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Abstract
The inverse eigenvalue problem of quasi-tridiagonal matrices involves reconstruction
of quasi-tridiagonal matrices with the given eigenvalues satisfying some properties. In
particular, we first analyze the eigenvalue properties from two aspects. On this basis,
we investigate the inverse eigenvalue problem of quasi-tridiagonal matrices from the
theoretic issue on solvability and the practical issue on computability. Sufficient con-
ditions of existence of solutions of the inverse eigenvalue problem of quasi-tridiagonal
matrices concerning solvability are found, and algorithms concerning computability
are given with the unitary matrix tool from which we construct matrices. Finally,
examples are presented to illustrate the algorithms.

Keywords Quasi-tridiagonal matrix · Eigenvalue · Inverse eigenvalue problem

Mathematics Subject Classification 65F15 · 15A18

1 Introduction

The real number field and the complex number field are denoted by R and C, respec-
tively. Let E (k)

i, j be the k × k matrix with 1 at its entry (i, j) and zeros elsewhere,
i = 1, 2, . . . , k and j = 1, 2, . . . , k. In this paper, we study the inverse eigenvalue
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problem of quasi-tridiagonal matrices, a class of matrices of this form

J = bnE
(n)
1,m + bnE

(n)
m,1 +

n∑

k=1

ak E
(n)
k,k +

n−1∑

k=1

bk E
(n)
k,k+1 +

n−1∑

k=1

bk E
(n)
k+1,k, (1.1)

where ak ∈ R, bk ∈ C − R, k = 1, 2, . . . , n, bk is the complex conjugation of bk ,
and bn lie in any given entry (1,m) (the first row and mth column) of matrix J for
3 ≤ m ≤ n. Especially, when m = n, we have J = H , where

H = bnE
(n)
1,n + bnE

(n)
n,1 +

n∑

k=1

ak E
(n)
k,k +

n−1∑

k=1

bk E
(n)
k,k+1 +

n−1∑

k=1

bk E
(n)
k+1,k . (1.2)

The goal of this paper is to find the numbers a1, . . . , an and b1, . . . , bn so that the
wanted matrix J has exactly the given eigenvalues. Thus, there are inputs to the
problem and the output is the matrix J . The characteristic polynomial of the n × n
matrix J is χn (λ) = det (λIn − J ), where In is the n×n identity matrix. Let σ (J ) =
{λ1, . . . , λn} be the spectrum of J . It is clear that J is Hermitian, so the eigenvalues
λ1, . . . , λn of J are real.

The inverse eigenvalue problems for different classes of matrices have attracted
much attention [10,13,14,16,19]. Inverse eigenvalue problems arise in a remarkable
variety of applications, including system and control theory, geophysics, molecular
spectroscopy, particle physics, and structure analysis. Also today their place in math-
ematical physics is determined rather by the unexpected connection between inverse
problems and nonlinear evolution equations which was discovered in 1967. If bk �= 0
is real for k = 1, . . . , n and bn and bn are in (1, n) (the first row and the nth column)
and (n, 1) entries of the above matrices, the class of matrices H of the form (1.2)
is called periodic Jacobi matrices. The inverse eigenvalue problems arise in many
areas such as science and engineering [8]. Due to its wide application, these problems
deserved much attention of researchers [1,6,7,15,18]. Algorithms have been found
to reconstruct matrices with described eigenvalues [1,6,15,18]. In [17], four inverse
eigenvalue problems for pseudo-Jacobi matrices have been considered. The necessary
and sufficient conditions for the solvability of these problems have been shown.

If bn = 0 in period Jacobi matrices, then the matrices are reduced to tridiagonal
matrices named Jacobi matrices. The inverse eigenvalue problems for the family of
this form have also been solved. Furthermore, a variety of algorithms of constructions
of Jacobi matrices have been presented [2,5,9,11,12]. In addition, it is shown in [12]
by Moerbeke that the eigenvalues of real Jacobi matrices are distinct real numbers.

Study on Jacobi matrix and periodic Jacobi matrix has been relatively mature; in
recent years, the extended matrices based on the two classes of matrices have been
studied. In 2001, the properties of complex Jacobi matrix were investigated in [13],
and the Jacobi matrix was extended to the complex domain. In 2013, inverse spectral
problems for pseudo-symmetricmatrixwhose form is similar to periodic Jacobimatrix
are discussed in [18], and the periodic Jacobi matrix was extended to non-symmetric
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form. In 2013, Bebiano investigated a class of non-self-adjoint periodic of tridiagonal
matrices some of whose elements are in the plural [15].

