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Abstract
Modeling rodent populations has been always a challenge for population ecologists.
These populations have oscillations that are dynamically complex. In this paper,
we consider the population dynamics of rodents under the effect of the “special-
ist” and “generalist” predators with Beddington–DeAngelis and sigmoidal functional
responses. We discover that the ODE system has one axial state and two boundary
states. If the rate of predation by the generalist predator is more than the critical value
(c2 > c∗

2), then the system has a unique internal equilibrium which is stable if the
predator’s intrinsic growth rate of population is more than the critical value s∗. We
show that the predation rates of the both predators (c1, c2) play an important role on
rodent population dynamic. Then, we have considered a delay differential equation
(DDE)model to account for the time delays in the transient dynamics. By treating time
delays as the bifurcation parameter, we show that a Hopf bifurcation about the equilib-
ria could happen for critical time delays. Finally, we gave an biological interpretation
of our analytical results.
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1 Introduction

Modeling rodent populations has been always a challenge for population ecologists.
These populations have oscillations that are dynamically complex.Mathematicalmod-
els are important tools for analyzing ecological models. The dynamic relationship
between prey and predators is one of the prevailing issues in mathematical ecology
[2,5,15,19,23,32,39,42]. The most common method of modeling ecological inter-
actions consists of two differential equations with simple correspondence between
the consumption of prey by the predator and the population growth. The traditional
predator–prey models have been studied extensively [7,10,12,26,28]. Yodziz [43] pro-
posed the followingmodel to describe the interaction of predators and their prey which
take the following very general form:

{
Ṗ = f (P) −UF(P,U ),

U̇ = UG(P,U ),

where P(t) andU (t) represent the prey and predators densities at time t, respectively;
the function f = f (P) characterizes the growth rate of the prey population in the
absence of predator (almost all of models were limited to use the Malthusian growth
function). The most crucial element in these models is the “functional response”, the
phrase that describes the rate at which the prey are consumed by a predator. The
function F(P,U ) describes the predators functional (behavioral) response and the
function G(P,U ) describes the predators (numerical) response.

There have been several famous functional response types: Holling types I–III [24,
25]; Hassell–Varley [22]; Beddington–DeAngelis [4,13]; the Crowley–Martin [11];
the ratio–dependence [3,30]. Of them, the Holling-type I–III were labeled “prey-
dependent” and the other types which consider the interference among predators were
labeled “predator-dependent” by Arditi and Ginzburg [3]. However, prey-dependent
functional responses fail to model the interference among predators or, although less
likely, the cooperation which is sometimes achieved, and have been facing challenges
frombiologists and physiologists [1,3,18,27,30]. Recently, “predator-dependent”-type
models have received much support from theoretical and empirical work in biology.

Prey–predator models with predator-dependent functional responses can provide
better descriptions of predator feeding than prey-dependent functional responses over
a range of predator–prey abundances (as noted by Skalski and Gilliam in [36]),
and in some cases, the Beddington–DeAngelis functional response performed best.
The original-type prey–predator model with the Beddington–DeAngelis functional
response has been proposed and well studied. This model has the form:

{
Ṗ = P(r − P

k ) − αPU
a+bP+cU ,

U̇ = βPU
a+bP+cU − dU .

(1.1)

Motivated by this system, many scholars have proposed and studied models consisting
of ordinary or functional differential equations incorporating the Beddington–
DeAngelis functional responses. For instance, Hwang [28,29] showed that the interior
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equilibrium of the above system is globally stable provided that it is locally asymp-
totically stable. Furthermore, he obtained sufficient conditions for the uniqueness of
limit cycles of the system.

