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Abstract
LetA be a unital standard algebra on a complex Banach spaceX with dimX ≥ 2. The
main result of this paper is to characterize the linear maps δ, τ : A → B(X ) satisfying
Aτ(B) + δ(A)B = 0 whenever A, B ∈ A are such that AB = 0. As application of
our main result, we determine the linear map δ : A → B(H) that has one of the
following properties for A, B ∈ A: if AB� = 0, then Aδ(B)� + δ(A)B� = 0, or if
A�B = 0, then A�δ(B)+ δ(A)�B = 0, whereA is a unital standard operator algebras
on a Hilbert spaceH such thatA is closed under the adjoint operation.We also provide
other applications of the main result.

Keywords Standard operator algebra · Linear map · Zero product

Mathematics Subject Classification 47L10 · 47B49 · 47B47

1 Introduction

One of the interesting issues in mathematics is the determination of the structure of
linear (additive) mappings on algebras (rings) that act through zero products in the
sameway as certain mappings, such as homomorphisms, derivations, and centralizers.
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Among these issues, one can point out the problem of characterizing a linear (additive)
map δ from an algebra (ring) A into an A-bimodule M, which satisfies

ab = 0 �⇒ aδ(b) + δ(a)b = 0, (a, b ∈ A). (1.1)

In fact, in this case δ is like derivations at zero product elements. Recall that a linear
map d : A → M is said to be a derivation if d(ab) = ad(b)+d(a)b for all a, b ∈ A.
Now let us mention some studies done in this regard. In [3, Theorem 4.4], Brešar
showed by using a more general approach that in the case of A being a unital ring
generated by its idempotents every additive map δ : A → M satisfying (1.1) is of
the form δ(a) = d(a) + ca (a ∈ A), where d : A → M is an additive derivation
and c ∈ Z(A), (Z(A) is the center of A). Jing et al. [12] showed that, for the cases
of nest algebras on a Hilbert space and standard operator algebras in a Banach space,
the set of linear maps δ satisfying (1.1) and δ(I ) = 0 coincides with the set of inner
derivations. Then many studies have been done in this case and different results have
been obtained; for instance, see [1,5,9,10,12,17] and the references therein.

LetA be an algebra (ring) andM be anA-bimodule. Recall that a linear (additive)
map ρ : A → M is said to be a right (left) centralizer if ρ(ab) = aρ(b) (ρ(ab)
= ρ(a)b) for each a, b ∈ A. It is called a centralizer if ρ is both a left centralizer and
a right centralizer. Conditions similar to (1.1) can be expressed for maps behaving like
right (left) centralizer or centralizers at zero product elements as follows:

ab = 0 �⇒ aρ(b) = 0,

ab = 0 �⇒ ρ(a)b = 0,

ab = 0 �⇒ aρ(b) = ρ(a)b = 0,

(1.2)

where a, b ∈ A and ρ : A → M is a linear (additive) map. The characterizing of ρ is
also a matter of concern. In [3], Brešar proves that ifA is a prime ring and ρ : A → A
is an additive map, then ρ satisfying the second equation in (1.2) if and only if ρ is
a left centralizer. This problem has been studied by several authors, ([14–16] among
others).

Themore general condition of the (1.1) and (1.2), which is considered, is as follows:

ab = 0 �⇒ aτ(b) + δ(a)b = 0, (a, b ∈ A), (1.3)

where δ : A → M and τ : A → M are linear (additive) maps. If in (1.3) we
assume that τ = δ, then (1.1) is obtained and, if we put δ = 0 or τ = 0, then we
pass to the (1.2). The condition (1.3) has also been studied by some authors and the
mappings δ and τ have been characterized on different algebras (rings) (see [8,13]).
In [2], the authors consider linear maps δ, τ : A → M satisfying (1.3) and prove
that if the unital algebra A is generated by idempotents, then δ and τ are of the form
δ(a) = d(a) + δ(1)a and τ(a) = d(a) + aτ(1) (a ∈ A), where d : A → M is a
derivation. Also, characterizations of the maps δ and τ are given if A is assumed to
be a triangular algebra under some constraints on the bimodule M. In this paper, we
describe the linear mappings of the standard operator algebras in a Banach space that
satisfy (1.3) and we provide different results from this description.
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Throughout this paper, all algebras and vector spaces will be over the complex field
C. Let X be a Banach space. We denote by B(X ) the algebra of all bounded linear
operators on X , and F(X ) denotes the algebra of all finite rank operators in B(X ).
Recall that a standard operator algebra is any subalgebra of B(X ) which contains
F(X ).We shall denote the identitymatrix of B(X ) by I . In Theorem 2.1 of this article,
we characterize the linear maps δ, τ : A → B(X ) satisfying (1.3), whereA is a unital
standard operator algebra. This theorem is the main result of our paper. Also, we apply
our main result to describe linear maps satisfying (1.1) and (1.2) on standard operator
algebras (Corollaries 2.2, 2.3).

