ORIGINAL PAPER

Area Problem for Univalent Functions in the Unit Disk with Quasiconformal Extension to the Plane

Sarita Agrawal¹ · Vibhuti Arora² · Manas Ranjan Mohapatra³ · Swadesh Kumar Sahoo²

Received: 18 September 2018 / Revised: 30 October 2018 / Accepted: 13 November 2018 / Published online: 4 December 2018 © Iranian Mathematical Society 2018

Abstract

Let $\Delta(r, f)$ denote the area of the image of the subdisk |z| < r, $0 < r \le 1$, under an analytic function f in the unit disk |z| < 1. Without loss of generality, in this context, we consider only the analytic functions f in the unit disk with the normalization f(0) = 0 = f'(0) - 1. We set $F_f(z) = z/f(z)$. Our objective in this paper is to obtain a sharp upper bound of $\Delta(r, F_f)$, when f varies over the class of normalized analytic univalent functions in the unit disk with quasiconformal extension to the entire complex plane.

Keywords Univalent functions \cdot Area problem \cdot Quasiconformal mappings \cdot Quasiconformal extension

Mathematics Subject Classification Primary 30C55; Secondary 30C62

Communicated by Ali Abkar.

Swadesh Kumar Sahoo swadesh.sahoo@iiti.ac.in

Sarita Agrawal saritamath44@gmail.com

Vibhuti Arora vibhutiarora1991@gmail.com

Manas Ranjan Mohapatra mohapatramr@outlook.com

- ¹ Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani, Chennai, Tamilnadu 600 113, India
- ² Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453 552, India
- ³ Department of Mathematics, Shantou University, 243 Daxue Road, Shantou 515063, Guangdong, China

1 Introduction and Preliminaries

In response to the classical Grötzsch problem raised in 1928, Ahlfors introduced the notion so-called "quasiconformal mappings" in 1935. Quasiconformal mappings are nothing but generalizations of conformal mappings. There are several equivalent definitions of quasiconformal mappings in the literature (see instance [1,8]). In this paper, we adopt the following definition of Ahlfors. Let $K \ge 1$. A homeomorphism fis called *K*-quasiconformal if f has locally L^2 -derivative and it satisfies the Beltrami differential equation $f_{\overline{z}}(z) = \mu(z) f_z(z)$ a.e., where μ satisfies

$$|\mu(z)| \le \frac{K-1}{K+1} = k < 1; \tag{1.1}$$

 $f_{\overline{z}} = \partial f / \partial \overline{z}$ and $f_z = \partial f / \partial z$. The function μ is called the *complex dilatation* of f. Note that f is conformal if and only if μ vanishes identically. Therefore, 1-quasiconformal mappings are nothing but conformal. For basic properties of quasi-conformal mappings, we refer to [8].

By Σ , we denote the class of functions of the form:

$$g(z) = z + b_0 + \frac{b_1}{z} + \cdots$$
 (1.2)

that are analytic and univalent in the domain $\Omega := \{z : |z| > 1\}$, except for simple pole at infinity with residue 1. The class Σ' denotes the collection of functions g in Σ , such that $g(z) \neq 0$ in Ω . Using a simple geometric argument, Gronwall [6] in 1914 proved the classical area theorem, which says that the coefficients of $g \in \Sigma$ satisfy the sharp inequality $\sum n|b_n|^2 \leq 1$. Furthermore, Lehto [7] generalized the area theorem by assuming the additional hypothesis that g admits a quasiconformal extension to the closed unit disk, where the resultant inequality is sharp. For updated research work related to the area theorem, readers can refer to [2,3]. Closely related to the class Σ is the class S of all analytic univalent functions f defined in the unit disk $\mathbb{D} := \{z : |z| < 1\}$ with the normalization f(0) = 0 and f'(0) = 1. Note that functions in S have power series representation of the forms:

$$f(z) = z + a_2 z^2 + \cdots$$
 (1.3)

It is easy to verify that each $f \in S$ is associated with a function $g \in \Sigma'$ through the relation $g(z) = \{f(1/z)\}^{-1}$. Therefore, there exists a one-to-one correspondence between S and Σ' (see [4, p 28]).