In recent decades, it has been demonstrated that complex dynamics can appear in
continuous-time models with three or more species [17,31,35,38,41], and specifically
that nonlinear dynamics, including cycles, quasicycles, and chaos, can occur in such
biological systems. Although a direct link between the predators and preys cannot
be established unless quantitative methods are used, the previous works clearly show
that the populations of three species are often related, and a change in one species can
cause a change in the others, especially predator. For example, in [34], the authors
have studied the dynamical behavior of an ecological system with three species with
Beddington–DeAngelis functional response. In their models, they introduce one more
predator species in the model (1.1) and they have analyzed the local and global sta-
bility and the bifurcations arising in some selected situations. In addition, in [33], to
understand the impact of predation by different types of predators on prey popula-
tion dynamics, the authors formulate a three differential equation model describing
the population dynamics of one prey and two species predator. They proposed the
following model:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dP
dt = r P

(
1 − P

k

) − g(P, H , Z) − h(P, H , Z),

dH
dt = sH

(
1 − γ H

P

)
,

dZ
dt = eh(P, H , Z) − mZ ,

(1.2)

where g(P, H , Z) and h(P, H , Z) have been supposed Holling-type II and type III,
respectively, as a functional response. They analyze the model from a thermodynamic
perspective and study the thermodynamic stability of the different equilibria. Moti-
vated by two these papers [33,34], we consider the model which is similar to the
model (1.2), but instead of the Holling-type II functional response, we consider the
Beddington–DeAngelis functional response. In addition, we consider the situation in
which the behavioral response term appearing in the prey equation contains a delay
term, which can be regarded as a gestation period or reaction time of the predators.

The layout of this paper is as follows: the basic assumptions and themodel formation
are proposed in Sect. 2. In addition, in this section, the stability properties equilibria
for the basic model without delay are studied. In Sect. 3, the stability properties and
occurrence of Hopf bifurcation of the positive equilibrium for the system with delay
are studied. In Sect. 4, some numerical simulations are presented to illustrate the
analytical results. Finally, a summary is given in Sect. 5.

2 System of Equations, Equilibria, and Stability

In this section, we consider system (1.2) with a Beddington–DeAngelis and sigmoidal-
type functional form as a functional responses.
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We denote P(t),U (t), and V (t) as the rodent population, “specialist predator” pop-
ulation, and “generalist predator” population, respectively. The population dynamics
are given by the following nonlinear system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP
dt = r P

(
1 − P

k

) − c1PU
P+U+d1

− c2P2V
P2+d2

:= f1(P,U , V ),

dU
dt = sU

(
1 − γU

P

)
:= f2(P,U , V ),

dV
dt = ec2P2V

P2+d2
− mV := f3(P,U , V ),

(2.1)

with the initial conditions P(0) ≡ P0 > 0, U (0) ≡ U0 > 0, and V (0) ≡ V0 > 0.
The following assumptions for model (2.1) are supposed:

(I) The predators of prey populations are broadly divided in two categories which
is specialist and generalist predator, respectively. The specialist predators are
dynamically strongly coupled with the rodent population. Since the mobility of
this type of predator is very low, and they usually do not switch to the other
prey, a small decrease in the density of the rodent population causes a drastic
reduction in density of the specialist predators. On the contrary, the generalist
predators can feed on various alternative prey in addition to the rodents. Conse-
quently, the population density of the generalist predator is least affected by the
variation in rodent population density. The Beddington–DeAngelis functional
response provides a better description of predator feeding than the other func-
tional responses, such as the Holling types. This fact has been reflected in using
the Beddington–DeAngelis functional response g(P, H , Z) in our model.

(II) The parameter r(> 0) is the intrinsic growth rate of prey species in the absence of
both the specialist and the generalist predators. The parameter k(> 0) is the envi-
ronmental carrying capacity of prey species. It is determined by a combination of
food availability and environmental factors such as density-depended maturation
and dispersal rates. Understanding the dynamical relationships between predator
and prey is one of the central goals in an ecological system. One important com-
ponent of the predator–prey relationship is the predator’s functional response.
We apply a Beddington–DeAngelis functional response c1PU

P+U+d1
to describe the

effect of the specialist predator on the prey species. The parameter c1 is the search
rate of the specialist predator on the prey species, and c1

d1
is the maximum number

of prey that can be eaten by the specialist predator per unit time.
(III) In the system (2.1), the growth of the specialist predator population follows a

logistic law with s(> 0) as the predator’s intrinsic growth rate of population;
the carrying capacity is taken to be dynamic and is proportional to the prey
density ( P

γ
). The equation for the specialist predator is formulated following an

interferential structure, because the “specialist predators” of the rodent are small
mammals that spend most of its energy in prey hunting and other activities like
surviving.