Recently, the problem of characterizing linear (additive) maps on �-algebras
(�-rings) behaving like derivations at orthogonal elements for several types of
orthogonality conditions has been considered; for instance, see [6,11]. In
particular, the following conditions on a linear (additive) map δ from a �-algebra
(�-ring) A into itself are considered:

ab� = 0 �⇒ aδ(b)� + δ(a)b� = 0,

a�b = 0 �⇒ a�δ(b) + δ(a)�b = 0,
(1.4)

where a, b ∈ A. As another application of Theorem 2.1, in Theorem 2.4 and
Corollary 2.5, we determine the linearmaps satisfying (1.4) on unital standard operator
algebras on a Hilbert space H such that A is closed under the adjoint operation.

In Sect. 2 of this paper, we give all the results and assign Sect. 3 to the proof of
Theorem 2.1.

2 TheMain Results

In this section, we present the results of this paper. The following is the main result of
our article, the proof of which will be given in Sect. 3.

Theorem 2.1 Let X be a Banach space, dimX ≥ 2, and let A ⊆ B(X ) be a unital
standard operator algebra. Suppose that δ and τ are linear maps from A into B(X )

satisfying

AB = 0 �⇒ Aτ(B) + δ(A)B = 0, (A, B ∈ A).

Then there exist R, S, T ∈ B(X ) such that

δ(A) = AS − RA, τ (A) = AT − SA

for all A ∈ A.

From Theorem 2.1, one gets the following corollary, which is already proved
in [12, Theorem 6]. So it can be said that Theorem 2.1 is a generalization of
[12, Theorem 6].
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Corollary 2.2 Let X be a Banach space, dimX ≥ 2, and let A ⊆ B(X ) be a unital
standard operator algebra. Assume that δ : A → B(X ) is a linear map satisfying

AB = 0 �⇒ Aδ(B) + δ(A)B = 0, (A, B ∈ A).

Then there exist R, S ∈ B(X ) such that

δ(A) = AS − RA

for all A ∈ A and R − S ∈ Z(B(X )).

Proof By Theorem 2.1, there exist R, S, T ∈ B(X ) such that

δ(A) = AS − RA = AT − SA

for all A ∈ A. So,

A(S − T ) = (R − S)A

for all A ∈ A. Let A = I , we arrive at S − T = R − S. Therefore, R − S ∈ Z(A).

We show that R− S ∈ Z(B(X )). Let A ∈ B(X ). Since F(B(X ))
SOT = B(X ), there

exists a net (Fi )i∈I in F(B(X )) such that Fi
SOT−−−→ A. By separate SOT -continuity

of product in B(X ), we see that

(R − S)Fi
SOT−−−→ (R − S)A, Fi (R − S)

SOT−−−→ A(R − S).

On account of R − S ∈ Z(A), we have (R − S)A = A(R − S). Since A ∈ B(X ) is
arbitrary, it follows that R − S ∈ Z(B(X )). �	
In the following, we will characterize the linear maps on standard operator algebras
behaving like right (left) centralizers or centralizers at zero product elements.

Corollary 2.3 Let X be a Banach space, dimX ≥ 2, and let A ⊆ B(X ) be a unital
standard operator algebra. Assume that ρ : A → B(X ) is a linear map.

(i) ρ satisfies

AB = 0 �⇒ Aτ(B) = 0, (A, B ∈ A),

if and only if τ(A) = AD for all A ∈ A in which D ∈ B(X ).
(ii) ρ satisfies

AB = 0 �⇒ δ(A)B = 0, (A, B ∈ A),

if and only if δ(A) = DA for all A ∈ A in which D ∈ B(X ).
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(iii) ρ satisfies

AB = 0 �⇒ Aρ(B) = ρ(A)B = 0, (A, B ∈ A),

if and only if τ(A) = DA for all A ∈ A in which D ∈ Z(B(X )).

Proof (i) By Theorem 2.1, there exist R, S, T ∈ B(X ) such that

AS − RA = 0, τ (A) = AT − SA

for all A ∈ A. By setting A = I , we see that S = R. Hence, AS = SA for all A ∈ A.
Now, let D = T − S ∈ B(X ) and we have τ(A) = AT for all A ∈ A. The converse
is proved easily.

(i i) The proof is obtained by using a similar argument as in (i).
(i i i) It is clear from (i) and (ii).

�	
In the next theorem, we consider the standard operator algebras on Hilbert spaces
which are closed under the adjoint operation and determine the structure of linear
maps on them that act similar to derivations at an one-sided orthogonality condition.
This theorem is an application of Theorem 2.1.