In this article, the inverse eigenvalue problem of the matrix J with the non-diagonal
elements is solved. The following are relevant to quasi-tridiagonal matrices.

Principle sub-matrices are the following form of matrices obtained by deleting the
first row and the first column of J , denoting as

G =
n∑

k=2

ak E
(n−1)
k−1,k−1 +

n−1∑

k=2

bk E
(n−1)
k−1,k +

n−1∑

k=2

bk E
(n−1)
k,k−1.

In the following, the characteristic polynomial of G is denoted by ψn−1 (λ) =
det (λIn−1 − G), and the spectrum of G is σ (G) = {μ1, . . . , μn−1}. In addition,
we can also use the product of non-diagonal elements of J . Re(β) is the real part of
complex number β = (−1)n

∏n
k=1 bk . The other forms of matrices will be involved,

respectively, defining them as

J− = −bnE
(n)
1,m − bnE

(n)
m,1 +

n∑

k=1

ak E
(n)
k,k +

n−1∑

k=1

bk E
(n)
k,k+1 +

n−1∑

k=1

bk E
(n)
k+1,k,

H− = J−, (m = n),

Ĥ =
n∑

k=1

ak E
(n)
k,k +

n−1∑

k=1

bk E
(n)
k,k+1 +

n−1∑

k=1

bk E
(n)
k+1,k,

L =
n−1∑

k=2

ak E
(n−2)
k−1,k−1 +

n−2∑

k=2

bk E
(n−2)
k−1,k +

n−2∑

k=2

bk E
(n−2)
k,k−1.

This paper is organized as follows. The eigenvalue properties, as well as the location of
J and G, are discussed in Sect. 2. We get the conclusion that the eigenvalues of J and
G satisfy interlacing property. In Sect. 3, the inverse eigenvalue problems of a family
of quasi-tridiagonal matrices are explored. In this part, the construction of bordered
diagonal matrices with given eigenvalues is solved first, and the sufficient conditions
of solvability to the inverse eigenvalue problem of quasi-tridiagonal matrices are pre-
sented. The reconstruction of J is analyzed. Algorithms to describe the construction
of J are given in Sect. 4. In Sect. 5, numerical examples are given to illustrate the
algorithm and the results demonstrate that the algorithms are practical.

2 Eigenvalue Problem of Quasi-tridiagonal Matrices

Lemma 2.1 [18] The eigenvalues of G are strictly distinct real numbers, that is,
μ1, . . . , μn−1 are real and simple.

The following lemma presents the sufficient and necessary conditions for J and G
having common eigenvalues.
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Lemma 2.2 Let μ1, . . . , μn−1 be distinct eigenvalues of G, and uTk = [uk1, . . . ,
uk,n−1]T ∈ C

n−1 is the unit eigenvector of G corresponding to μk, where uk1 and
uk,m−1 are the first and (m − 1)th entries of uk, respectively. μk is one eigenvalue of
J if and only if |b1uk,1 + bnuk,m−1| = 0.

Proof As a bridge, we first define a bordered diagonal matrix as

A =
[
1 0
0 U∗

]
J

[
1 0
0 U

]
, (2.1)

where the kth row of U is taken as u∗
k (∗ represents conjugate transpose), it follows

that U∗ = [
u1, . . . , un−1

]
. It is clear that U is unitary matrix, that is, U∗U = In−1

(the (n − 1) × (n − 1) identity matrix).
Let ek be the (n − 1)-dimensional row vector with 1 at its kth element and zeros

elsewhere for k = 1, . . . , n − 1. The matrix J can be expressed as

J =
[
a1 h
h∗ G

]
, (2.2)

where h = b1e1 + bnem−1. In addition, let

A =
[
a1 c∗
c M

]
, (2.3)

where M = diag (μ1, . . . , μn−1). Clearly, M is unitarily similar to tridiagonal matrix
G, that is, the following formula holds:

M = U−1GU = U∗GU , G = UMU∗.

It is easy to get

ψn−1 (λ) = det (λIn−1 − G) = det (λIn−1 − M) =
n−1∏

k=1

(λ − μk) .