For an analytic function f in $\mathbb{D}_r := \{z : |z| < r, 0 < r \le 1\}$, we set

$$\Delta(r, f) = \iint_{\mathbb{D}_r} |f'(z)|^2 \mathrm{d}x \mathrm{d}y, \quad z = x + iy, \tag{1.4}$$

which is called the Dirichlet integral of f. Geometrically, this describes the area of the image of \mathbb{D}_r under f. One of the classical problems in univalent function theory

is to obtain the class of functions f having finite Dirichlet integral $\Delta(1, f)$; we call such functions f as Dirichlet finite. In the recent years, such problems for various subclasses of S have been studied by Ponnusamy and his co-authors; see, for instance, [9–13]. The motivation to study these problems comes from a conjecture of Yamashita [14] which is settled in [9]. In this paper, we extend the problem of Yamashita to the functions in the family S having quasiconformal extension to the entire complex plane.

Let *k* be defined as in (1.1). We denote $\Sigma(k)$ by the class of all functions $g \in \Sigma$ that admit *K*-quasiconformal extension to the unit disk \mathbb{D} , and $\Sigma_0(k)$ is obtained from $\Sigma(k)$ by assuming g(0) = 0. Similarly, let us denote S(k) by the class of all functions $f \in S$ that admit *K*-quasiconformal extension to the plane. Clearly, $f \in S(k)$ if and only if $1/f(1/\zeta) \in \Sigma_0(k)$.

Rest of the paper is organized as follows. Some well-known key results are collected in Sect. 2 followed by the proof of our main theorem. We observe that the modified Koebe function studied in [7] does not play extremal role in our problem. However, we construct a new function which also extends the Koebe function $z/(1-z)^2$ to the *K*-quasiconformal setting and show that it plays the extremal role in our problem. Section 3 is devoted to the comparison of the areas obtained in Sect. 2 for our extremal function with the modified Koebe function.

2 Main Result

Suppose that f is an analytic function in the disk \mathbb{D} with the Taylor series expansion:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \tag{2.1}$$

and $f'(z) = \sum_{n=0}^{\infty} na_n z^{n-1}$. Then, using Parseval–Gutzmer formula, the area $\Delta(r, f)$, of $f(\overline{\mathbb{D}}_r)$, as stated in (1.4) can be re-formulated as follows (see [5]):

$$\Delta(r, f) = \iint_{\mathbb{D}_r} |f'(z)|^2 \mathrm{d}x \mathrm{d}y = \pi \sum_{n=1}^{\infty} n |a_n|^2 r^{2n}, \quad z = x + iy.$$
(2.2)

We concentrate particularly on this form of the area formula in this paper. Computing this area is called the *area problem for the functions of the type* f. However, area of $f(\mathbb{D})$ may not be bounded for all $f \in S$. We remark that if $f \in S$, then z/f is non-vanishing, and hence, $f \in S$ may be expressed as follows:

$$f(z) = \frac{z}{F_f(z)}$$
, where $F_f(z) = 1 + \sum_{n=1}^{\infty} c_n z^n$, $z \in \mathbb{D}$.

Yamashita in [14] considered the area problem for functions of type F_f for $f \in S$, and proved that the area of $F_f(\mathbb{D}_r)$ is bounded. Indeed, he proved.

Theorem A [14, Theorem 1] We have

$$\max_{f \in \mathcal{S}} \Delta(r, F_f) = 2\pi r^2 (r^2 + 2),$$

for $0 < r \le 1$. The maximum is attained only for a suitable rotation of the Koebe function.

To consider the Yamashita problem for functions in S having quasiconformal extension to the entire complex plane, the following theorem of Lehto [7] is useful.

Theorem B Let $g \in \Sigma(k)$ be of the form (1.2). Then

$$\sum_{n=1}^{\infty} n|b_n|^2 \le k^2.$$
 (2.3)

The equality holds for the function:

$$g(z) = \frac{1}{z} + a_0 + a_1 z, \quad z \in \mathbb{D},$$

with $|a_1| = k$. Moreover, its k-quasiconformal extension is given by setting:

$$g(z) = \frac{1}{z} + a_0 + \frac{a_1}{\overline{z}}, \quad z \in \overline{\Omega}.$$

We also need an immediate consequence of Theorem B, proved by Lehto in the same paper, which gives the sharp bound for second coefficient of functions in S having quasiconformal extension to the plane. The consequence is stated as follows:

Theorem C [7, Corollary 3] For a function $f \in S(k)$ of the form (1.3) with $f(\infty) = \infty$, we have $|a_2| \le 2k$.

Using Theorem B and Theorem C, we now state and prove our main result.