Theorem 2.4 Let A be a unital standard operator algebra on a Hilbert space H
with dimH ≥ 2, such that A is closed under the adjoint operation. Suppose that
δ : A → B(H) is a linear map satisfying

AB� = 0 �⇒ Aδ(B)� + δ(A)B� = 0, (A, B ∈ A).

Then, there exist R, S ∈ B(X ) such that

δ(A) = AS − RA

for all A ∈ A and ReS ∈ Z(B(H)).

Proof Define the linear map τ : A → B(H) by τ(A) = δ(A�)�. Then by assumption

Aδ(B�)� + δ(A)B = 0

for all A, B ∈ A with AB = 0. Thus,

Aτ(B) + δ(A)B = 0

for all A, B ∈ A with AB = 0. So δ and τ satisfy the conditions of Theorem 2.1 and
according to this theorem there exist R, S, T ∈ B(H) such that

δ(A) = AS − RA, τ (A) = AT − SA
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for all A ∈ A. Therefore, δ(A�)� = AT − SA for all A ∈ A and hence δ(A)

= T �A − AS� for all A ∈ A. Comparing these relations for δ, we obtain

A(S + S�) = (R + T �)A

for all A ∈ A. Let A = I , we get S+ S� = R+ T �. Hence, S+ S� ∈ Z(A). By using
similar arguments as in the proof of Corollary 2.2, we have S + S� ∈ Z(B(H)). So
ReS ∈ Z(B(H)) and the proof is complete. �	
Corollary 2.5 Let A be a unital standard operator algebra on a Hilbert space H
with dimH ≥ 2, such that A is closed under the adjoint operation. Suppose that
δ : A → B(H) is a linear map satisfying

A�B = 0 �⇒ A�δ(B) + δ(A)�B = 0, (A, B ∈ A).

Then there exist R, S ∈ B(X ) such that

δ(A) = AR − SA

for all A ∈ A and ReS ∈ Z(B(H)).

Proof Define the linear map τ : A → B(H) by τ(A) = δ(A�)�. Consider A, B ∈ A
with AB� = 0. So, (A�)�B� = 0 and by assumption we have

Aδ(B�) + δ(A�)�B� = 0.

It follows from the definition of τ that

Aτ(B)� + τ(A)B� = 0.

Therefore, τ satisfies the conditions of Theorem 2.4 and hence there exist R1, S1
∈ B(H) such that

τ(A) = AS1 − R1A

for all A ∈ A and ReS1 ∈ Z(B(H)). Therefore, δ(A�)� = AS1 − R1A and
consequently δ(A) = S�

1 A − AR�
1 for all A ∈ A. Now by letting S = −S�

1 and
R = −R�

1, we obtain δ(A) = AR − SA for all A ∈ A and ReS ∈ Z(B(H)). �	

3 Proof of Theorem 2.1

We prove Theorem 2.1 through the following lemmas.

Lemma 3.1 For all A ∈ A and X ∈ F(X ), we have

Aτ(X) + δ(A)X = AXτ(I ) + δ(AX).

123



Bulletin of the Iranian Mathematical Society (2019) 45:1573–1583 1579

Proof Let P ∈ A be an idempotent operator of rank one. Set Q = I − P . Then for
all A ∈ A, we obtain APQ = 0. So by assumption, we have

APτ(Q) + δ(AP)Q = 0.

Therefore,

APτ(I ) − APτ(P) + δ(AP) − δ(AP)P = 0.

Hence,

APτ(I ) + δ(AP) = APτ(P) + δ(AP)P. (3.1)

Since AQP = 0 (A ∈ A), it follows that

AQτ(P) + δ(AQ)P = 0.

So,

Aτ(P) − APτ(P) + δ(A)P − δ(AP)P = 0.

Consequently,

Aτ(P) + δ(A)P = APτ(P) + δ(AP)P. (3.2)

By comparing (3.1) and (3.2), we obtain

Aτ(P) + δ(A)P = APτ(I ) + δ(AP).

By [4, Lemma 1.1], every element X ∈ F(X ) is a linear combination of rank-one
idempotents, and so

Aτ(X) + δ(A)X = AXτ(I ) + δ(AX)

for all A ∈ A and X ∈ F(X ). �	
Lemma 3.2 For all A ∈ A and X ∈ F(X ), we have

τ(X A) + δ(I )X A = Xτ(A) + δ(X)A.

Proof Let P ∈ A be a rank-one idempotent operator, and Q = I − P . So PQA = 0
and QPA = 0 for all A ∈ A. By assumption, we have

Pτ(QA) + δ(P)AQ = 0
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and

Qτ(PA) + δ(Q)PA = 0.

From these equations we have the following, respectively.

Pτ(A) + δ(P)A = Pτ(PA) + δ(P)PA

and

τ(PA) + δ(I )PA = Pτ(PA) + δ(P)PA.

Comparing these equations, we get

τ(PA) + δ(I )PA = Pτ(A) + δ(P)A.

