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Abstract
Let �(r , f ) denote the area of the image of the subdisk |z| < r , 0 < r ≤ 1, under an
analytic function f in the unit disk |z| < 1. Without loss of generality, in this context,
we consider only the analytic functions f in the unit disk with the normalization
f (0) = 0 = f ′(0) − 1. We set Ff (z) = z/ f (z). Our objective in this paper is to
obtain a sharp upper bound of �(r , Ff ), when f varies over the class of normalized
analytic univalent functions in the unit diskwith quasiconformal extension to the entire
complex plane.
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1 Introduction and Preliminaries

In response to the classical Grötzsch problem raised in 1928, Ahlfors introduced
the notion so-called “quasiconformal mappings” in 1935. Quasiconformal mappings
are nothing but generalizations of conformal mappings. There are several equivalent
definitions of quasiconformal mappings in the literature (see instance [1,8]). In this
paper, we adopt the following definition of Ahlfors. Let K ≥ 1. A homeomorphism f
is called K-quasiconformal if f has locally L2-derivative and it satisfies the Beltrami
differential equation fz(z) = μ(z) fz(z) a.e., where μ satisfies

|μ(z)| ≤ K − 1

K + 1
= k < 1; (1.1)

fz = ∂ f /∂z and fz = ∂ f /∂z. The function μ is called the complex dilatation
of f . Note that f is conformal if and only if μ vanishes identically. Therefore,
1-quasiconformal mappings are nothing but conformal. For basic properties of quasi-
conformal mappings, we refer to [8].

By �, we denote the class of functions of the form:

g(z) = z + b0 + b1
z

+ · · · (1.2)

that are analytic and univalent in the domain � := {z : |z| > 1}, except for simple
pole at infinity with residue 1. The class �′ denotes the collection of functions g in
�, such that g(z) �= 0 in �. Using a simple geometric argument, Gronwall [6] in
1914 proved the classical area theorem, which says that the coefficients of g ∈ �

satisfy the sharp inequality
∑

n|bn|2 ≤ 1. Furthermore, Lehto [7] generalized the
area theorem by assuming the additional hypothesis that g admits a quasiconformal
extension to the closed unit disk, where the resultant inequality is sharp. For updated
research work related to the area theorem, readers can refer to [2,3]. Closely related
to the class � is the class S of all analytic univalent functions f defined in the unit
disk D := {z : |z| < 1} with the normalization f (0) = 0 and f ′(0) = 1. Note that
functions in S have power series representation of the forms:

f (z) = z + a2z
2 + · · · . (1.3)

It is easy to verify that each f ∈ S is associated with a function g ∈ �′ through
the relation g(z) = { f (1/z)}−1. Therefore, there exists a one-to-one correspondence
between S and �′ (see [4, p 28]).

For an analytic function f in Dr := {z : |z| < r , 0 < r ≤ 1}, we set

�(r , f ) =
∫∫

Dr

| f ′(z)|2dxdy, z = x + iy, (1.4)

which is called the Dirichlet integral of f . Geometrically, this describes the area of
the image of Dr under f . One of the classical problems in univalent function theory
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is to obtain the class of functions f having finite Dirichlet integral �(1, f ); we call
such functions f as Dirichlet finite. In the recent years, such problems for various
subclasses of S have been studied by Ponnusamy and his co-authors; see, for instance,
[9–13]. The motivation to study these problems comes from a conjecture of Yamashita
[14] which is settled in [9]. In this paper, we extend the problem of Yamashita to the
functions in the familyS having quasiconformal extension to the entire complex plane.

Let k be defined as in (1.1). We denote �(k) by the class of all functions g ∈ �

that admit K -quasiconformal extension to the unit diskD, and�0(k) is obtained from
�(k) by assuming g(0) = 0. Similarly, let us denote S(k) by the class of all functions
f ∈ S that admit K -quasiconformal extension to the plane. Clearly, f ∈ S(k) if and
only if 1/ f (1/ζ ) ∈ �0(k).

Rest of the paper is organized as follows. Somewell-known key results are collected
in Sect. 2 followed by the proof of our main theorem. We observe that the modified
Koebe function studied in [7] does not play extremal role in our problem. However,
we construct a new function which also extends the Koebe function z/(1− z)2 to the
K -quasiconformal setting and show that it plays the extremal role in our problem.
Section 3 is devoted to the comparison of the areas obtained in Sect. 2 for our extremal
function with the modified Koebe function.

2 Main Result

Suppose that f is an analytic function in the disk D with the Taylor series expansion:

f (z) =
∞∑

n=0

anz
n (2.1)

and f ′(z) = ∑∞
n=0 nanz

n−1. Then, using Parseval–Gutzmer formula, the area
�(r , f ), of f (Dr ), as stated in (1.4) can be re-formulated as follows (see [5]):

�(r , f ) =
∫∫

Dr

| f ′(z)|2dxdy = π

∞∑

n=1

n|an|2r2n, z = x + iy. (2.2)

We concentrate particularly on this form of the area formula in this paper. Computing
this area is called the area problem for the functions of the type f . However, area
of f (D) may not be bounded for all f ∈ S. We remark that if f ∈ S, then z/ f is
non-vanishing, and hence, f ∈ S may be expressed as follows:

f (z) = z

F f (z)
, where Ff (z) = 1 +

∞∑

n=1

cnz
n, z ∈ D.

Yamashita in [14] considered the area problem for functions of type Ff for f ∈ S,

and proved that the area of Ff (Dr ) is bounded. Indeed, he proved.
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Theorem A [14, Theorem 1] We have

max
f ∈S

�(r , Ff ) = 2πr2(r2 + 2),

for 0 < r ≤ 1. The maximum is attained only for a suitable rotation of the Koebe
function.

