooming problem, the original image Boat is downsampled by a
downsampling matrix S with a factor of 4. Then, the downsampled image is cor-
rupted by a convolution whose kernel is generated by fspecial(gaussian,
9,2.5) of MATLAB.

Let z be the Lagrange multiplier. For a given (xk, zk), the gCPPA adopts the fol-
lowing iteration to obtain (xk+1, zk+1):

{
zk+1 = zk − α

t (BDxk − b),

xk+1 = argminx∈X
{‖x‖1 + r

2

∥∥x − xk − 1
r BD

[
(α + 1)zk+1 − αzk

]∥∥2}.
On problem (3.6), the performance of the gCPPA (compared with CPPA and rCPPA)
is tested. Similarly, the iteration scheme of the CPPA has the same iteration as the
gCPPA with α = 1, and the rCPPA can also be written in the form of (1.7) and
(1.8). Since DDT = I , the blurry matrix H can be diagonalized by DCT and the
binary matrix (both mask and downsampling matrices) S satisfies ‖S‖ = 1, we have
‖(BD)T(BD)‖ = 1 for the wavelet-based image inpainting and zooming problems.
Therefore, the requirement r t ≥ ‖(BD)T(BD)‖ reduces to r t ≥ 1 for the CPPA or
rCPPA, and r t > α2 for the gCPPA. The parameters are described as below.

• For the image inpainting problem, we take initial point (x0, υ0) = (DT(b), 0),
and R = 0.60, r0 = R = 0.60, t0 = 1.02/R = 1.70, γ = 1.00 for the CPPA
and γ = 1.90 for the rCPPA. Take αr = 2.00, αt = 0.13, α = √

0.26 ≈ 0.51,
r = αr R = 1.20, t = 1.02αt/R ≈ 0.22 for the gCPPA;

• For the image zooming problem, we take initial point (x0, υ0) = (0, 0), and
R = 0.55, r0 = R = 0.55, t0 = 1.02/R ≈ 1.85, γ = 1.00 for the CPPA and
γ = 1.20 for the rCPPA. Take αr = 1.00, αt = 0.26, a = √

0.26 ≈ 0.51,
r = αr R = 0.55, t = 1.02αt/R ≈ 0.48 for the gCPPA.

As usual, the quality of the reconstruction is measured by the signal-to-noise ratio
(SNR) in decibel (dB)

SNR := 20 log10
‖x‖

‖x̄ − x‖ , (3.7)
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Fig. 3 Evolutions of SNR with respect to iterations (Iteration No.) and CPU time (top row: for image
inpainting; bottom row: for image zooming)

where x̄ is a reconstructed image and x is a clean image.
For easy comparisons, the evolutions of SNR with respect to iterations and com-

puting time for all tested methods are displayed in Fig. 3. It shows that the rCPPA
is better than the CPPA, and the gCPPA converges to the nearly same solutions in
inpainting and zooming problems as fast as the rCPPA.

The reconstructed images are displayed in Fig. 4 by executing 300 iterations in
image inpainting (or 30 iterations in image zooming). It verifies our assertion: the
gCPPA could be at least as efficient as the rCPPA on the inpainting and zooming
problem. We have to emphasize that the gCPPA does not involve any relaxation step
while the rCPPA has a relaxation step with γ > 1.

Example 3.4 The last example selected from [13] focuses on the total variation (TV)
uniform noise removal model:

min
{
‖∇x‖1

∣∣∣‖Hx − x0‖∞ ≤ σ
}
, (3.8)

where the two-dimensional image x = (xi, j )l1×l2 ∈ R
l1×l2 and l = l1 · l2. The

vectorized version of an image can be denoted by x = vec(x) ∈ R
l as Example

3.3, and ‖∇x‖1 := ∑l
i=1(|vec(∇hx)|i + |vec(∇vx)|i ) is the TV norm with ∇hx =(

(∇hx)i, j
)
l1×l2

, ∇vx = (
(∇vx)i, j

)
l1×l2

where

(∇hx)i, j =
{
xi+1, j − xi, j , i �= l1
x1, j − xl1, j , i = l1

, (∇vx)i, j =
{
xi, j+1 − xi, j , j �= l2
xi,1 − xi,l2 , j = l2

.
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Fig. 4 Original images, degraded images and reconstructed images by CPPA, rCPPA and gCPPA (top row:
for image inpainting; bottom row: for image zooming)

The vector x0 ∈ R
l is an observed image corrupted by a zero-mean uniform noise;