χn (λ) = det (λIn − J ) =
∣∣∣∣
λ − a1 −h
−h∗ λIn−1 − G

∣∣∣∣

= (λ − a1) det (λIn−1 − G) − det (λIn−1 − G) h(λIn−1 − G)−1h∗

= (λ − a1) det (λIn−1 − G) − det (λIn−1 − G) hU∗(λIn−1 − M)−1Uh∗

= (λ − a1) ψn−1 (λ) − ψn−1 (λ)

n−1∑

k=1

|huk |2
λ − μk

= (λ − a1) ψn−1 (λ) − ψn−1 (λ)

n−1∑

k=1

αk

λ − μk
,
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where αk = ∣∣b1uk,1 + bnuk,m−1
∣∣2. It is equivalent to

χn (λ)

ψn−1 (λ)
= λ − a1 −

n−1∑

k=1

αk

λ − μk
. (2.4)

Then

χn (λ) =
n−1∏

j=1

(
λ − μ j

)
(

λ − a1 −
n−1∑

k=1

αk

λ − μk

)
. (2.5)

Substituting μk into (2.5), the following can be obtained

χn (μk) = −
n−1∑

k=1
j �=k

(
μk − μ j

)
αk . (2.6)

Differentiating both sides of the polynomial ψn−1 (λ), we see

ψ ′
n−1 (λ) =

n−1∑

k=1

n−1∏

j=1
j �=k

(
λ − μ j

)
.

As the eigenvalues of G are simple, ψ ′
n−1 (λ) must not be 0.

It can easily be seen that

signψ ′
n−1 (μk) = (−1)n−k−1. (2.7)

According to (2.6), we obtain

αk = − χn (μk)

ψ
′
n−1 (μk)

. (2.8)

Therefore, μk is an eigenvalue of J , that is, χn (μk) = 0. Considering (2.8), we infer
that χn (μk) = 0 if and only if αk = 0. This completes the proof. ��

Suppose there are no common eigenvalue between them, then the next lemma
presents the condition which the eigenvalues of quasi-tridiagonal matrices satisfy.

Lemma 2.3 If the formula |b1uk,1 + bnuk,m−1| �= 0 holds for k = 1, . . . , n − 1, then
the eigenvalues of J are the zeros of the following function:

f (λ) = λ − a1 −
n−1∑

k=1

αk

λ − μk
.

Proof The lemma follows immediately from Lemma 2.2 and formula (2.5). ��
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Based on Lemmas 2.2 and 2.3, the position of the eigenvalues between J and G
in the condition that there are no common eigenvalue is presented in the following
theorem.

Theorem 2.4 Let λ1 < · · · < λn and μ1 < · · · < μn−1 be the eigenvalues of J and
G, respectively. If each λ j is not the eigenvalue of G, then the eigenvalues of J are
strictly distinct real numbers, and the eigenvalues λ j and μk satisfy the inequality as
follows:

λ1 < μ1 < λ2 < μ2 < · · · < μn−1 < λn .

Proof By Lemma 2.3, we know that the eigenvalues of J are the roots of the equation

λ − a1 −
n−1∑

k=1

αk

λ − μk
= 0.

Let g(λ) = λ − a1 and q(λ) = ∑n−1
k=1

αk
λ−μk

. It is obvious to prove that g(λ) is
monotonically increasing in the entire interval.

Since q ′(λ) < 0 with λ ∈ (μk, μk+1) ∪ (−∞, μ1) ∪ (μn−1,+∞) for k =
1, . . . , n − 2, then q(λ) is strictly monotonically decreasing in each interval and
limλ→+∞ h(λ) = limλ→−∞ h(λ) = 0.

Computing q ′′(λ), we also know the sign of which changes only once in each
interval. It follows that there exist odd roots in each interval. From what have been
discussed above, there exists one and only one real root in each interval, that is, the
inequality holds. ��

The condition that the eigenvalues of J satisfy is given in the following if some of
the eigenvalues of G are also the eigenvalues of J .

Lemma 2.5 Let S be a subset containing s elements of {1, . . . , n − 1}, such that
|b1uk,1 + bnuk,m−1| = 0 holds for k ∈ S, and |b1uk,1 + bnuk,m−1| �= 0 holds for
k /∈ S. Then μk is an eigenvalue of J for k ∈ S and the rest eigenvalues of J are the
n − s roots of f (λ).

Proof It is known that χn (λ) has n roots. Based on Lemma 2.2, it is obvious that
χn (μk) = 0 for k ∈ S and the rest eigenvalues of J satisfy

∏n−1
j=1

(
λ − μ j

) �= 0.
Therefore, the rest n − s eigenvalues of J are the zeros of the polynomial f (λ),
obtained from the structure of χn (λ). The proof of this lemma is now complete. ��

Based on the previous theory, we can obtain the general properties of eigenvalues
of quasi-tridiagonal matrices.