Theorem 2.1 For $0 < r \le 1$, we have

$$\max_{f \in \mathcal{S}(k)} \Delta(r, F_f) = 2\pi r^2 k^2 (2 + r^2).$$

The maximum is attained only for a suitable rotation of the function:

$$f(z) = \begin{cases} \frac{z}{1 - 2kz + kz^2}, & \text{for } |z| < 1, \\ \frac{z\overline{z}}{\overline{z} - 2kz\overline{z} + kz}, & \text{for } |z| \ge 1. \end{cases}$$
(2.4)

🖉 Springer

Proof Let $f \in S(k)$ be of the form (1.3). Then

$$\frac{1}{f(\frac{1}{z})} = z - a_2 + (a_2^2 - a_3)\frac{1}{z} + \dots = z + b_1 + \frac{b_2}{z} + \dots \text{ (say)}.$$

Substituting 1/z by z and multiplying z, we obtain

$$F_f(z) = \frac{z}{f(z)} = 1 - a_2 z + (a_2^2 - a_3) z^2 + \dots = 1 + b_1 z + b_2 z^2 + \dots$$

It is clear that $b_1 = -a_2$. Now, we compute

$$\frac{1}{\pi}\Delta(r, F_f) = \sum_{n=1}^{\infty} n|b_n|^2 r^{2n}$$

= $|b_1|^2 r^2 + \sum_{n=2}^{\infty} n|b_n|^2 r^{2n}$
= $|-a_2|^2 r^2 + 2r^4 \sum_{n=1}^{\infty} \frac{n+1}{2} |b_{n+1}|^2 r^{2n-2}.$

Using the estimate for a_2 from Theorem C, we obtain

$$\frac{1}{\pi}\Delta(r, F_f) \le 4r^2k^2 + 2r^4\sum_{n=1}^{\infty}n|b_{n+1}|^2.$$

Then, by Theorem B, we have

$$\frac{1}{\pi}\Delta(r, F_f) \le 4r^2k^2 + 2r^4k^2 = 2r^2k^2(r^2 + 2).$$

Now, it remains to consider the sharpness part. For |z| < 1, consider the function $f(z) = z/(1 - 2kz + kz^2)$. Therefore, $f_{\overline{z}} = 0$. That is, f is conformal in \mathbb{D} . Since $F_f(z) = 1 - 2kz + kz^2$, by (2.2), we obtain

$$\frac{1}{\pi}\Delta(r, F_f) = \sum_{n=1}^{\infty} n|b_n|^2 r^{2n} = 4r^2k^2 + 2r^4k^2 = 2r^2k^2(r^2+2).$$

For $|z| \ge 1$, let

$$f(z) = \frac{z\overline{z}}{\overline{z} - 2kz\overline{z} + kz}$$

An easy calculation shows that

$$f_{\overline{z}} = \frac{z(\overline{z} - 2kz\overline{z} + kz) - z\overline{z}(1 - 2kz)}{(\overline{z} - 2kz\overline{z} + kz)^2} = \frac{kz^2}{(\overline{z} - 2kz\overline{z} + kz)^2}$$

Deringer

and

$$f_z = \frac{\overline{z}(\overline{z} - 2kz\overline{z} + kz) - z\overline{z}(-2k\overline{z} + k)}{(\overline{z} - 2kz\overline{z} + kz)^2} = \frac{\overline{z}^2}{(\overline{z} - 2kz\overline{z} + kz)^2}$$

Thus, $|f_{\overline{z}}/f_z| = k$.

Both the functions defined in (2.4) agree on the boundary $\partial \mathbb{D}$ of \mathbb{D} . The proof is complete.

Remark 2.2 Observe that Theorem 2.1 is a natural extension of Theorem A. In fact, for k = 1, Theorem 2.1 is equivalent to Theorem A.

Remark 2.3 It is easy to check that for $f \in S(k)$, $\Delta(1, F_f) \leq 6\pi k^2$, and hence, F_f is Dirichlet finite.

