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Abstract
Let R be a commutative Noetherian ring and M, N be two finitely gener-
ated R-modules. In this note, we prove the cofiniteness of generalized local
cohomology modules Hi

I (M, N ) with respect to I for all i < t and the finiteness
of (0 :Ht

I (M,N ) I ) provided Hi
I (M, N )p is finitely generated for all i < t and all

p ∈ ⋃
j<t SuppR(H j

I (M, N )) with dim R/p > 1, where t is a given non-negative
integer. This extends the results of Bahmanpour and Naghipour (J Algebra 321:1997–
2011, 2009), Bahmanpour et al. (Commun Algebra 41:2799–2814, 2013), and Cuong
et al. (Kyoto J Math 55(1):169–185, 2015). This also provides a partially affirmative
answer to Hartshorne’s question in Hartshorne (Invent Math 9:145–164, 1970) for the
case of generalized local cohomology modules.
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1 Introduction

Throughout this note the ring R is commutative Noetherian. Let M and N be two
finitely generated R-modules and I be an ideal of R. In [10], A. Grothendieck
conjectured that if I is an ideal of R and N is a finitely generated R-module, then
(0 :

H j
I (N )

I ) is finitely generated for all j ≥ 0. R. Hartshorne provided a counterex-
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ample to this conjecture in [11]. He also defined an R-module K to be I -cofinite if
SuppR(K ) ⊆ V (I ) and Ext jR(R/I , K ) is finitely generated for all j ≥ 0 and he asked
a question:
Question. For which rings R and ideals I are the modules H j

I (N ) is I -cofinite for all
j and all finitely generated modules N?
Hartshorne showed that if N is a finitely generated R-module and I a prime ideal
with dim R/I = 1, where R is a complete regular local ring, then H j

I (N ) is I -cofinite
(see [11, Corollary 7.7]). Yoshida [21, Theorem 1.1] refined this result to more general
situation that if N is a finitely generated module over a commutative Noetherian local
ring R and I is an ideal of R such that dim(R/I ) = 1, then H j

I (N ) are I -cofinite
for all j ≥ 0. In 2009, Bahmanpour–Naghipour have extended this result to the case
of non-local ring; more precisely, they showed that if t is a non-negative integer
such that dim SuppR(H j

I (N )) ≤ 1 for all j < t then H j
I (N ) is I -cofinite for all

j < t and (0 :Ht
I (N ) I ) is finitely generated (see [3, Theorem 2.6], or [6]). In 2013,

Bahmanpour–Naghipour–Sedghi improved this result by replacing the condition that
“dim SuppR(H j

I (N )) ≤ 1 for all j < t” with the condition “H j
I (N )p is finitely

generated over Rp for all j < t and all p ∈ SuppR(N/I N ) with dim R/p > 1”
(see [2, Proposition 3.1]).

There are some generalizations of the theory of local cohomology modules. The
following generalization of local cohomology theory is given by J. Herzog in [12]:
let j be a non-negative integer and M, N finitely generated R-modules. Then the
j th generalized local cohomology module of M, N with respect to I is defined by
H j
I (M, N ) = lim−→n

Ext jR(M/I nM, N ). These modules were studied further in many

research papers such as [4–8,13,15,19,20],…. Note that H j
I (R, N ) is just the ordinary

local cohomology module H j
I (N ).

The purpose of this paper is to investigate a similar question as above for the theory
of generalized local cohomology. Our main result is the following theorem.

Theorem 1.1 Let R be a commutative Noetherian ring and I an ideal of R. Let M, N
be finitely generated R-modules such that Hi

I (M, N )p is a finitely generated module

over Rp for all i < t and all p ∈ ⋃
j<t SuppR(H j

I (M, N )) with dim R/p > 1,

where t is a given non-negative integer. Then Hi
I (M, N ) is I -cofinite for all i < t and

HomR(R/I , Ht
I (M, N )) is finitely generated.