Theorem 2.6 Assume that λ1 ≤ · · · ≤ λn and μ1 < · · · < μn−1 are the eigenvalues
of J and G. Let S be a subset containing s elements of the set {1, . . . , n − 1}, such
that μk is an eigenvalue of J for k ∈ S. Then the multiplicity of the eigenvalues of J
is at most 2, the multiple roots are also eigenvalues of G, and the eigenvalues of J
and G satisfy the following inequality:

λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ · · · ≤ μn−1 ≤ λn .
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Proof Let S = {s1, . . . , ss} (s1 < · · · < ss), N − S = {k1, . . . , kn−s} (k1 < · · · <

kn−s),where N = {1, . . . , n−1}.Without loss of generality,wemayassumeμsi = λsi ,
then by Lemma 2.5, the rest n − s eigenvalues of J satisfy the equation f (λ) = 0.

We can also have a conclusion that there exists one and only one eigenvalue of
J in each interval (μki , μki+1) ∪ (−∞, μk1) ∪ (μkn−s ,+∞) for ki ∈ N − S from
Theorem 2.4.

Assume one eigenvalue λk j satisfies λk j = λsi = μsi , since μi is distinct and
simple, then we can come to a conclusion that the multiplicity of the eigenvalues of J
is at most 2, and the multiple eigenvalues are also the eigenvalues of G. ��

To sum up the above discussion, we can characterize the eigenvalue properties of
J and the location of J and G.

3 The Inverse Eigenvalue Problems of J

In this section, we first define two bordered diagonal matrices A and A− as a bridge to
proceed in the proof of the next theorem in a similar manner of Lemma 2.2 in Sect. 2,
constructed as follows:

A =
[
1 0
0 U∗

]
J

[
1 0
0 U

]
, A− =

[
1 0
0 U∗

]
J−

[
1 0
0 U

]
. (3.1)

Assume

A =
[
a1 c∗
c M

]
, A− =

[
a1

(
c−)∗

c− M

]
, (3.2)

where M = diag(μ1, . . . , μn−1) = U∗GU . Denote vectors c and c− as c =
[c1, . . . , cn−1]T and c− = [c−

1 , . . . , c−
n−1]T, respectively.

From the construction above, the diagonal matrix M and the tridiagonal matrix G
have the same eigenvalues, the matrices A and J also have the same eigenvalues, so do
thematrices A− and J−. It is easy to get a1 = tr (A)−tr (M) = ∑n

m=1 λm−∑n−1
k=1 μk .

We can also know the matrices A and A− are both bordered diagonal matrices.
In the above process, if the eigenvalues of J are given, and the eigenvalues of G

are selected, then a1 and M can be computed. Therefore, if we want to construct
the bordered diagonal matrices A and A−, it is sufficient to compute the boundary
elements of them, that is, to compute the vector c and vector c−, respectively.

The following theorem provides formulas to compute the boundary elements of the
bordered diagonal matrices A and A− in the case of J = H .

Theorem 3.1 For H , assume that λi and μk are distinct real numbers and satisfy the
inequality λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ · · · ≤ μn−1 ≤ λn. Then the entries ck and c−

k ,

(k = 1, . . . , n − 1) can be represented with λi , μk and Reβ, where the formulas are
as follows:

|ck |2 = −
∏n

i=1 (μk − λi )∏n−1
j=1
j �=k

(
μk − μ j

) ,
∣∣c−

k

∣∣2 = −
∏n

i=1 (μk − λi ) + 4 (−1)n Re (β)
∏n−1

j=1
j �=k

(
μk − μ j

) .
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Proof Computing the characteristic polynomial of A, we have

det (λIn − A) = (λ − a1)
n−1∏

j=1

(
λ − μ j

) −
n−1∑

k=1

|ck |2
n−1∏

j=1
j �=k

(
λ − μ j

)
. (3.3)

Substituting λ = μ1, . . . , μn−1 into formula (3.3), we get n − 1 equations of |ck |.
Solving the n − 1 equations, we have

|ck |2 = −
∏n

i=1 (μk − λi )∏n−1
j=1
j �=k

(
μk − μ j

) . (3.4)

Let p(λ) = det(λIn − Ĥ) and r(λ) = det(λIn−2 − L), then we get

det (λIn − H) = p (λ) − |bn|2r (λ) − 2 (−1)n Re (β) ,

det
(
λIn − H−) = p (λ) − |bn|2r (λ) + 2 (−1)n Re (β) .