(IV) The generalist predator follows a sigmoidal functional response with a low rate of
predation at low prey density. The generalist predator switches from alternative
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prey to the rodent when the rodent density increases beyond a certain threshold.
The parameter c2 is the rate of predation by the generalist predator and d2 is the
half-saturation constant; e is the conversion efficiency, denoting the number of
newly born of generalist predator for each captured prey species (0 < e < 1); m
is the natural death rate of the generalist predator.

A brief description of the parameter significant and parameter values can be found
in [33], in which the authors listed the following parameter values: r = 2, k = 100,
d1 = 10, d2 = 10, s = 0.45, γ = 0.44, e = 0.6, c1 = 0.7, c2 = 0.5, and m = 0.4.
For more details, the reader is referred to [33].

Here and throughout this paper, we only assume that

Hypothesis 2.1 (i) c2 > m/e, (i i) s > m.

Letting Y = (P,U , V )T, G : R3 −→ R
3, G = ( f1, f2, f3)T, the system (2.1) can

be rewritten as dY
dt = G(Y ). Here, fi ∈ C∞(R) for i = 1, 2, 3 (if P �= 0). Since

the vector function G is a smooth function of the variables (P,U , V ) in the positive
octant � = {(P,U , V ) : P > 0,U > 0, V > 0}, therefore, it is locally Lipschitz
continuous in �, which guarantees the local existence and uniqueness of solutions of
the system (2.1).

Now, we can recognize the following steady states of system (2.1):

• The axial state: E1 = (k, 0, 0).
• The boundary states are E2 = (P2,U2, 0) and E3 = (P3, 0, V3), where

U2 = P2
γ

, P2 = rγ (k−d1)+k(r−c1)+
√

(krγ+rk−rγ d1−c1k)2+4(rγ 2+rγ )(rkd1)
2r(γ+1) ,

P3 =
√

md2
ec2 − m

, V3 = er P3
m

(
1 − P3

k

)
. (2.2)

• The interior state is E∗ = (P∗,U∗, V ∗) with U∗ = P∗
γ

and

P∗ = P3, V ∗ = eP3
m

(
r

(
1 − P3

k

)
− c1P3

P3 + γ P3 + γ d1

)
. (2.3)

Notice that the boundary point E2 always exists, but the boundary point E3 exists only
if c2 > m

e . The interior steady state E
∗ exists only if P∗, U∗ and V ∗ are positive, but,

from (2.3), this implies that 0 < P∗ < k, since, otherwise, V ∗ < 0. Now, let

f (P) := r(1 + γ )(P)2 + (c1k + d1γ r − kr(1 + γ )) P − rkd1γ. (2.4)

Then, it is clear that V ∗ > 0 if and only if f (P∗) = f (P3) < 0. However, the positive
root of f (P) = 0 is equal to P2. Therefore, if 0 < P∗ < P2, then f (P∗) < 0.
Therefore, E∗ exist only if 0 < P∗ = P3 < P2. However, this last condition is
equivalent to

c2 > c∗
2 := m

e
+ md2

eP2
2

. (2.5)
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Now, we study the local stability around the axial state E1, the boundary state E2 (the
generalist predator-free), and E3 (the specialist predator-free) equilibrium points.
First, we denote the Jacobian matrix (J = [Ji j ]) as follows:

J(P,U ,V ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r − 2r
k P − c1U (U+d1)

(P+U+d1)2
− 2c2d2PV

(P2+d2)
2 − c1P(P+d1)

(P+U+d1)2
− c2P2

P2+d2

sγ1U2

P2 s − 2sγ1
P U 0

2ec2d2PV

(P2+d2)
2 0 ec2P2

(P2+d2)
− m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(2.6)

It can be easily seen that one of the eigenvalues of Jacobian matrix about E1 and E3
is λ = s, and therefore, these equilibrium points are unstable. Next, we study the
stability of equilibrium point E2. At this point, the Jacobian matrix takes the form:

JE2 =

⎛
⎜⎜⎜⎝
r − 2r P2

k − c1U2(U2+d1)
(P2+U2+d1)2

−c1P2(P2+d1)
(P2+U2+d1)2

−c2P2
2

P2
2 +d2

s
γ

−s 0

0 0
ec2P2

2
P2
2 +d2

− m

⎞
⎟⎟⎟⎠ .