This theorem has some consequences as follows. First, if we replace M = R
in Theorem 1.1, then we have that if Hi

I (N )p is finitely generated over Rp for all
i < t and all p ∈ ⋃

i<t SuppR(Hi
I (N )) then Hi

I (N ) is I -cofinite for all i < t and
HomR(R/I , Ht

I (N )) is finitely generated (see Corollary 2.8). This corollary is a slight
improvement of Bahmanpour–Naghipour (see [3, Theorem 2.6]) and of Bahmanpour–
Naghipour–Sedghi (see [2, Proposition 3.1]). In [3] and [2], they had used a basic
property of local cohomology that H j

I (N ) ∼= H j
I (N/�I (N )) for all j > 0; then

it is easy to reduce to the case when �I (N ) = 0. But, for the case of generalized
local cohomology, it is not true that H j

I (M, N ) ∼= H j
I (M, N/�IM (N )) for all j > 0

in general, where IM = annR(M/I M). Hence, to prove Theorem 1.1, we need to
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establish Lemma 2.5 and Corollary 2.6 (R is not a necessary local) which implies
that

⋃
j<t SuppR(H j

I (M, N/�IM (N ))) ⊆ ⋃
j<t SuppR(H j

I (M, N )). Also, one of
the ingredients in the proof of Theorem 1.1 is a lemma of Cuong–Goto–Hoang [6] (cf.
Lemma 2.4); using this lemma, instead of studying the cofiniteness of H j

I (M, N )with
respect to I , we need only to prove the cofiniteness of these modules with respect to
ideal IM . Second, as an other application of Theorem 1.1, we obtain a Corollary 2.10
which says that if t := h2I (M, N ) is the least integer such that Hi

I (M, N ) is not in
dimension< 2 then Hi

I (M, N ) is I -cofinite for all i < t and HomR(R/I , Ht
I (M, N ))

is finitely generated, where the notion of “in dimension < 2 module” is mentioned in
Remark 2.2.

The paper is divided into two sections. In Sect. 2, we first prove some auxiliary
lemmas which will be used in the sequel. The rest of Sect. 2 is devoted to prove the
main result (Theorem 2.7) and its consequences.

2 Main Result

The following result seems to be well known but we cannot find exactly a reference
for it, so for the sake of the completeness we still give a clear proof.

Lemma 2.1 Let K be an R-module and I an ideal of R. If (0 :K I ) is finitely generated
R-module then so is (0 :K I n) for all n.

Proof We first prove by induction on n ≥ 1 that Hom(R/I n, K ) is a finitely generated
R-module. The case n = 1 is nothing. Assume that n > 1 and the result is true for
n − 1. From the short exact sequence 0 → I n−1/I n → R/I n → R/I n−1 → 0, we
obtain the following exact sequence:

0 → HomR(R/I n−1, K ) → HomR(R/I n, K ) → HomR(I n−1/I n, K ). (*)

Note that by the hypothesis (0 :K I ) is also a finitely generated R/I -module. Since I is
an ideal in aNoetherian ring, I n−1/I n is also a finitely generated R/I -module.Assume
that I n−1/I n is generated bym elements. Then we have an exact sequence (R/I )m →
I n−1/I n → 0. Hence, we get an exact sequence 0 → HomR(I n−1/I n, K ) →
HomR((R/I )m, K ). Note that HomR((R/I )m, K ) = HomR(R/I , K )m is finitely
generated over R/I by the hypothesis of (0 : I )K . Thus, HomR(I n−1/I n, K ) is a
finitely generated R/I -module, and soHomR(I n−1/I n, K ) is alsofinitely generated as
an R-module. Moreover, we get by the inductive assumption that HomR(R/I n−1, K )

is finitely generated over R. Therefore, we obtain by the exact sequence (*) that the
R-module HomR(R/I n, K ) is finitely generated, as required. �	
Remark 2.2 Let 0 ≤ n ∈ Z. We recall that an R-module T is called in dimension < n
if there exists a finitely submodule K of T such that dim Supp(T /K ) < n (see [1,
Definition 2.1]). It is clear that the class of in dimension< n modules consists of class
of finitely generated modules (this is the case of n = 0). Moreover, an R-module T
is said to be minimax, if there exists a finitely generated submodule K of T such that
T /K is Artinian (cf. [22] and [1]).
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We next recall some results which will be used in the proof of our main result.