Now, by [4, Lemma 1.1] we have

τ(X A) + δ(I )X A = Xτ(A) + δ(X)A

for all A ∈ A and X ∈ F(X ). �	
Lemma 3.3 For all A, B ∈ A, we have

δ(AB) = Aδ(B) + δ(A)B − Aδ(I )B.

Proof Taking A = I in Lemma 3.1, we find that

δ(X) = τ(X) − Xτ(I ) + δ(I )X , (3.3)

for all X ∈ F(X ). Since F(X ) is an ideal in A, it follows from (3.3) that

δ(AX) = τ(AX) − AXτ(I ) + δ(I )AX

for all A ∈ A and X ∈ F(X ). From this equation and Lemma 3.1, we obtain

τ(AX) = Aτ(X) + δ(A)X − δ(I )AX (3.4)

for all A ∈ A and X ∈ F(X ). From (3.4), we have

τ(ABX) = ABτ(X) + δ(AB)X − δ(I )ABX , (3.5)

for all A, B ∈ A and X ∈ F(X ). On the other hand,

τ(ABX) = Aτ(BX) + δ(A)BX − δ(I )ABX

= ABτ(X) + Aδ(B)X − Aδ(I )BX + δ(A)BX − δ(I )ABX (3.6)
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for all A, B ∈ A and X ∈ F(X ). By comparing (3.5) and (3.6), we see that

δ(AB)X = Aδ(B)X + δ(A)BX − Aδ(I )BX

for all A, B ∈ A and X ∈ F(X ). Since F(X ) is an essential ideal in primitive algebra
B(X ), it follows that

δ(AB) = Aδ(B) + δ(A)B − Aδ(I )B

for all A, B ∈ A. �	
Lemma 3.4 For all A, B ∈ A, we have

τ(AB) = Aτ(B) + τ(A)B − Aτ(I )B.

Proof From Lemma 3.2 and (3.3), we conclude that

τ(X A) = Xτ(A) + δ(X)A − δ(I )X A

= Xτ(A) + τ(x)A − Xτ(I )A, (3.7)

for all A ∈ A and X ∈ F(X ). Now, by using (3.7) for all A, B ∈ A and X ∈ F(X ),
we calculate τ(X AB) in two ways and we obtain the following:

τ(X AB) = Xτ(AB) − τ(X)AB − Xτ(I )AB

and

τ(X AB) = X Aτ(B) + Xτ(A)B + τ(X)AB − Xτ(I )AB − X Aτ(I )B.

Comparing these equations, we get

Xτ(AB) = X Aτ(B) + Xτ(A)B − X Aτ(I )B

for all A, B ∈ A and X ∈ F(X ). Since F(X ) is an essential ideal in B(X ), it follows
that

τ(AB) = Aτ(B) + τ(A)B − Aτ(I )B

for all A, B ∈ A and X ∈ F(X ). �	
Lemma 3.5 For all A ∈ A, we have

τ(A) − Aτ(I ) = δ(A) − δ(I )A.
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Proof It follows from (3.3) and Lemma 3.3 that

τ(AX) − AXτ(I ) = δ(AX) − δ(I )AX

= Aδ(X) + δ(A)X − Aδ(I )X − δ(I )AX

= Aτ(X) − AXτ(I ) + δ(A)X − δ(I )AX

for all A ∈ A and X ∈ F(X ). On the other hand, according to Lemma 3.4, for all
A ∈ A and X ∈ F(X ), we have

τ(AX) − AXτ(I ) = Aτ(X) + τ(A)X − Aτ(I )X − AXτ(I ).

By comparing these equations, we find that

(δ(A) − δ(I )A)X = (τ (A) − Aτ(I ))X

for all A ∈ A and X ∈ F(X ). Since F(X ) is an essential ideal in B(X ), it follows
that

δ(A) − δ(I )A = τ(A) − Aτ(I )

for all A ∈ A. �	
Now, by considering the obtained results we are ready to prove Theorem 2.1.

Proof of Theorem 2.1 Define the linearmap� : A → B(X )by�(A) = δ(A)−δ(I )A.
It follows from Lemma 3.3 that

�(AB) = δ(AB) − δ(I )AB

= Aδ(B) + δ(A)B − Aδ(I )B − δ(I )AB

= A�(B) + �(A)B.

So � is a derivation and according to [7, Theorem 2.5.14] there exists S ∈ B(X ) such
that �(A) = AS − SA for all A ∈ A. Set R = S − δ(I ). From the definition of �

we conclude that δ(A) = AS − RA for all A ∈ A. Also, by Lemma 3.5, we have
�(A) = τ(A) − Aτ(I ) for all A ∈ A. Set T = S + τ(I ). Hence, τ(A) = AT − SA
for all A ∈ A. The proof of theorem is complete. �	
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