ORIGINAL PAPER

Area Problem for Univalent Functions in the Unit Disk with Quasiconformal Extension to the Plane

Sarita Agrawal1 · Vibhuti Arora2 · Manas Ranjan Mohapatra³ · Swadesh Kumar Sahoo[2](http://orcid.org/0000-0001-7404-3060)

Received: 18 September 2018 / Revised: 30 October 2018 / Accepted: 13 November 2018 / Published online: 4 December 2018 © Iranian Mathematical Society 2018

Abstract

Let $\Delta(r, f)$ denote the area of the image of the subdisk $|z| < r$, $0 < r \le 1$, under an analytic function f in the unit disk $|z| < 1$. Without loss of generality, in this context, we consider only the analytic functions f in the unit disk with the normalization $f(0) = 0 = f'(0) - 1$. We set $F_f(z) = \frac{z}{f(z)}$. Our objective in this paper is to obtain a sharp upper bound of $\Delta(r, F_f)$, when *f* varies over the class of normalized analytic univalent functions in the unit disk with quasiconformal extension to the entire complex plane.

Keywords Univalent functions · Area problem · Quasiconformal mappings · Quasiconformal extension

Mathematics Subject Classification Primary 30C55; Secondary 30C62

Communicated by Ali Abkar.

 \boxtimes Swadesh Kumar Sahoo swadesh.sahoo@iiti.ac.in

> Sarita Agrawal saritamath44@gmail.com

Vibhuti Arora vibhutiarora1991@gmail.com

Manas Ranjan Mohapatra mohapatramr@outlook.com

- ¹ Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani, Chennai, Tamilnadu 600 113, India
- ² Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453 552, India
- ³ Department of Mathematics, Shantou University, 243 Daxue Road, Shantou 515063, Guangdong, China

1 Introduction and Preliminaries

In response to the classical Grötzsch problem raised in 1928, Ahlfors introduced the notion so-called "quasiconformal mappings" in 1935. Quasiconformal mappings are nothing but generalizations of conformal mappings. There are several equivalent definitions of quasiconformal mappings in the literature (see instance [\[1](#page-7-0)[,8](#page-8-0)]). In this paper, we adopt the following definition of Ahlfors. Let $K > 1$. A homeomorphism f is called *K*-quasiconformal if f has locally L^2 -derivative and it satisfies the Beltrami differential equation $f_{\overline{z}}(z) = \mu(z) f_z(z)$ a.e., where μ satisfies

$$
|\mu(z)| \le \frac{K-1}{K+1} = k < 1;\tag{1.1}
$$

 $f_{\overline{z}} = \partial f / \partial \overline{z}$ and $f_z = \partial f / \partial z$. The function μ is called the *complex dilatation* of *f*. Note that *f* is conformal if and only if μ vanishes identically. Therefore, 1-quasiconformal mappings are nothing but conformal. For basic properties of quasiconformal mappings, we refer to [\[8\]](#page-8-0).

By Σ , we denote the class of functions of the form:

$$
g(z) = z + b_0 + \frac{b_1}{z} + \dots
$$
 (1.2)

that are analytic and univalent in the domain $\Omega := \{z : |z| > 1\}$, except for simple pole at infinity with residue 1. The class Σ' denotes the collection of functions *g* in Σ , such that $g(z) \neq 0$ in Ω . Using a simple geometric argument, Gronwall [\[6\]](#page-8-1) in 1914 proved the classical area theorem, which says that the coefficients of $g \in \Sigma$ satisfy the sharp inequality $\sum n |b_n|^2 \leq 1$. Furthermore, Lehto [\[7\]](#page-8-2) generalized the area theorem by assuming the additional hypothesis that *g* admits a quasiconformal extension to the closed unit disk, where the resultant inequality is sharp. For updated research work related to the area theorem, readers can refer to [\[2](#page-7-1)[,3](#page-8-3)]. Closely related to the class Σ is the class S of all analytic univalent functions f defined in the unit disk $\mathbb{D} := \{z : |z| < 1\}$ with the normalization $f(0) = 0$ and $f'(0) = 1$. Note that functions in *S* have power series representation of the forms:

$$
f(z) = z + a_2 z^2 + \dotsb.
$$
 (1.3)

It is easy to verify that each $f \in S$ is associated with a function $g \in \Sigma'$ through the relation $g(z) = {f(1/z)}^{-1}$. Therefore, there exists a one-to-one correspondence between *S* and Σ' (see [\[4,](#page-8-4) p 28]).

