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Abstract
In this letter, we propose a continuous-time dynamics for social network that represents
patterns of both amity and enmity through directed signed graphs. The introduction of
discrepancies between true and perceived sentiments gives rise to a non-autonomous
system and distinguishes itself from the prior models. We show that for almost all
initial configurations, the system will evolve into at most four factions. Under some
mild assumptions on the initial conditions, structural balance with at most two factions
can be achieved, which extends the previous results for symmetric or normal initial
configurations without considering the effect of perceived sentiment.
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1 Introduction

Signed graphs in which edges can be positive or negative are often used to describe
sentiment relationship between individuals in sociology and psychology [19]. Con-
sider a signed directed graph G composed of n vertices (or individuals) labelled as
1, 2, . . . , n with a weighted adjacency matrix X = (xi j ) ∈ R

n×n , where xi j represents
the strength of sentiment individual i has about j (a positive value indicates friend-
ship/alliance while a negative value dislike/rivalry). The directed graph G is said to be
balanced if the product of weights along each undirected cycle (assuming xi j and x ji
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has the same sign for every pair i and j) is positive. The well-known structure theorem
[3,6,17] shows that G is balanced if and only if G can be divided into at most two
sets (or factions) such that all edges within each set have positive weights while those
linking the two have negative weights. X is called balanced if the corresponding graph
G is balanced. Therefore, a balanced matrix X has the sign pattern (+) or

( + −− +
)
up

to a permutation of vertices.
Structural balance theory [7], originated from social psychology, implies that the

individuals in an unbalanced state have an incentive to modify their sentiments so as
to reduce the tension and evolve into a balanced one characterized by the structure
theorem. In a triad, for example, the balanced structure is epitomized by the wisdom
“my friend’s friend is my friend”, “my friend’s enemy is my enemy”, “my enemy’s
friend is my enemy”, and “my enemy’s enemy is my friend” [15]. Apart from static
characterization, the classical continuous-time dynamical model for structural balance
is presented in [9] as a matrix differential equation

Ẋ = X2, or component-wisely, ẋi j =
∑

k

xik xk j , (1.1)

where the sentiment xi j of individual j held by individual i tends to be driven to
the positive direction if xik and xk j have the same sign, while xi j is pushed to the
negative direction if xik and xk j have opposite signs. Numerical simulations show
that for almost all initial configuration X(0), the system reaches structural balance in
finite time [9]. Theoretical analysis is performed in [11] for random symmetric X(0)
and further extended to normal matrix satisfying XT (0)X(0) = X(0)XT (0) in [16].
In [18], a leader is introduced to steer the system to a desired friendship state. An
alternative model considering both states of vertices and edges is introduced in [1], in
which the resulting steady state can be either balanced or unbalanced.

In practice, when adjusting the sentiment xi j in (1.1), individual i can arguably
obtain only the perceived sentiment x̂k j , which usually differs from the true sentiment
xk j of individual j held by individual k. In social influence theory [8], for instance,
xk j presents the attitude of k towards j , which is defined as the individual k’s internal
evaluation of j that cannot be directly perceived or observed by i while x̂k j is the
expressed opinion that is perceived by i . Such a discrepancy has beenwell documented
in social psychology andmaybe caused externally bynormative environment pressures
[10] or internally by stubbornness regarding initial impression [12]. To model the
perceived sentiment, we consider the following dynamical system:

{
Ẋ = X X̂ ,

X̂ = φX + (1 − φ)Y ,
(1.2)

where Y = Y (t) ∈ R
n×n is a known function encoding the factors influencing the

appraisal, and the constant φ ∈ [0, 1] describes the individuals’ susceptibility to influ-
ence (maximally 0, and minimally 1). When φ = 1, we reproduce the classical model
(1.1), where the perceived sentiment coincides with the true attitude. Capitalizing
matrix exponential [2], we will solve the Eq. (1.2) for general Y and study the struc-
tural balance for a special scenario Y = X(0) underscoring the influence of initial
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impression. As it turns out, for a general initial condition X(0), the re-scaled solu-
tion of (1.2) converges to four factions in finite time when Y = X(0). The balanced
state of two factions can be achieved under mild assumptions on X(0), extending the
symmetric [11] and normal [16] cases. It is also worth noting that the dynamics (1.2)
also applies to the self-identity xii . A distinctive feature of our model is that xii in
general is not monotonically increasing as compared to the models ignoring the differ-
ence between true and perceived sentiment (see, e.g. [4,5,11]). Here, the confidence
in oneself is allowed to be strengthened as well as attenuated.