For E2, the characteristic equation associated with (2.1) is given by the following:

(
ec2P2

2

P2
2 + d2

− m − λ

)(
λ2 + λ

(
s − r + 2r P2

k
+ c1U2 (U2 + d1)

(P2 +U2 + d1)2
)

+ 2rsP2
k

+ c1sU2 (U2 + P2 + 2d1)

(P2 +U2 + d1)2
− rs

)
= 0.

It is easy to verify that one of the eigenvalues of J (E2) is

λ3 =: −m + ec2P2
2

P2
2 + d2

=: eP2
2

P2
2 + d2

(c2 − c∗
2).

The other two eigenvalues satisfy λ2 − Aλ + B = 0, where

A = λ1 + λ2 = r − 2r

k
P2 − c1U2 (U2 + d1)

(P2 +U2 + d1)2
− s,

B = λ1.λ2 = 2rs

k
P2 + c1sU2 (U2 + P2 + 2d1)

(P2 +U2 + d1)2
− rs.
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It is easy to verify that A = 0 if c1 = c∗
1 and B = 0 if c1 = ĉ1, where

c∗
1 =

(
r − s − 2r P2

k

)
(P2 +U2 + d1)2

U2(U2 + d1)
, (2.7)

ĉ1 =
(
r − 2r P2

k

)
(P2 +U2 + d1)2

U2(U2 + P2 + 2d1)
. (2.8)

Therefore, we have the following theorem:

Theorem 2.2 The steady states E1 and E3 are unstable, but E2 is asymptotically
stable provided that c2 < c∗

2 and c1 > c̃1 := max{c∗
1, ĉ1}. If 0 < c1 < c̃1 or c2 > c∗

2
(λ3 > 0), the boundary equilibrium E2 is unstable.

ThisTheorem implies that,when the boundary equilibrium E2 is asymptotically stable,
then there is a chance for extinction of generalist predator. However, since E1 is
always unstable, then there is not any chance for extinction of the specialist and
generalist predator simultaneously, and since E3 is always unstable, there is no chance
for extinction of specialist predator.

To state the next theorem, we need to introduce the notion of uniform persistence
which is a standard definition in the context of population dynamics. It is also called
cooperativeness or permanent coexistence and it means that strictly positive solu-
tions are eventually uniformly bounded away from the boundary [6]. More technical
definition is given in [8].

Definition 2.3 If there exists a compact set K ⊆ I ntR3+ = �, such that all solutions
of (2.1) with the initial condition in � eventually enter and remain in K , then the
system (2.1) is called uniformly persistent (invariant).

Theorem 2.4 Let Hypothesis 2.1 hold and c2 > c∗
2 , and then, system (2.1) is uniformly

persistent.

Proof We use the method of average Lyapunov function [16]. It can be easily seen that
conditions of Theorem [16] are satisfied. Considering a function ν(P,U , V ) = PUV ,
we define

ξ(P,U , V ) = ν̇

ν
= Ṗ

P
+ U̇

U
+ V̇

V

=
(
r

(
1 − P

k

)
− c1U

P +U + d1
− c2PV

P2 + d2

)

+
(
s − sγU

P

)
+
(

ec2P2

P2 + d2
− m

)
.
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Now, we prove that this function is positive at each of the boundary equilibria. Then

ξ(E1) = ξ(k, 0, 0) = s − m + ec2k2

k2 + d2
> 0,

ξ(E2) = ξ(P2,U2, 0) =
[
r(1 − P2

k
) − c1U2

P2 +U2 + d1

]
+
(

ec2P2
2

P2
2 + d2

− m

)

= ec2P2
2

P2
2 + d2

− m > 0,

ξ(E3) = ξ(P3, 0, V3) =
[
r(1 − P3

k
) − c2P3V3

P2
3 + d2

]
+ s +

(
ec2P2

3

P2
3 + d2

− m

)

= s > 0.