To consider theYamashita problem for functions inS having quasiconformal exten-
sion to the entire complex plane, the following theorem of Lehto [7] is useful.

Theorem B Let g ∈ �(k) be of the form (1.2). Then

∞∑

n=1

n|bn|2 ≤ k2. (2.3)

The equality holds for the function:

g(z) = 1

z
+ a0 + a1z, z ∈ D,

with |a1| = k. Moreover, its k-quasiconformal extension is given by setting:

g(z) = 1

z
+ a0 + a1

z
, z ∈ �.

We also need an immediate consequence of Theorem B, proved by Lehto in the
same paper, which gives the sharp bound for second coefficient of functions in S
having quasiconformal extension to the plane. The consequence is stated as follows:

Theorem C [7, Corollary 3] For a function f ∈ S(k) of the form (1.3) with f (∞) =
∞, we have |a2| ≤ 2k.

Using Theorem B and Theorem C, we now state and prove our main result.

Theorem 2.1 For 0 < r ≤ 1, we have

max
f ∈S(k)

�(r , Ff ) = 2πr2k2(2 + r2).

The maximum is attained only for a suitable rotation of the function:

f (z) =

⎧
⎪⎨

⎪⎩

z

1 − 2kz + kz2
, for |z| < 1,

zz

z − 2kzz + kz
, for |z| ≥ 1.

(2.4)
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Proof Let f ∈ S(k) be of the form (1.3). Then

1

f ( 1z )
= z − a2 + (a22 − a3)

1

z
+ · · · = z + b1 + b2

z
+ · · · (say).

Substituting 1/z by z and multiplying z, we obtain

Ff (z) = z

f (z)
= 1 − a2z + (a22 − a3)z

2 + · · · = 1 + b1z + b2z
2 + · · ·

It is clear that b1 = −a2. Now, we compute

1

π
�(r , Ff ) =

∞∑

n=1

n|bn|2r2n

= |b1|2r2 +
∞∑

n=2

n|bn|2r2n

= | − a2|2r2 + 2r4
∞∑

n=1

n + 1

2
|bn+1|2r2n−2.

Using the estimate for a2 from Theorem C, we obtain

1

π
�(r , Ff ) ≤ 4r2k2 + 2r4

∞∑

n=1

n|bn+1|2.

Then, by Theorem B, we have

1

π
�(r , Ff ) ≤ 4r2k2 + 2r4k2 = 2r2k2(r2 + 2).

Now, it remains to consider the sharpness part. For |z| < 1, consider the function
f (z) = z/(1 − 2kz + kz2). Therefore, fz = 0. That is, f is conformal in D. Since
Ff (z) = 1 − 2kz + kz2, by (2.2), we obtain

1

π
�(r , Ff ) =

∞∑

n=1

n|bn|2r2n = 4r2k2 + 2r4k2 = 2r2k2(r2 + 2).

For |z| ≥ 1, let

f (z) = zz

z − 2kzz + kz
.

An easy calculation shows that

fz = z(z − 2kzz + kz) − zz(1 − 2kz)

(z − 2kzz + kz)2
= kz2

(z − 2kzz + kz)2
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and

fz = z(z − 2kzz + kz) − zz(−2kz + k)

(z − 2kzz + kz)2
= z2

(z − 2kzz + kz)2
.

Thus, | fz/ fz | = k.
Both the functions defined in (2.4) agree on the boundary ∂D of D. The proof is

complete. �	
Remark 2.2 Observe that Theorem 2.1 is a natural extension of Theorem A. In fact,
for k = 1, Theorem 2.1 is equivalent to Theorem A.

Remark 2.3 It is easy to check that for f ∈ S(k), �(1, Ff ) ≤ 6πk2, and hence, Ff

is Dirichlet finite.

3 Comparison of Areas

Recall the modified Koebe function from [7] which is defined by the following:

g(z) =

⎧
⎪⎪⎨

⎪⎪⎩

z

(1 + keiφz)2
, for |z| < 1,

zz

(
√
z + keiφ

√
z)2

, for |z| ≥ 1.
(3.1)

A simple computation yields

�(r , Fg) = 2r2k2(k2r2 + 2)π,

which geometrically describes the area of Fg(D). Note that

2r2k2(k2r2 + 2)π = �(r , Fg) < �(r , Ff ) = 2r2k2(r2 + 2).

To see the graphical and numerical comparisons of the Dirichlet finites �(1, Fg)
and �(1, Ff ), we end this section with the following observations (Table 1; Figs.
1, 2, 3, 4). First, we show the graphs of Ff and Fg , where f and g are defined

Table 1 Comparison of areas of
F f (D) and Fg(D)

k �(1, Fg) �(1, F f )

0.2 0.1632π 0.24π

0.5 1.125π 1.5π

0.7 2.4402π 2.94π

0.9 4.5522π 4.86π

1 6π 6π
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Fig. 1 Graphs of F f and Fg for k = 0.2
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Fig. 2 Graphs of F f and Fg for k = 0.5

by (2.4) and (3.1) respectively, for different values of k. Here, the terminology
the graph of F f means the image domain F f (D) and, similarly, for the graph
of Fg . Observe that as k → 1, the graphs of Fg are approaching to those of
Ff .

Second, for these choices of k, Table 1 compares the area �(1, Fg), of
the image of D under Fg , and the area �(1, Ff ), of the image of D under
Ff .
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Fig. 3 Graphs of F f and Fg for k = 0.7
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Fig. 4 Graphs of F f and Fg for k = 0.9
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