Lemma 2.3 (see [14, Lemma 2.1]) Let t be a nonnegative integer such that H j
I (M, N )

is in dimension < n for all j < t . Then HomR(R/I , Ht
I (M, N )) is in dimension < n.

Lemma 2.4 (see [6, Lemma 4.2]) Let t be a non-negative integer. Then

(i) The R-module Ht
I (M, N ) is I -cofinite if and only if Ht

IM
(M, N ) is IM-cofinite,

where IM = annR(M/I M).
(ii) The R-module HomR(R/I , Ht

I (M, N )) is finitely generated if and only if so is
HomR(R/IM , Ht

I (M, N )).

Next we need establish a lemma on support of generalized local cohomology mod-
ule which is an extension of [8, Lemma 2.8] for the case of arbitrary commutative
Noetherian ring R.

Lemma 2.5 Let t ∈ N ∪ {∞}. Then we have

⋃

j≤t

SuppR
(
H j
I (M, N )

)
=

⋃

j≤t

SuppR
(
Ext jR(M/I M, N ) .

Proof Let p ∈ ⋃
j≤t SuppR(H j

I (M, N )). Then there exists an integer 0≤ t0 ≤ t

such that p ∈ Supp(Ht0
I (M, N )) and p /∈ ⋃

j<t0 SuppR(H j
I (M, N )). Hence,

H j
I (M, N )p = 0 for all j < t0 and Ht0

I (M, N )p �= 0. Thus, we get by [4,
Proposition 5.5] that depth(IMp , Np) = t0. Thus, Extt0Rp

(Mp/I Mp, Np) �= 0.

It implies that p ∈ ⋃
j≤t SuppR(Ext jR(M/I M, N ). Conversely, for each p ∈

⋃
j≤t SuppR(Ext jR(M/I M, N ), there exists 0 ≤ t ′ ≤ t such that p ∈ SuppR

(Extt
′
R(M/I M, N )) and p /∈ ⋃

j<t ′ SuppR(Ext jR(M/I M, N )). It yields that Ext jR
(M/I M, N )p = 0 for all j < t ′ andExtt ′R(M/I M, N )p �= 0.Thus, depth(IMp , Np)= t ′.
So we get by [4, Proposition 5.5] that Ht ′

I (M, N )p �= 0, and hence p ∈
SuppR(Ht ′

I (M, N )) ⊆ ⋃
j≤t SuppR(H j

I (M, N )). �	
By similar arguments as in the proof of Lemma 2.5, we obtain the following corol-

lary.

Corollary 2.6 We have
⋃

j≤t SuppR(H j
I (M, N )) = ⋃

j≤t SuppR(H j
IM

(N ),where t ∈
N ∪ {∞}.

Before proving Theorem 1.1, we recall some known facts on the theory of sec-
ondary representation. In [16], Macdonald has developed the theory of attached prime
ideals and secondary representation of a module. A non-zero R-module K is called
secondary if for each r ∈ R multiplication by r on K is either surjective or nilpotent.
Then p = √

annR(K ) is a prime ideal, and K is called p-secondary. We say that K
has a secondary representation if there is a finite number of secondary submodules
K1, . . . , Kn such that K = K1 + . . . + Kn . One may assume that pi = √

annR(Ki ),
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for i = 1, 2, . . . , n, are all distinct and, by omitting redundant summands, that the
representation is minimal. Then the set of prime ideals {p1, . . . , pn} does not depend
on the representation, and it is called the set of attached prime ideals of K and denoted
by AttR(K ). Note that if A is an Artinian R-module, then A has a secondary represen-
tation; moreover, the set of minimal prime ideals of annR(A) is just the set of minimal
elements of AttR(A) (see [16]). The basic properties on the set AttR(A) of attached
primes of A are referred in a paper by Macdonald [16].