The rest of the paper is organized as follows. The main results are presented in
Sect. 2 and the proofs are given in Sect. 3. The paper is concluded in Sect. 4.

2 Main Results

Theorem 2.1 Assume that Y (t) : [0, T ] �→ R
n×n is continuous and for all 0 ≤ t1

< t2 ≤ T , Y (t2)
∫ t2
t1
Y (τ )dτ = ∫ t2

t1
Y (τ )dτY (t2). Then thematrix differential equation

(1.2) with initial nonsingular X(0) has a unique solution

X(t) =
[
e− ∫ t

0 (1−φ)Y (τ )dτ X−1(0) − φ

∫ t

0
e− ∫ t

s (1−φ)Y (τ )dτds

]−1

(2.1)

for t ∈ [0, T ].
Notice that the solution is nonsingular on [0, T ] provided X(0) is nonsingular.

Moreover, the influence of Y is eliminated from the system when φ = 1. In this
case, the solution (2.1) reduces to X(t) = X−1(0) − t I , which was obtained in [11]
for symmetric X(0) through matrix Riccati equation method; see also [17] for an
alternative approach.

For vectors v,w ∈ R
n , let vT be the transpose of v and 〈v,w〉 = vTw be the

Euclidean inner product of them. Let M be the n × n real matrix ensemble, where
matrix entries have independent Gaussian distribution with mean zero and variance
one [13].

Theorem 2.2 Assume that n is even, X(0) ∈ M is nonsingular and has the largest
positive eigenvalue λ, which is simple. Suppose that φ ∈ (0, (λ + 2)−1). Define

t∗ := 1
(1−φ)λ

ln
(

1
φλ

)
. Then with probability converging to 1 as n goes to infinity, the

matrix differential equation (1.2) with Y = X(0) has a unique solution for t ∈ [0, t∗),
and

lim
t→t∗

(
1

(1 − φ)λet(1−φ)λ
− φ

1 − φ

)
X(t) = vwT , (2.2)

where v is the unit right eigenvector of X(0) associated with λ and wT is the left
eigenvector of X(0) associated with λ satisfying 〈v,w〉 = 1.

Several remarks are in order. First, according to the assumption, we have 0< φ <

1/2. This means the perceived sentiments of individuals in the network are sufficiently
susceptible to the influence of X(0). Taking into consideration the classical model with
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φ = 1, i.e., (1.1), there is still a gap in the range φ ∈ [1/2, 1) for weak susceptibility.
Second, up to a permutation of entries the sign patterns of v and wT become v =
(++−−)T andwT = (+−+−). Hence, when t is near t∗, the sentiment matrix X(t)

has the sign structure

( + − + −+ − + −− + − +− + − +

)
. This indicates that the underlying network

G can be partitioned into four factions: two of them contain positive edges within
themselves and the other two of them contain negative edges within themselves. The
sentiment relationships between these factions are in general not symmetric.Moreover,
the self-assessment xii of individual i can take both positive and negative values near
t∗ allowing their self-identity to be consistent (positive) or inconsistent (negative).
These qualitative phenomena have also been observed in [16,17] for φ = 1. Hence,
X(t) is not balanced generally. Third, under some conditions, the balanced structure
can also be achieved, which is summarized in the following corollary.

Corollary 2.3 Under the assumptions of Theorem 2.2, we have

lim
t→t∗

(
1

(1 − φ)λet(1−φ)λ
− φ

1 − φ

)
X(t) = vvT

if and only if the right and left eigenvectors of X(0) corresponding to λ are the same,
namely v = w. Furthermore, X(t) is balanced when t is close to t∗ if and only if the
eigenvectors v and w have the same sign pattern.