Doing subtraction with the above two equations, we have

det
(
λIn − H−) − det (λIn − H) = 4 (−1)n Re (β) .

Therefore,

det(λIn − A−) = det
(
λIn − H−)

= det (λIn − H) + 4 (−1)n Re (β)

= det (λIn − A) + 4 (−1)n Re (β) . (3.5)

In addition,

det(λIn − A−) = (λ − a1)
n−1∏

j=1

(λ − μ j ) −
n−1∑

k=1

|c−
k |2

n−1∏

j=1
j �=k

(λ − μ j ), (3.6)

substituting μk into formula (3.5), we have

det
(
μk In − H−) = det

(
μk In − A−)

= −∣∣c−
k

∣∣2
n−1∏

j=1
j �=k

(
μk − μ j

)

= det (μk In − A) + 4 (−1)n Re (β) .
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Since

det (μk In−1 − A) =
n∏

i=1

(μk − λi ) ,

combining formula (3.6) with formula (3.5), we have

∣∣c−
k

∣∣2 = −
∏n

i=1 (μk − λi ) + 4 (−1)n Re (β)
∏n−1

j=1
j �=k

(
μk − μ j

) . (3.7)

This completes the proof of Theorem 3.1. ��

Based on Theorem 3.1, the existence of solutions is shown in the following.

Theorem 3.2 Let {λk} , (k = 1, . . . , n) and {μk} , (k = 1, . . . , n − 1) be distinct real
numbers, and satisfy the inequality λk ≤ μk ≤ λk+1, k = 1, . . . , n − 1. If the real
part Re (β) of β satisfies the inequality |Reβ| ≤ r , denoting r = max1≤k≤n−1(rk),
where rk = (−1)n−k−1 1

4

∏n
j=1

(
μk − λ j

)
. Then the solutions of formulas (3.4) and

(3.7) exist. It is equivalent to the fact that the solutions exist.

Proof On the one hand, due to the condition λk ≤ μk ≤ λk+1, for k = 1, . . . , n − 1,
yields the signs of

∏n
j=1(μk − λ j ) and

∏n−1
j=1
j �=k

(μk − μ j ) are opposite. Therefore,

|ci |2 = −
∏n

j=1

(
μi − λ j

)

∏n−1
j=1
j �=i

(
μi − μ j

) ≥ 0.

The above inequality ensures the existence of solutions of formula (3.4). On the other
hand, if wewant to get the formula

∣∣ci−
∣∣2 ≥ 0, then for i = 1, . . . , n−1, the following

n − 1 formulas must be guaranteed

∣∣∣∣∣∣∣∣
− 4 (−1)n Re (β)

∏n−1
j=1
j �=i

(
μi − μ j

)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
−

∏n
j=1

(
μi − λ j

)

∏n−1
j=1
j �=i

(
μi − μ j

)

∣∣∣∣∣∣∣∣
.

Since

−
∏n

j=1

(
μi − λ j

)

∏n−1
j=1
j �=i

(
μi − μ j

) ≥ 0,

123



1706 Bulletin of the Iranian Mathematical Society (2019) 45:1697–1712

the above formula is equivalent to

∣∣∣∣∣∣∣∣
− 4 (−1)n Re (β)

∏n−1
j=1
j �=i

(
μi − μ j

)

∣∣∣∣∣∣∣∣
≤ −

∏n
j=1

(
μi − λ j

)

∏n−1
j=1
j �=i

(
μi − μ j

) ,

that is,

4 |Re(β)| ≤ −
∏n

j=1(μi − λ j )
∏n−1

j=1
j �=i

(μi − μ j )

∣∣∣∣∣∣∣∣

n−1∏

j=1
j �=i

(μi − μ j )

∣∣∣∣∣∣∣∣
.

It is equivalent to

4 |Re (β)| ≤ (−1)n−i−1
n∏

j=1

(
μi − λ j

)
.