The following is our main result in this note (that is Theorem 1.1 as mentioned in
the part Introduction).

Theorem 2.7 Let R be a Noetherian commutative ring and I an ideal of R. Let M, N
be finitely generated R-modules such that Hi

I (M, N )p is a finitely generated module

over Rp for all i < t and all p ∈ ⋃
j<t SuppR(H j

I (M, N )) with dim R/p > 1,

where t is a given non-negative integer. Then Hi
I (M, N ) is I -cofinite for all i < t and

HomR(R/I , Ht
I (M, N )) is finitely generated.

Proof ByLemma 2.4, we need only to claim that Hi
I (M, N ) is IM -cofinite for all i < t

and HomR(R/IM , Ht
I (M, N )) is finitely generated, provided Hi

I (M, N )p is finitely

generated for all i < t and all p ∈ ⋃
j<t SuppR(H j

I (M, N )) with dim R/p > 1,
where t is a given integer.

We process by induction on t ≥ 0. The case t = 0 is trivial. If t = 1 then it is
clear that H0

I (M, N ) is IM -cofinite; moreover, Hom(R/IM , H1
I (M, N )) is a finitely

generated R-module by Lemma 2.3. We now suppose that t > 1, and the result has
been proved for t −1. From the short exact sequence 0 → �IM (N ) → N → N → 0,
we obtain exact sequences

ExtiR
(
M, �IM (N )

) fi−→ Hi
I (M, N )

gi−→ Hi
I

(
M, N

) hi−→ Exti+1
R

(
M, �IM (N )

)

for all i , where N = N/�IM (N ). Note that ExtiR(M, �IM (N )) is finitely generated
for all i . For each i ≥ 0, we split the above exact sequence into the following two
exact sequences:

0 → Im fi → Hi
I (M, N ) → Im gi → 0 and

0 → Im gi → Hi
I (M, N ) → Im hi → 0.

Note that Im fi and Im hi are finitely generated for all i ≥ 0. Then, for any i < t ,
we obtain that Hi

I (M, N ) is IM -cofinite if and only if so is Hi
I (M, N ). On the other

hand, we get by Corollary 2.6 that

⋃

j<t

SuppR
(
H j
I (M, N )

)
=

⋃

j<t

SuppR
(
H j
IM

(N )
)
and

⋃

j<t

SuppR
(
H j
I (M, N )

)
=

⋃

j<t

SuppR
(
H j
IM

(N )
)

.
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Thus, we obtain that
⋃

j<t SuppR(H j
I (M, N )) ⊆ ⋃

j<t SuppR(H j
I (M, N )) since

H j
IM

(N ) ∼= H j
IM

(N ) for all 1 ≤ j < t . Therefore, we get by the hypothesis that

Hi
I (M, N )p is finitely generated for all i < t and all p ∈ ⋃

j<t SuppR(H j
I (M, N ))

with dim(R/p) > 1. Therefore, to prove the theorem for the case of t > 1, we may
assume without loss of generality that �IM (N ) = 0. Thus, IM �

⋃
p∈AssR(N ) p.

For each 0 < n ∈ Z and 0 ≤ i < t , we set Hi,n = (0 :Hi
I (M,N ) I nM ). Recall

that Hi
I (M, N ) is IM -cofinite for all i < t − 1 and (0 :Ht−1

I (M,N )
IM ) is finitely

generated. Hence, (0 :Hi
I (M,N ) IM ) is finitely generated for all 0 ≤ i < t . Thus, we

obtain by Lemma 2.1 that Hi,n is finitely generated for all 0 ≤ i < t and all n > 0.
Hence, SuppR(Hi,n+1/Hi,n) = V (annR(Hi,n+1/Hi,n)). Note that for each n > 0,
we have annR(Hi,n+1/Hi,n) ⊆ annR(Hi,n+2/Hi,n+1) by [2, Lemma 2.1]. Hence,
V (annR(Hi,n+1/Hi,n)) ⊇ V (annR(Hi,n+2/Hi,n+1)) for all n > 0. Thus, we obtain
the following sequence:

V (annR(Hi,n+1/Hi,n)) ⊇ V (annR(Hi,n+2/Hi,n+1)) ⊇ . . . .