For an analytic function f in $\mathbb{D}_r := \{z : |z| < r, \ 0 < r \leq 1\}$, we set

$$
\Delta(r, f) = \iint_{\mathbb{D}_r} |f'(z)|^2 dx dy, \quad z = x + iy,
$$
\n(1.4)

which is called the Dirichlet integral of *f*. Geometrically, this describes the area of the image of \mathbb{D}_r under f. One of the classical problems in univalent function theory

is to obtain the class of functions f having finite Dirichlet integral $\Delta(1, f)$; we call such functions *f* as Dirichlet finite. In the recent years, such problems for various subclasses of S have been studied by Ponnusamy and his co-authors; see, for instance, [\[9](#page-8-5)[–13\]](#page-8-6). The motivation to study these problems comes from a conjecture of Yamashita [\[14](#page-8-7)] which is settled in [\[9](#page-8-5)]. In this paper, we extend the problem of Yamashita to the functions in the family *S* having quasiconformal extension to the entire complex plane.

Let *k* be defined as in [\(1.1\)](#page-1-0). We denote $\Sigma(k)$ by the class of all functions $g \in \Sigma$ that admit *K*-quasiconformal extension to the unit disk \mathbb{D} , and $\Sigma_0(k)$ is obtained from $\Sigma(k)$ by assuming $g(0) = 0$. Similarly, let us denote $S(k)$ by the class of all functions *f* ∈ *S* that admit *K*-quasiconformal extension to the plane. Clearly, $f \text{ ∈ } S(k)$ if and only if $1/f(1/\zeta) \in \Sigma_0(k)$.

Rest of the paper is organized as follows. Some well-known key results are collected in Sect. [2](#page-2-0) followed by the proof of our main theorem. We observe that the modified Koebe function studied in [\[7\]](#page-8-2) does not play extremal role in our problem. However, we construct a new function which also extends the Koebe function $z/(1 - z)^2$ to the *K*-quasiconformal setting and show that it plays the extremal role in our problem. Section [3](#page-5-0) is devoted to the comparison of the areas obtained in Sect. [2](#page-2-0) for our extremal function with the modified Koebe function.

2 Main Result

Suppose that f is an analytic function in the disk D with the Taylor series expansion:

$$
f(z) = \sum_{n=0}^{\infty} a_n z^n
$$
 (2.1)

and $f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$. Then, using Parseval–Gutzmer formula, the area $\Delta(r, f)$, of $f(\overline{\mathbb{D}}_r)$, as stated in [\(1.4\)](#page-1-1) can be re-formulated as follows (see [\[5](#page-8-8)]):

$$
\Delta(r, f) = \iint_{\mathbb{D}_r} |f'(z)|^2 dx dy = \pi \sum_{n=1}^{\infty} n |a_n|^2 r^{2n}, \quad z = x + iy. \tag{2.2}
$$

We concentrate particularly on this form of the area formula in this paper. Computing this area is called the *area problem for the functions of the type f* . However, area of $f(\mathbb{D})$ may not be bounded for all $f \in S$. We remark that if $f \in S$, then z/f is non-vanishing, and hence, $f \in S$ may be expressed as follows:

$$
f(z) = \frac{z}{F_f(z)}, \quad \text{where } F_f(z) = 1 + \sum_{n=1}^{\infty} c_n z^n, \quad z \in \mathbb{D}.
$$

Yamashita in [\[14](#page-8-7)] considered the area problem for functions of type F_f for $f \in S$, and proved that the area of $F_f(\mathbb{D}_r)$ is bounded. Indeed, he proved.

Theorem A [\[14,](#page-8-7) Theorem 1] *We have*

$$
\max_{f \in \mathcal{S}} \Delta(r, F_f) = 2\pi r^2 (r^2 + 2),
$$

for $0 < r \leq 1$ *. The maximum is attained only for a suitable rotation of the Koebe function.*

To consider the Yamashita problem for functions in *S* having quasiconformal extension to the entire complex plane, the following theorem of Lehto [\[7\]](#page-8-2) is useful.

Theorem B *Let* $g \in \Sigma(k)$ *be of the form* [\(1.2\)](#page-1-2)*. Then*

$$
\sum_{n=1}^{\infty} n|b_n|^2 \le k^2.
$$
 (2.3)

The equality holds for the function:

$$
g(z) = \frac{1}{z} + a_0 + a_1 z, \quad z \in \mathbb{D},
$$

with |*a*1| = *k*. *Moreover, its k-quasiconformal extension is given by setting:*

$$
g(z) = \frac{1}{z} + a_0 + \frac{a_1}{\overline{z}}, \quad z \in \overline{\Omega}.
$$

We also need an immediate consequence of Theorem B, proved by Lehto in the same paper, which gives the sharp bound for second coefficient of functions in *S* having quasiconformal extension to the plane. The consequence is stated as follows:

Theorem C [\[7](#page-8-2), Corollary 3] *For a function* $f \in S(k)$ *of the form* [\(1.3\)](#page-1-3) *with* $f(\infty) =$ ∞ *, we have* $|a_2|$ ≤ 2*k*.