From the proof of Theorem 2.2 below, it will be clear that the condition v = w

always holds for symmetric and normal X(0). In this sense, Corollary 1 complements
previous results (with φ = 1) for symmetric and normal initial configurations (see,
e.g. [11,16–18]) by considering the range of φ ∈ (0, 1/2).

3 Proofs

In this section, we present the proofs of the main results.

Proof of Theorem 2.1 The proposed dynamics (1.2) can be written as Ẋ = φX2+ (1−
φ)XY . Recall that φ ∈ [0, 1] is a constant. By setting Z = X−1, we obtain

Ż = Ẋ−1 = −X−1 Ẋ X−1 = −φ I − (1 − φ)Y X−1

= −φ I − (1 − φ)Y Z ,

where I ∈ R
n×n is the identity matrix. This linear matrix differential equation with

nonsingular initial value X(0) has a unique solution (see, e.g. [2, p. 678])

Z(t) = e− ∫ t
0 (1−φ)Y (τ )dτ Z(0) − φ

∫ t

0
e− ∫ t

s (1−φ)Y (τ )dτds,

where Z(0) = X−1(0). Therefore, we obtain the result using X(t) = Z−1(t). 	
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Proof of Theorem 2.2 It is easy to check that all the hypotheses in Theorem 2.1 are
satisfied when Y = X(0). Let V be the (n − 1)-dimensional subspace generated by
the span of all eigenspaces of X(0) except span{v}. Let v2, v3, . . . , vn be an orthonor-
mal basis of V . Since X(0) ∈ M is nonsingular and has the simple largest positive
eigenvalue λ, we have the decomposition

X(0) = A

(
λ 0T

0 B

)
A−1, (3.1)

where 0 ∈ R
n−1 with all entries being zero and A = (v, v2, v3, . . . , vn) ∈ R

n×n

is nonsingular. Since wT is the left-eigenvector of X(0) associated with λ satisfying
〈v,w〉 = 1 and I = AT A−T , using (3.1) we know that the first column of A−T is w

and

λw = XT (0)w = A−T
(

λ 0T

0 B

)
ATw

= A−T
(

λ 0T

0 B

)(
1, vT2 w, . . . , vTn w

)T
,

which gives rise to vTi w = 0 for i = 2, 3, . . . , n. Hence, w ∈ V⊥.
Note that for any matrix M , the matrix exponential eM is always nonsingular and

(eM )−1 = e−M . It follows from Theorem 2.1 and (3.1) that

X(t) =
[
e− ∫ t

0 (1−φ)Y (τ )dτ X−1(0) − φ

∫ t

0
e− ∫ t

s (1−φ)Y (τ )dτds

]−1

=
{
e− ∫ t

0 (1−φ)Y (τ )dτ A

[(
λ−1 0T

0 B−1

)

−φA−1e
∫ t
0 (1−φ)Y (τ )dτ

∫ t

0
e− ∫ t

s (1−φ)Y (τ )dτds · A
]
A−1

}−1

= A

[(
λ−1 0T

0 B−1

)
− φ

∫ t

0
e
∫ s
0 (1−φ)A−1Y (τ )Adτds

]−1

· A−1e
∫ t
0 (1−φ)Y (τ )dτ , (3.2)

where we have used the matrix exponential property for nonsingular matrix A:

A−1
∫ t

0
e(1−φ)

∫ s
0 Y (τ )dτds A =

∫ t

0
e(1−φ)

∫ s
0 A−1Y (τ )Adτds.
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In view of (3.1), (3.2) and Y = X(0), we derive

X(t) = A

[(
λ−1 0T

0 B−1

)
− φ

∫ t

0
e
∫ s
0 (1−φ)A−1X(0)Adτds

]−1

· A−1e
∫ t
0 (1−φ)X(0)dτ

= A

⎡

⎢
⎣

(
λ−1 0T

0 B−1

)
− φ

∫ t

0
e
(1−φ)s

(
λ 0T

0 B

)

ds

⎤

⎥
⎦

−1

A−1e(1−φ)t X(0)

= A

{(
λ−1 0T

0 B−1

)
− φ

1 − φ

(
λ−1 0T

0 B−1

)