From this we get by the Noetherianness of space Spec R that there exists an integer
k > 0 such that

SuppR(Hi,k+1/Hi,k) = SuppR(Hi,n+1/Hi,n) (2.1)

for all n ≥ k + 1 and all 0 ≤ i < t . Suppose that {p ∈ SuppR(Hi,k+1/Hi,k) |
dim R/p > 1} �= ∅. Then we take p ∈ SuppR(Hi,k+1/Hi,k) such that
dim R/p > 1. Thus, p ∈ ⋃

j<t SuppR(H j
I (M, N )) since SuppR(Hi,k+1/Hi,k) ⊆

SuppR(Hi
I (M, N )). Hence, we get by the hypothesis that Hi

I (M, N )p is a finitely
generated Rp-module for all 0 ≤ i < t . Thus, for each 0 ≤ i < t , there exists a
finitely generated submodule L of Hi

I (M, N ) such that Hi
I (M, N )p = Lp. Since L

is IM -torsion by [6, Lemma 2.1], there is an integer n ≥ k + 1 such that I nM L = 0. It
follows that

Lp = Hi
I (M, N )p ⊇ (Hi,n+1)p ⊇ (Hi,n)p ⊇ Lp.

Hence, (Hi,n+1/Hi,n)p = 0. From this, we get by the fact in formula (2.1) that
p /∈ Supp(Hi,k+1/Hi,k), this is a contradiction. Hence,

{p ∈ SuppR(Hi,k+1/Hi,k) | dim R/p > 1} = ∅,

and hence dim R/p ≤ 1 for all p ∈ SuppR(Hi,k+1/Hi,k). We now take p ∈
SuppR(Hi

I (M, N )/Hi,k). If p /∈ SuppR(Hi,k+1/Hi,k) then we get by (2.1) that
p /∈ SuppR(Hi,n+1/Hi,n) for all n ≥ k. Thus, (Hi,n+1)p = (Hi,k)p for all n ≥ k, and
so Hi

I (M, N )p = (Hi,n)p for all n ≥ k. Hence, p /∈ SuppR(Hi
I (M, N )/Hi,n) for all

n ≥ k, which is a contradiction. Thus,

SuppR(Hi
I (M, N )/Hi,k) = SuppR(Hi,k+1/Hi,k),
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and hence
dim SuppR(Hi

I (M, N )/Hi,k) ≤ 1. (2.2)

From the short exact sequence

0 → Hi,k → Hi
I (M, N ) → Hi

I (M, N )/Hi,k → 0,

we get the following exact sequence:

(
0 :Hi

I (M,N ) IM
)

→
(
0 :Hi

I (M,N )/Hi,k
IM

)
→ Ext1R

(
R/IM , Hi,k

)
.

Hence, the R-module (0 :Hi
I (M,N )/Hi,k

IM ) is finitely generated for all 0 ≤ i < t
because of the finiteness of (0 :Hi

I (M,N ) IM ) and Hi,k for all 0 ≤ i < t . Thus,

AssR(Hi
I (M, N )/Hi,k) is a finite set for all 0 ≤ i < t . For each 0 ≤ i < t , we set

Ti = {p ∈ SuppR(Hi
I (M, N )/Hi,k) | dim R/p = 1}.

Then we obtain by formula (2.2) that Ti ⊆ AssR(Hi
I (M, N )/Hi,k), and hence the set

T = ⋃t−1
i=0 Ti is finite. Assume that T = {p1, . . . , pv}.