Solving the inequality, we have

(−1)n−i 1

4

n∏

j=1

(
μi − λ j

) ≤ Re (β) ≤ (−1)n−i−1 1

4

n∏

j=1

(
μi − λ j

)
, (3.8)

for i = 1, . . . , n − 1.
Simplifying formula (3.8) gives a simple inequality

|Re(β)| ≤ r . (3.9)

To sum up, if formula (3.9) holds, then the following formula holds:

∣∣ci−
∣∣2 = −

∏n
j=1

(
μi − λ j

) + 4(−1)nRe (β)
∏n−1

j=1
j �=i

(
μi − μ j

) ≥ 0.

The above ensures the existence of solutions of formula (3.7). The proof is completed.
��

The theorems above provide the sufficient conditions of existence of solutions.

Theorem 3.3 Defining vectors c and c− as above, assume that bn is in the entry (1,m)

ofmatrix J , the formulas b1u1+bnum−1 = c (3 ≤ m ≤ n),2bnun−1 = c−c−(m = n)

and b1u1 = c + c−(m = n) hold.
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Proof Noting that ‖u1‖ = 1 and ‖um−1‖ = 1. From h∗U∗ = c, we have

(b1e
T
1 + bne

T
m−1)U

∗ = c,

so
b1u1 + bnum−1 = c(3 ≤ m ≤ n). (3.10)

When m = n, from h = c∗U∗ and h− = c−∗U∗, we have

(b1e
T
1 + bne

T
n−1)U

∗ = c, (b1e
T
1 − bne

T
n−1)U

∗ = c−,

that is,

b1u1 + bnun−1 = c, b1u1 − bnun−1 = c−.

Therefore,
2b1u1 = c + c−, 2bnun−1 = c − c−. (3.11)

The proof is completed. ��

4 Algorithm for the Inverse Eigenvalue Problem of Quasi-tridiagonal
Matrices

4.1 Algorithm for H

The algorithm combining the previous theoretic part with Lanczos algorithm for the
construction of quasi-tridiagonal matrices is presented as follows:

(1) Giving λk , k = 1, . . . , n, take μk = 1
2 (λk + λk+1), k = 1, . . . , n − 1. According

to formulas (3.4) and (3.7), we can compute |ck | and
∣∣ck−∣∣. Let ck = |ck | ei π4 ,

ck− = ∣∣ck−∣∣ ei π4 , then we get the complex vectors c and c−.
(2) From formula (3.11), we can compute

∣∣b1
∣∣, noting |u1| = 1. Let b1 = ∣∣b1

∣∣ ei π4 ,
then we get the complex number b1, then we can compute the eigenvector u1.
Similarly, we can also compute |bn|. Taking bn = |bn| ei π4 , we can have the
element bn , then we can compute the vector un−1.

(3) It is well known that G = UMU∗ is equal to U∗G = MU∗. For simplicity, we
denote the sub-matrix G as the following form:

G =
n−1∑

k=1

tk E
(n−1)
k,k +

n−2∑

k=1

sk E
(n−1)
k,k+1 +

n−2∑

k=1

sk E
(n−1)
k+1,k .

We can compute the vectors u2, . . . , un−1 and the tridiagonal matrix G
via Lanczos algorithm with the vector u1 and the diagonal matrix M =
diag (μ1, . . . , μn−1), proceeding as follows:
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Step 0. k = 1.
Step 1. tk = u∗

kMuk ∈ R.

Step 2. zk+1 = Muk − uktk for k = 1,
zk+1 = Muk − uktk − uk−1sk−1 for k = 2, . . . , n − 2.

Step 3. sk = ‖zk+1‖ ei π4 .
Step 4. uk+1 = zk+1 (sk)−1.

Let k = k + 1 return to step 1.
Calculating the above steps, we get a2, . . . , an−1 b1, . . . , bn−2, bn .

(4) Select (−1)n(b1 · · · bn−2bn)−1Re (β) as bn−1.
(5) Obviously, a1 = tr (A) − tr (M) = ∑n

k=1 λk − ∑n−1
k=1 μk .

4.2 Algorithm for J

Give m and λk , k = 1, . . . , n, and take μk = 1
2 (λk + λk+1), k = 1, . . . , n − 1.

According to formula (3.4), we can compute |ck |. Let ck = |ck | ei π4 , then we get the
complex vector c.

Take any (n − 1)-dimensional complex column vector ũ1. For j = 1, let u( j)
1 =

ũ1‖ũ1‖−1.