H ∈ R
l×l is the matrix representation of a blurry operator satisfying ‖HHT‖ = 1, σ

is a parameter indicating the uniform noise level and ‖x‖∞ := max1≤i≤l ‖xi‖.
Let

A :=
(
H
−H

)
, b :=

(
x0 − σe
−x0 − σe

)
,

where e = (1, 1, · · · , 1)T ∈ R
l . Model (3.8) can be reformulated to

min
{
‖∇x‖1

∣∣∣ Ax ≥ b
}
. (3.9)

We also compare the gCPPA to the CPPA and rCPPA methods on 256-by-256 images
of Peppers.png and Boat.png. The clean images are degraded by either the Gaussian
(fspecial(gaussian,9,2.5)”) or the out-of-focus (fspecial(disk,3)”) convolution.

Let z be the Lagrange multiplier for the linear inequality constraint Ax ≥ b. The
gCPPA produces the new iterate via:

⎧⎨
⎩
zk+1 = PR+

{
zk − α

t (Ax
k − b)

}
,

xk+1 = argmin
{
‖∇x‖1 + r

2

∥∥x − xk − 1
r A

T
[
(α + 1)zk+1 − αzk

]∥∥2 ∣∣ x ∈ X
}

.

The CPPA method also owns above iteration with α = 1, and the rCPPA can be
written in the form of (1.7) and (1.8). We take R = 0.60, r0 = R, t0 = 1.02/R = 1.70
and γ = 1.80 for the CPPA and rCPPA method, and take αr = 7.00, αt = 0.04,
α = √

0.28 ≈ 0.53, r = αr R = 4.20, t = 1.02αt/R ≈ 0.07 for the gCPPA. The
initial points for all methods are taken as zeros and the stopping criterion is set to
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Fig. 5 Original images, degraded images with σ = 0.5 and reconstructed images by the CPPA, rCPPA,
gCPPA (top row: the gaussian convolution; bottom row: the out-of-focus convolution)
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Fig. 6 Evolutions of SNRwith respect to the number of iterations (Iteration No.) and computing time (CPU
time) (top row: the gaussian convolution with σ = 0.5; bottom row: the out-of-focus convolution with
σ = 0.5;)

Tol = ‖xk+1 − xk‖
‖xk‖ < 10−6. (3.10)

Set σ = 0.5. For easy comparisons, the original images, degraded images and the
restored images are displayed in Fig. 5.
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Table 3 Results of the CPPA, rCPPA and gCPPA with different σ

Blur σ Images CPPA rCPPA gCPPA

Gaussian 0.2 Peppers 72/3.39/16.75 87/4.17/17.13 58/2.53/17.57

Boat 65/3.01/16.58 79/3.48/17.01 58/2.50/17.56

0.5 Peppers 103/5.46/16.00 121/5.58/16.38 73/2.82/16.72

Boat 83/3.78/15.85 101/4.40/16.33 71/2.92/16.79

Out-of-focus 0.2 Peppers 71/3.24/17.67 88/4.77/18.12 50/2.37/18.54

Boat 65/3.51/17.53 82/3.59/18.07 51/2.06/18.64

0.5 Peppers 94/4.38/16.65 108/4.93/17.01 64/2.96/17.27

Boat 86/3.40/16.57 104/4.73/17.05 62/2.65/17.44

The evolutions of SNR with respect to iterations and computing time are displayed
in Fig. 6. It shows that both the CPPA and gCPPA methods reach the higher SNR in
a short time. However, the CPPA converges to the solutions worse than that of the
rCPPA, while the gCPPA converges to better solutions than the rCPPA in TV uniform
noise removal problem.

The numerical results on more experiments with different σ are put into Table 3
for comparisons.

In Table 3, each set of · \ · \ · represents the number of iterations, the computing
time in seconds and the restored SNR when the stopping criterion (3.10) is met. From
Table 3, one can conclude that: the rCPPA has better performance comparing with the
CPPA in SNR, but worse in the number of iterations and cpu-time, while the gCPPA
has better performance comparing with the CPPA in all terms including SNR, the
number of iterations and cpu-time.

4 Conclusions

In this paper, we propose two customized proximal point algorithm by modifying
the prediction step involving no relaxation step. We have proposed two new CPPAs
(i.e., gCPPA and eCPPA), both do not involve any relaxation step but still keep the
same convergence properties as the CPPA within some relaxation steps. Numerical
results have demonstrated that the proposed methods are more effective than some
state-of-the-art methods.
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