For any p ∈ T and any 0 ≤ i < t , we have by the previous paragraph that
(0 :Hi

I (M,N )/Hi,k
IM )p is a finitely generated Rp-module. Moreover, since either p is a

minimal element of SuppR(Hi
I (M, N )/Hi,k) or p is not in SuppR(Hi

I (M, N )/Hi,k),
we obtain that

V (annRp((0 :Hi
I (M,N )/Hi,k

IM )p) ⊆ {pRp}.

Hence, (0 :Hi
I (M,N )/Hi,k

IM )p is an Artinian Rp-module. Thus, we get by the Melk-

ersson’s criterion on the Artinianness (see [17, Theorem 1.3]) that (Hi
I (M, N )/Hi,k)p

is an Artinian Rp-module. It implies by [6, Lemma 4.1 (ii)] that

V ((IM )p) ∩ AttRp((H
i
I (M, N )/Hi,k)p) ⊆ {pRp}. (2.3)

Now we set

S =
t−1⋃

i=0

v⋃

j=1

{
q ∈ Spec R | qRp j ∈ AttRp j

((Hi
I (M, N )/Hi,k)p j )

}
.

Then it is easy to see that S ∩ V (IM ) ⊆ T . We now choose an element x ∈ IM such
that

x /∈
⎛

⎝
⋃

p∈S\V (IM )

p

⎞

⎠ ∪
⎛

⎝
⋃

p∈AssR(N )

p

⎞

⎠ .
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We then have the short exact sequence 0 → N
x−→ N → N/xN → 0. It implies the

following exact sequences:

. . . → Hi
I (M, N )

x−→ Hi
I (M, N ) → Hi

I (M, N/xN ) → Hi+1
I (M, N )

x−→ Hi+1
I (M, N ) → . . .

for all i ≥ 0. Thus, we obtain exact sequences

0 → Hi
I (M, N )/xHi

I (M, N )
ϕi−→ Hi

I (M, N/xN )

−→ (0 : x)Hi+1
I (M,N )

→ 0 (2.4)

for all i ≥ 0. Note that
⋃

j<t−1

SuppR
(
H j
I (M, N/xN )

)
⊆

⋃

j<t

SuppR
(
H j
I (M, N )

)

by the long exact sequence as above mentioned. Hence, we get by the hypothesis
that H j

I (M, N/xN )p is finitely generated Rp-module for all p ∈ ⋃
j<t−1 SuppR

(H j
I (M, N/xN )) with dim R/p > 1. Therefore, we get by the inductive assumption

that the R-modules

H0
I (M, N/xN ), H1

I (M, N/xN ), . . . , Ht−2
I (M, N/xN )

are IM -cofinite and module (0 :Ht−1
I (M,N/xN )

IM ) is finitely generated (*). For each
0 ≤ i < t , we set

Ni = ϕi

(
xHi

I (M, N ) + Hi,k

xHi
I (M, N )

)

.

Hence, Ni is a finitely generated submodule of Hi
I (M, N/xN ) since

xHi
I (M, N ) + Hi,k

xHi
I (M, N )

∼= Hi,k

Hi,k ∩ xHi
I (M, N )

is a finitely generated submodule of Hi
I (M, N )/xHi

I (M, N ). Therefore, we obtain
the following exact sequences:

0 → Hi
I (M, N )

xHi
I (M, N ) + Hi,k

→ Hi
I (M, N/xN )

Ni
→ (0 :Hi+1

I (M,N )
x) → 0

for all 0 ≤ i < t . For each 0 ≤ i < t , set

Ui = Hi
I (M, N )

xHi
I (M, N ) + Hi,k

and Vi = Hi
I (M, N/xN )

Ni
.
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Note that

Ui ∼= Hi
I (M, N )/Hi,k

x
(
Hi
I (M, N )/Hi,k

) .