Using Theorem B and Theorem C, we now state and prove our main result.

Theorem 2.1 *For* $0 < r \leq 1$ *, we have*

$$
\max_{f \in S(k)} \Delta(r, F_f) = 2\pi r^2 k^2 (2 + r^2).
$$

The maximum is attained only for a suitable rotation of the function:

$$
f(z) = \begin{cases} \frac{z}{1 - 2kz + kz^2}, & \text{for } |z| < 1, \\ \frac{z\overline{z}}{z - 2kz\overline{z} + kz}, & \text{for } |z| \ge 1. \end{cases}
$$
(2.4)

 $\textcircled{2}$ Springer

Proof Let $f \in S(k)$ be of the form [\(1.3\)](#page-1-3). Then

$$
\frac{1}{f(\frac{1}{z})} = z - a_2 + (a_2^2 - a_3)\frac{1}{z} + \dots = z + b_1 + \frac{b_2}{z} + \dots
$$
 (say).

Substituting $1/z$ by *z* and multiplying *z*, we obtain

$$
F_f(z) = \frac{z}{f(z)} = 1 - a_2 z + (a_2^2 - a_3) z^2 + \dots = 1 + b_1 z + b_2 z^2 + \dots
$$

It is clear that $b_1 = -a_2$. Now, we compute

$$
\frac{1}{\pi} \Delta(r, F_f) = \sum_{n=1}^{\infty} n|b_n|^2 r^{2n}
$$

= $|b_1|^2 r^2 + \sum_{n=2}^{\infty} n|b_n|^2 r^{2n}$
= $|-a_2|^2 r^2 + 2r^4 \sum_{n=1}^{\infty} \frac{n+1}{2} |b_{n+1}|^2 r^{2n-2}$.

Using the estimate for a_2 from Theorem C, we obtain

$$
\frac{1}{\pi}\Delta(r, F_f) \le 4r^2k^2 + 2r^4 \sum_{n=1}^{\infty} n|b_{n+1}|^2.
$$

Then, by Theorem B, we have

1

$$
\frac{1}{\pi}\Delta(r, F_f) \le 4r^2k^2 + 2r^4k^2 = 2r^2k^2(r^2 + 2).
$$

Now, it remains to consider the sharpness part. For $|z| < 1$, consider the function $f(z) = z/(1 - 2kz + kz^2)$. Therefore, $f_{\overline{z}} = 0$. That is, *f* is conformal in D. Since $F_f(z) = 1 - 2kz + kz^2$, by [\(2.2\)](#page-2-1), we obtain

$$
\frac{1}{\pi} \Delta(r, F_f) = \sum_{n=1}^{\infty} n |b_n|^2 r^{2n} = 4r^2 k^2 + 2r^4 k^2 = 2r^2 k^2 (r^2 + 2).
$$

For $|z| \geq 1$, let

$$
f(z) = \frac{z\overline{z}}{\overline{z} - 2kz\overline{z} + kz}.
$$

An easy calculation shows that

$$
f_{\overline{z}} = \frac{z(\overline{z} - 2kz\overline{z} + kz) - z\overline{z}(1 - 2kz)}{(\overline{z} - 2kz\overline{z} + kz)^2} = \frac{kz^2}{(\overline{z} - 2kz\overline{z} + kz)^2}
$$

and

$$
f_z = \frac{\overline{z}(\overline{z} - 2kz\overline{z} + kz) - z\overline{z}(-2k\overline{z} + k)}{(\overline{z} - 2kz\overline{z} + kz)^2} = \frac{\overline{z}^2}{(\overline{z} - 2kz\overline{z} + kz)^2}.
$$

Thus, $|f_{\overline{z}}/f_z| = k$.

Both the functions defined in (2.4) agree on the boundary $\partial \mathbb{D}$ of \mathbb{D} . The proof is complete.

Remark 2.2 Observe that Theorem [2.1](#page-3-1) is a natural extension of Theorem A. In fact, for $k = 1$, Theorem [2.1](#page-3-1) is equivalent to Theorem A.

Remark 2.3 It is easy to check that for $f \in S(k)$, $\Delta(1, F_f) \leq 6\pi k^2$, and hence, F_f is Dirichlet finite.