·
⎡

⎢
⎣e

(1−φ)t

(
λ 0T

0 B

)

− I

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

−1

A−1e(1−φ)t X(0)

= A

⎧
⎪⎨

⎪⎩

(
λ−1 0T

0 B−1

)
⎡

⎢
⎣

1

1 − φ
I − φ

1 − φ
e
(1−φ)t

(
λ 0T

0 B

)⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

−1

· A−1e(1−φ)t X(0), (3.3)

where we have applied (3.1) in the second equality, and the equation etM − I =∫ t
0 MesMds for any matrix M and t ≥ 0 (see, e.g. [2, pp. 645]) in the third equality
above. It is straightforward to calculate that

e
(1−φ)t

(
λ 0T

0 B

)

=
(
e(1−φ)tλ 0T

0 e(1−φ)t B

)
. (3.4)

Hence, by (3.3), we have for t ∈ [0, t∗),

X(t) = A

{(
λ−1 0T

0 B−1

) [
1

1 − φ
I − φ

1 − φ

(
e(1−φ)tλ 0T

0 e(1−φ)t B

)]}−1

· A−1e(1−φ)t X(0)

= A

(
1

(1−φ)λ
− φe(1−φ)tλ

1−φ
0T

0 1
1−φ

B−1 − φ
1−φ

e(1−φ)t B

)−1

A−1e(1−φ)t X(0)

= A

((
1

(1−φ)λ
− φe(1−φ)tλ

1−φ

)−1
0T

0 O

)

A−1e(1−φ)t X(0)

+ A

(
0 0T

0
(

1
1−φ

B−1 − φ
1−φ

e(1−φ)t B
)−1

)

A−1e(1−φ)t X(0), (3.5)
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where we have used (3.4) in the first equality and O is the (n − 1) × (n − 1) matrix
of entries all being zero. Similarly as (3.4),

e(1−φ)t X(0) = A

(
e(1−φ)tλ 0T

0 e(1−φ)t B

)
A−1.

Feeding this into (3.5), we arrive at

X(t) = A

((
1

(1−φ)λ
− φe(1−φ)tλ

1−φ

)−1
e(1−φ)tλ 0T

0 O

)

A−1

+ A

(
0 0T

0
(

1
1−φ

B−1 − φ
1−φ

e(1−φ)t B
)−1

e(1−φ)t B

)

A−1. (3.6)

Since n is even, X(0) must have at least one real eigenvalue which is strictly less
than λ. Hence, the second term of (3.6) is O(1) in the time interval [0, t∗] by the
definition of t∗, namely it is bounded uniformly. Also notice that t∗ > 0 if and only if
φ < (λ + 2)−1.

Recalling the construction of matrix A, and by (3.6) we have for t ∈ [0, t∗),

X(t) =
(

1

(1 − φ)λ
− φe(1−φ)tλ

1 − φ

)−1

e(1−φ)tλvwT + O(1),

where we used the fact that the first row of A−1 is wT (since A−1A = I ). Therefore,
for a given initial configuration X(0),

lim
t→t∗

(
1

(1 − φ)λet(1−φ)λ
− φ

1 − φ

)
X(t) = vwT .

By [14, p. 799], with probability tending to 1 as n goes to infinity, X(0) ∈ M satisfies
the property that X(0) has the largest positive eigenvalue which is simple and X(0) is
nonsingular. This completes the proof of Theorem 2.2. 	


4 Conclusion

This paper studies a continuous-time dynamics modeling social networks presenting
patterns of amity and enmity. We differentiate the individuals’ true sentiment X from
their perceived sentiment X̂ with an encoding function Y and an adjustable susceptible
parameter φ ∈ [0, 1] veering from “no difference between X and X̂” to “no relevance
between X and X̂”.We solve the dynamical system for generalY and showafinite-time
convergence to a four-faction solution when Y = X(0). The social balance solution
with two factions is achieved under some mild assumptions on the initial profile X(0),
which turn out to be less restrictive than symmetric or normal matrices. Future work
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will be directed at closing the gap for social balance in φ ∈ [1/2, 1) and validating
our results with empirical data.
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