By the hypothesis of x and the fact in (2.3), we have that

x /∈ qRp j for all qRp j ∈ AttRp j

(
(Hi

I (M, N )/Hi,k)p j

)
\{p j Rp j }

for all 0 ≤ i < t and all 1 ≤ j ≤ v. Hence, we get by [6, Lemma 4.1 (i)] that
�Rp j

((Ui )p j ) < +∞ for all 0 ≤ i < t and all j = 1, 2, . . . , v. Thus, for each
0 ≤ i < t and 1 ≤ j ≤ v there exists a finitely generated R-submodule Bi, j of Ui

such that (Ui )p j = (Bi, j )p j . For each 0 ≤ i < t , we set Bi = Bi,1 + Bi,2 + . . .+ Bi,l ;
it is clear that Bi is a finitely generated R-submodule ofUi . Then there is a submodule

Ki of Hi
I (M, N ) such that Ki ⊇ xHi

I (M, N ) + Hi,k and
Ki

xHi
I (M, N ) + Hi,k

= Bi .

Thus,

SuppR(Ui/Bi ) ⊆ SuppR(Hi
I (M, N )/Hi,k)\T ⊆ Max(R).

On the other hand, from the short exact sequence

0 → Ni → Hi
I (M, N/xN ) → Vi → 0,

we get the following exact sequence:

HomR
(
R/IM , Hi

I (M, N/xN )
) → HomR(R/IM , Vi ) → Ext1R(R/IM , Ni )

for all 0 ≤ i < t . Hence, it implies that the R-module HomR(R/IM , Vi ) is finitely
generated for all 0 ≤ i < t . Hence, since the sequence

0 → HomR(R/IM ,Ui ) → HomR(R/IM , Vi )

is exact, it yields that HomR(R/IM ,Ui ) is also a finitely generated R-module. Thus,
HomR(R/IM ,Ui/Bi ) is a finitely generated R-module because of the exactness of
sequence

HomR(R/IM ,Ui ) → HomR(R/IM ,Ui/Bi ) → Ext1R(R/IM , Bi )

and the finiteness of Bi . Then we obtain by the fact Supp(Ui/Bi ) ⊆ Max(R) that
HomR(R/IM ,Ui/Bi ) is Artinian for all 0 ≤ i < t . Therefore, we get by [17, The-
orem 1.3] that Ui/Bi is Artinian for all 0 ≤ i < t since Ui/Bi is IM -torsion for all
0 ≤ i < t . Therefore, Ui is a minimax R-module for all 0 ≤ i < t . We also have

Ui = Hi
I (M, N )/xHi

I (M, N )
(
xHi

I (M, N ) + Hi,k
)
/xHi

I (M, N )
,
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where

xHi
I (M, N ) + Hi,k

xHi
I (M, N )

∼= Hi,k

xHi
I (M, N ) ∩ Hi,k

is a finitely generated R-module for all 0 ≤ i < t . Therefore, R-module
Hi
I (M, N )/xHi

I (M, N ) also is a minimax R-module by [18, Sect. 4] for all
0 ≤ i < t . Moreover, by (2.4) and the inductive assumption, we obtain that
HomR

(
R/IM , Hi

I (M, N )/xHi
I (M, N )) is a finitely generated R-module for all

0 ≤ i < t . Hence, we obtain that Hi
I (M, N )/xHi

I (M, N ) is IM -cofinite for all
0 ≤ i < t by [18, Proposition 4.3]. We keep in mind the fact as mentioned in (*).
Therefore, we get by the sequence (2.4) again that (0 :Hi

I (M,N ) x) is IM -cofinite for all

0 ≤ i < t and HomR
(
R/IM , (0 :Ht

I (M,N ) x)
)
is a finitely generated R-module. From

the IM -cofiniteness of Hi
I (M, N )/xHi

I (M, N ) and (0 :Hi
I (M,N ) x) for all 0 ≤ i < t ,

we get that Hi
I (M, N ) is IM -cofinite for all 0 ≤ i < t by [6, Lemma 3.1]. Moreover,

note that

HomR
(
R/IM , (0 : x)Ht

I (M,N )