3 Comparison of Areas

Recall the modified Koebe function from [\[7](#page-8-2)] which is defined by the following:

$$
g(z) = \begin{cases} \frac{z}{(1 + ke^{i\phi}z)^2}, & \text{for } |z| < 1, \\ \frac{z\overline{z}}{(\sqrt{\overline{z}} + ke^{i\phi}\sqrt{z})^2}, & \text{for } |z| \ge 1. \end{cases}
$$
(3.1)

A simple computation yields

$$
\Delta(r, F_g) = 2r^2k^2(k^2r^2 + 2)\pi,
$$

which geometrically describes the area of $F_g(\mathbb{D})$. Note that

$$
2r^{2}k^{2}(k^{2}r^{2}+2)\pi = \Delta(r, F_{g}) < \Delta(r, F_{f}) = 2r^{2}k^{2}(r^{2}+2).
$$

To see the graphical and numerical comparisons of the Dirichlet finites $\Delta(1, F_g)$ and $\Delta(1, F_f)$, we end this section with the following observations (Table [1;](#page-5-1) Figs. [1,](#page-6-0) [2,](#page-6-1) [3,](#page-7-2) [4\)](#page-7-3). First, we show the graphs of F_f and F_g , where f and g are defined

Fig. 1 Graphs of F_f and F_g for $k = 0.2$

Fig. 2 Graphs of F_f and F_g for $k = 0.5$

by [\(2.4\)](#page-3-0) and [\(3.1\)](#page-5-2) respectively, for different values of *k*. Here, the terminology *the graph of* F_f means *the image domain* $F_f(\mathbb{D})$ and, similarly, for the graph of F_g . Observe that as $k \rightarrow 1$, the graphs of F_g are approaching to those of F_f .

Second, for these choices of *k*, Table [1](#page-5-1) compares the area $\Delta(1, F_g)$, of the image of D under F_g , and the area $\Delta(1, F_f)$, of the image of D under F_f .

Fig. 4 Graphs of F_f and F_g for $k = 0.9$

Acknowledgements The authors would like to thank the referee for his/her careful reading of the manuscript. The research work of S. K. Sahoo was supported by NBHM, DAE (Grant No: 2/48(12)/2016/ NBHM (R.P.)/R & D II/13613).

References

- 1. Ahlfors, L.V.: Lecture on Quasiconformal Mappings. American Mathematical Society, Rhode Island (2006)
- 2. Bhowmik, B., Satpati, G., Sugawa, T.: Quasiconformal extension of meromorphic functions with nonzero pole. Proc. Am. Math. Soc. **144**(6), 2593–2601 (2016)
- 3. Chichra, P.N.: An area theorem for bounded univalent functions. Proc. Cambrid. Philos. Soc. **66**, 317–321 (1969)
- 4. Duren, P.L.: Univalent Function. Springer-Verlag, New York (1983)
- 5. Goodman, A.W.: Univalent Functions. Mariner, New York (1983)
- 6. Gronwall, T.H.: Some remarks on conformal representation, Ann. Math. **16**(1–4), 72–76 (1914/15)
- 7. Lehto, O.: Schlicht functions with a quasiconformal extension. Ann. Acad. Sci. Fenn. Ser. A **I**(500), 1–10 (1971)
- 8. Lehto, O.: Univalent Function and Teichmüller Spaces. Springer-Verlag, New York (1987)
- 9. Obradovi´c, M., Ponnusamy, S., Wirths, K.-J.: A proof of Yamashita's conjecture on area integral. Comput. Methods Funct. Theory **13**(3), 479–492 (2013)
- 10. Obradović, M., Ponnusamy, S., Wirths, K.-J.: Integral means and Dirichlet integral for analytic functions. Math. Nachr. **288**(2–3), 334–342 (2015)
- 11. Ponnusamy, S., Sahoo, S.K., Sharma, N.L.: Maximal area integral problem for certain class of univalent analytic functions (English summary). Mediterr. J. Math. **13**(2), 607–623 (2016)
- 12. Ponnusamy, S., Wirths, K.-J.: On the problem of L. Gromova and A. Vasil'ev on integral means, and Yamashita's conjecture for spirallike functions. Ann. Acad. Sci. Fenn. Ser. A I Math. **39**, 721–731 (2014)
- 13. Sahoo, S.K., Sharma, N.L.: On maximal area integral problem for analytic functions in the starlike family. J. Class. Anal. **(11)**(1), 73–84 (2015)
- 14. Yamashita, S.: Area and length maxima for univalent functions. Bull. Austral. Math. Soc. **41**(3), 435– 439 (1990)