Step 0. b( j)
1 = (u( j)

1 )∗c, k = 1;

Step 1. t ( j)k = (u( j)
k )∗Mu( j)

k ∈ R;

Step 2. z( j)k+1 = Mu( j)
k − u( j)

k t ( j)k for k = 1,

z( j)k+1 = Mu( j)
k − u( j)

k t ( j)k − u( j)
k−1s

( j)
k−1 for k = 2, . . . ,m − 2;

Step 3. s( j)
k = ‖z( j)k+1‖ei

π
4 ;

Step 4. u( j)
k+1 = z( j)k+1

(
s( j)
k

)−1

;

Step 5. b( j)
n = (u( j)

m−1)
∗c;

Step 6. |b( j+1)
1 | = ‖c − b( j)

n u( j)
m−1‖;

Step 7. b( j+1)
1 = |b( j+1)

1 |ei π4 ;
Step 8. u( j+1)

1 = (c − b( j)
n u( j)

m−1)

(
b( j+1)
1

)−1

;

Step 9. b( j+1)
1 = (u( j+1)

1 )∗c for regulating b( j+1)
1 above;

Step 10. u( j)
m−1 = (c − b( j+1)

1 u( j+1)
1 )(b( j)

n )−1 for regulating u( j)
m−1 above.

Let j = j + 1, return to step 0. When j = K makes ‖u(K )
m−1 − u(K+1)

m−1 ‖ < ε given

before start, we take b1 = b(K+1)
1 , bn = b(K )

n and u1 = u(K+1)
1 .

x1 = u∗
1Mu1;

v1 = Mu1 − u1x1;
w1 = ‖v1‖e π

4 ;
u2 = v1(w1)

−1;
x2 = u∗

2Mu.
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For k = 2, . . . , n − 2,

vk = Muk − ukxk − uk−1wk−1;
wk = ‖vk‖e π

4 ;
uk+1 = vk(wk)

−1;
xk+1 = u∗

k+1Muk+1.

Let k = k + 1 return. Calculating the above steps, we get u1, . . . , un−1. Let J =
(Ji, j ) = On×n . Take

J1,1 =
n∑

k=1

λk −
n−1∑

k=1

μk;

Jk,k = u∗
k−1Muk−1 for k = 2, . . . , n;

J1,2 = b1, J2,1 = J1,2;
Jk,k+1 = u∗

k−1Muk, Jk+1,k = Jk,k+1 for k = 2, . . . , n − 1;
Jm,1 = bn, J1,m = Jm,1.

We get J wanted. To avoid errors, we may take 1
2 (J + J ∗) as J .

5 Numerical Experiments

Numerical experiments are conductedwithMatlab to test the algorithms for illustrating
our method.

Example 5.1 Giving a set of geometric sequence whose first item is 2, and common
ratio is 2, λ1 = 2, λ2 = 8, λ3 = 32 and λ4 = 128, we reconstruct a 4 × 4 quasi-
tridiagonal matrix H of the form (1.2) with the eigenvalues λ1, λ2, λ3, λ4 by the
algorithm for H .

Taking μ1 = 4, μ2 = 16, μ3 = 64, first we have the boundary elements of the
bordered diagonal matrix

c =
[
3149

717
+ 3149

717
i,
3907

296
+ 3907

296
i,
5973

170
+ 5973

170
i

]
,

c− =
[
3413

1099
+ 3413

1099
i,
1242

91
+ 1242

91
i,
7301

208
+ 7301

208
i

]
.

The matrix H is reconstructed as follows:

⎡

⎢⎢⎣

86 12695
336 − 12695

336 i 0 1459
2141 − 1459

2141 i
12695
336 + 12695

336 i 11298
197

2767
233 − 2767

233 i 0
0 2767

233 + 2767
233 i

1172
55

1039
366 + 1039

366 i
1459
2141 + 1459

2141 i 0 1039
366 − 1039

366 i
4139
775

⎤

⎥⎥⎦ .
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Table 1 Approximate value of the characteristic polynomial of H at λ j

j λ j det
(
λ j I4 − H

)

1 2 (0.0038 + 0.0002i) 10−8

2 8 (0.0089 − 0.0002i) 10−8

3 32 (0.0591 + 0.0046i) 10−8

4 128 (0.5103 − 0.0133i) 10−8

Table 2 Approximate value of the characteristic polynomial of J (m = 3) at λ j

j λ j det
(
λ j I5 − J

)

1 1 (0.1745 − 0.0024i) 10−12

2 2 (−0.0908 − 0.0016i) 10−12

3 3 (−0.1628 + 0.0012i) 10−12

4 5 (−0.0404 − 0.0028i) 10−12

5 8 (−0.9088 + 0.0013i) 10−12

Substituting the given eigenvalues into the characteristic polynomial of the constructed
matrix H , we have Table 1.