) = HomR
(
R/IM , Ht

I (M, N )
)

since x ∈ IM . Hence, HomR(R/IM , Ht
I (M, N )) is finitely generated, as required. �	

Note that if dim SuppR(Hi
I (M, N )) ≤ 1 for all i < t then Hi

I (M, N )p = 0 for

all i < t and all p ∈ ⋃
j<t SuppR(H j

I (M, N )) with dim R/p > 1. Hence, as an
immediate consequence of Theorem 2.7 we obtain again a result of Cuong–Goto–
Hoang (see [6, Theorem 1.2]) which says that Let t be a non-negative integer such
that dim SuppR(H j

I (M, N )) ≤ 1 for all j < t . Then Hi
I (M, N ) is I -cofinite for all

i < t and HomR(R/I , Ht
I (M, N )) is finitely generated.

By replacing M = R in Theorem 2.7 we get the following result for the case of
ordinary local cohomology modules Hi

I (N ).

Corollary 2.8 Let t be a non-negative integer such that Hi
I (N )p is a finitely generated

module over Rp for all i < t and all p ∈ ⋃
j<t SuppR(H j

I (N )) with dim R/p > 1.

Then Hi
I (N ) is I -cofinite for all i < t and HomR(R/I , Ht

I (N )) is finitely generated.

The result [2, Proposition 3.1] says that if Hi
I (N )p is finitely generated over Rp

for all i < t and all p ∈ Supp(N/I N ) with dim R/p > 1 then Hi
I (N ) is I -cofinite

for all i < t and HomR(R/I , Ht
I (N )) is finitely generated. Thus Corollary 2.8 is a

slight improvement of [2, Proposition 3.1] of Bahmanpour–Naghipour–Sedghi; and
so Corollary 2.8 is also an extension of Bahmanpour–Naghipour [3, Theorem 2.6].

Remark 2.9 For any 0 ≤ n ∈ Z. Note that the notion of in dimension < n module is
mentioned in Remark 2.2. On the other hand, in the proof of [14, Theorem 2.4], we
consider the number hnI (M, N ) defined by

hnI (M, N ) = inf{0 ≤ i ∈ Z | Hi
I (M, N ) is not in dimension < n}.
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Now, as an application of Theorem 2.7, we get the following result on the cofiniteness
of Hi

I (M, N ) whenever i < h2I (M, N ).

Corollary 2.10 The R-module Hi
I (M, N ) is I -cofinite for all i < h2I (M, N ) and

HomR(R/I , H
h2I (M,N )

I (M, N )) is finitely generated, where

h2I (M, N ) = inf{0 ≤ i ∈ Z | Hi
I (M, N ) is not in dimention < 2}.

Proof For any 0 ≤ n ∈ Z. We recall that the nth finiteness dimension f nI (M, N ) of
M and N with respect to I was defined in [14, Definition 2.3] as follows:

f nI (M, N ) = inf{ f Ip(Mp, Np) | p ∈ SuppR(N/IM N ), dim R/p ≥ n},

where f Ip(Mp, Np) is the least integer i such that Hi
Ip

(Mp, Np) is not a finitely
generated Rp-module.

Hence, we obtain in the case of n = 2 that Hi
I (M, N )p is a finitely generated

Rp-module for all i < f 2I (M, N ) and all p ∈ SuppR(N/IM N ) with dim R/p ≥ 2.
On the other hand, in [14, Theorem 2.4], we proved that h2I (M, N ) = f 2I (M, N ).
Thus, Hi

I (M, N )p is finitely generated over Rp for all i < h2I (M, N ) and all

p ∈ ⋃
j<h2I (M,N ) SuppR(H j

I (M, N )) with dim R/p > 1. Therefore, we obtain by

Theorem 2.7 that the R-module Hi
I (M, N ) is I -cofinite for all i < h2I (M, N ), and

HomR(R/I , H
h2I (M,N )

I (M, N )) is finitely generated, as required. �	
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