3 Comparison of Areas

Recall the modified Koebe function from [7] which is defined by the following:

$$g(z) = \begin{cases} \frac{z}{(1+ke^{i\phi}z)^2}, & \text{for } |z| < 1, \\ \frac{z\bar{z}}{(\sqrt{\bar{z}}+ke^{i\phi}\sqrt{z})^2}, & \text{for } |z| \ge 1. \end{cases}$$
(3.1)

A simple computation yields

$$\Delta(r, F_g) = 2r^2k^2(k^2r^2 + 2)\pi,$$

which geometrically describes the area of $F_g(\mathbb{D})$. Note that

$$2r^2k^2(k^2r^2+2)\pi = \Delta(r,F_g) < \Delta(r,F_f) = 2r^2k^2(r^2+2).$$

To see the graphical and numerical comparisons of the Dirichlet finites $\Delta(1, F_g)$ and $\Delta(1, F_f)$, we end this section with the following observations (Table 1; Figs. 1, 2, 3, 4). First, we show the graphs of F_f and F_g , where f and g are defined

Table 1 Comparison of areas of $F_f(\mathbb{D})$ and $F_g(\mathbb{D})$			
	k	$\Delta(1, F_g)$	$\Delta(1,F_f)$
	0.2	0.1632π	0.24π
	0.5	1.125π	1.5π
	0.7	2.4402π	2.94π
	0.9	4.5522π	4.86π
	1	6π	6π

 $\begin{array}{c} 1.0\\ 0.5\\ 0.0\\ -0.5\\ -1.0\\ 0.5\\ 1.0\\ 1.5\\ 2.0\\ 2.5\\ 2.0\\ 2.5\\ 2.5\\ 2.0\\ 2.5\\ 2.5\\ 2.5\\ 2.0\\ 2.5\\ 2.5\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.$

Fig. 2 Graphs of F_f and F_g for k = 0.5

by (2.4) and (3.1) respectively, for different values of k. Here, the terminology the graph of F_f means the image domain $F_f(\mathbb{D})$ and, similarly, for the graph of F_g . Observe that as $k \to 1$, the graphs of F_g are approaching to those of F_f .

Second, for these choices of k, Table 1 compares the area $\Delta(1, F_g)$, of the image of \mathbb{D} under F_g , and the area $\Delta(1, F_f)$, of the image of \mathbb{D} under F_f .

Fig. 4 Graphs of F_f and F_g for k = 0.9

Acknowledgements The authors would like to thank the referee for his/her careful reading of the manuscript. The research work of S. K. Sahoo was supported by NBHM, DAE (Grant No: 2/48(12)/2016/NBHM (R.P.)/R & D II/13613).

References

- Ahlfors, L.V.: Lecture on Quasiconformal Mappings. American Mathematical Society, Rhode Island (2006)
- Bhowmik, B., Satpati, G., Sugawa, T.: Quasiconformal extension of meromorphic functions with nonzero pole. Proc. Am. Math. Soc. 144(6), 2593–2601 (2016)

- 3. Chichra, P.N.: An area theorem for bounded univalent functions. Proc. Cambrid. Philos. Soc. 66, 317–321 (1969)
- 4. Duren, P.L.: Univalent Function. Springer-Verlag, New York (1983)
- 5. Goodman, A.W.: Univalent Functions. Mariner, New York (1983)
- 6. Gronwall, T.H.: Some remarks on conformal representation, Ann. Math. 16(1-4), 72-76 (1914/15)
- Lehto, O.: Schlicht functions with a quasiconformal extension. Ann. Acad. Sci. Fenn. Ser. A I(500), 1–10 (1971)
- 8. Lehto, O.: Univalent Function and Teichmüller Spaces. Springer-Verlag, New York (1987)
- Obradović, M., Ponnusamy, S., Wirths, K.-J.: A proof of Yamashita's conjecture on area integral. Comput. Methods Funct. Theory 13(3), 479–492 (2013)
- Obradović, M., Ponnusamy, S., Wirths, K.-J.: Integral means and Dirichlet integral for analytic functions. Math. Nachr. 288(2–3), 334–342 (2015)
- 11. Ponnusamy, S., Sahoo, S.K., Sharma, N.L.: Maximal area integral problem for certain class of univalent analytic functions (English summary). Mediterr. J. Math. **13**(2), 607–623 (2016)
- Ponnusamy, S., Wirths, K.-J.: On the problem of L. Gromova and A. Vasil'ev on integral means, and Yamashita's conjecture for spirallike functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 39, 721–731 (2014)
- Sahoo, S.K., Sharma, N.L.: On maximal area integral problem for analytic functions in the starlike family. J. Class. Anal. (11)(1), 73–84 (2015)
- Yamashita, S.: Area and length maxima for univalent functions. Bull. Austral. Math. Soc. 41(3), 435–439 (1990)