Example 5.2 Giving a set of Fibonacci sequence from the second item, λ1 = 1,λ2 = 2,
λ3 = λ1 + λ2 = 3, λ4 = λ2 + λ3 = 5 and λ5 = λ3 + λ4 = 8, we reconstruct three
5 × 5 J of the form (1.1) for m = 3, 4, 5 with the eigenvalues λ1, λ2, λ3, λ4, λ5 by
the algorithm for J .

Taking μ1 = 1
2 (λ1 + λ2) = 1.5, μ2 = 1

2 (λ2 + λ3) = 2.5, μ3 = 1
2 (λ3 + λ4) = 4

and μ4 = 1
2 (λ4 + λ5) = 6.5 and choosing ũ1 = [1, 2, 3, 4]T + i[5, 6, 7, 8]T, when

m = 3, we reconstruct J as

⎡

⎢⎢⎢⎢⎣

9
2

1507
921 + 632

279 i
1855
4888 − 1121

5153 i 0 0
1507
921 − 632

279 i
1365
313

1549
1441 − 314

211 i 0 0
1855
4888 + 1121

5153 i
1549
1441 + 314

211 i
2110
503

857
997 − 2117

1779 i 0
0 0 857

997 + 2117
1779 i

1104
323

425
1016 − 593

1024 i
0 0 0 425

1016 + 593
1024 i

1061
420

⎤

⎥⎥⎥⎥⎦
.

Substituting the given eigenvalues into the characteristic polynomial of the constructed
matrix J , we have Table 2.

When m = 4, we reconstruct J as

⎡

⎢⎢⎢⎢⎣

9
2

917
367 + 425

322 i 0 − 537
9359 + 93

869 i 0
917
367 − 425

322 i
2593
535

655
409 − 659

779 i 0 0
0 655

409 + 659
779 i

2662
677

923
769 − 1133

1787 i 0
− 537

9359 − 93
869 i 0 923

769 + 1133
1787 i

520
161

1136
1901 − 667

2113 i
0 0 0 1136

1901 + 667
2113 i

1014
407

⎤

⎥⎥⎥⎥⎦
.
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Table 3 Approximate value of the characteristic polynomial of J (m = 4) at λ j

j λ j det
(
λ j I5 − J

)

1 1 (−0.0024 − 0.0027i) 10−12

2 2 (−0.0474 + 0.0005i) 10−12

3 3 (−0.1028 + 0.0004i) 10−12

4 5 (−0.1328 − 0.0009i) 10−12

5 8 (−0.4361 − 0.0478i) 10−12

Table 4 Approximate value of the characteristic polynomial of J (m = 5) at λ j

j λ j det
(
λ j I5 − J

)

1 1 (0.0496 − 0.0001i) 10−12

2 2 (−0.0181 + 0.0010i) 10−12

3 3 (0.0049 − 0.0001i) 10−12

4 5 (0.0777 − 0.0029i) 10−12

5 8 (−0.6132 − 0.0244i) 10−12

Substituting the given eigenvalues into the characteristic polynomial of the con-
structed matrix J , we have Table 3.

When m = 5, we reconstruct J as

⎡

⎢⎢⎢⎢⎣

9
2

1042
409 + 397

327 i 0 0 − 441
3559 + 434

3067 i
1042
409 − 397

327 i
835
172

281
177 − 376

497 i 0 0
0 281

177 + 376
497 i

2879
703

2131
1822 − 928

1665 i 0
0 0 2131

1822 + 928
1665 i

2127
673

5807
8412 − 1155

3511 i
− 441

3559 − 434
3067 i 0 0 5807

8412 + 1155
3511 i

2153
901

⎤

⎥⎥⎥⎥⎦
.

Substituting the given eigenvalues into the characteristic polynomial of the con-
structed matrix J , we have Table 4.

6 Conclusion

The spectral properties and the inverse eigenvalue properties for the class of quasi-
tridiagonal matrices are given. The first conclusion is that the multiplicities of the
eigenvalues of J are at most two, as well as satisfying the interlacing properties.
Second, the sufficient conditions of the solution to the inverse eigenvalue problem
of quasi-tridiagonal matrices are solved. Two algorithms are given. The advantage of
the second algorithm is that we can give any initial vector. Computational results are
shown in numerical examples, illustrating the feasibility of the algorithm.
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