First, relation holds by Hypothesis 2.1. In proving ξ(E2) > 0, we have used the fact
that E∗ exist, and therefore, P2 > P3. and ξ(E3) > 0 follows using the definition of
P3 and V3. 	

Remark 2.5 We notice that if c2 < c∗

2 and c1 > c̃1, then E2 is asymptotically stable,
but this implies that there is a neighborhood of this point in �, such that any solution
with the initial condition in this neighborhood approaches E2. This implies that (2.1)
is not uniformly persistent by definition.

Lemma 2.6 (see [8]) If a > 0, b > 0, and dx
dt ≥ (≤)b−ax, when t ≥ 0 and x(0) > 0,

therefore, we have

x(t) ≥ (≤)
b

a

[
1 +

(
ax(0)

b
− 1

)
e−at

]
.

Lemma 2.7 (see [40]) If a, b and α are positive constants and dx
dt ≤ x(b − axα),

with x(0) > 0, then, for any sufficiently small constant ε > 0, there exists a positive
constant T , such that

x(t) ≤
(
b

a

) 1
α + ε for t ≥ T .

Theorem 2.8 All the solutions of the system (2.1) with the positive initial conditions
(P0,U0, V0) are uniformly bounded within �, and the set � ⊆ I ntR3+ is positively
invariant, where

� =
{
(P,U , V ) ∈ R

3+ : 0 < P +U + V

e
≤ W

m

}
,

W = k(r + m)2

4r
+ MP (s + m)2

4sγ
.
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Proof First of all, it is clear that the U = 0-axis and the V = 0-axis are invariant.
Assume that (P(t),U (t), V (t)) is an arbitrary positive solution of system (2.1); then,
the first equation of system (2.1) can yield:

dP

dt
= r P

(
1 − P

k

)
− c1PU

P +U + d1
− c2P2V

P2 + d2
≤ r P

(
1 − P

k

)
= P

(
r − r P

k

)
.

FromLemma2.7,we get that there exists a constant T1 > 0, such that P(t) ≤ k+ε1 :=
MP , for any small constant ε1 > 0 and for t ≥ T1.

Similarly, from the second equation of system (2.1) and Lemma 2.7, there exist two
positive constants MU and T2 > 0, such that

U (t) ≤ MP

γ
+ ε2 =: MU

for t ≥ T2 and ε2 > 0.
Defining that χ(t) = P(t) +U (t) + V (t)

e , then we get:

χ̇ + mχ ≤ (r + m)P − r

k
P2 + (s + m)U − sγ

MP
U 2

≤ k(r + m)2

4r
+ MP (s + m)2

4sγ
:= W .

Thus, χ̇ + mχ is bounded by W . According to Lemma 2.6, we have:

χ ≤ W

m
+
(

χ(0) − W

m

)
e−mt .

Therefore, χ(t) is ultimately bounded, and if follows that each positive solution of
system (2.1) is uniformly ultimately bounded. Hence, there are two positive constants
MV and T3, such that V (t) ≤ MV , for t ≥ T3. Let T = max

{
T1, T2, T3

}
, and then,

we have 0 < P(t) ≤ MP , 0 ≤ U (t) ≤ MU and 0 ≤ V (t) ≤ MV for t ≥ T . This
ensures the existence of a compact set � which is a proper subset of R3+, such that
as t −→ ∞, the solutions of (2.1) will be always within the set �. Thus, the system
(2.1) is dissipative. The proof of the theorem is completed. 	

Notice that there is a chance for extinction of the generalist predator depending on the
predation rates.

Next, we study the interior equilibrium point E∗. The Jacobian matrix about this
equilibrium JE∗ = [ ji,k]3×3 is as follows:

JE∗ =
⎛
⎜⎝
r − 2r

k P∗ − c1U∗(U∗+d1)
(P∗+U∗+d1)2

− 2c2d2P∗V ∗
(P∗2+d2)2

−c1P∗(P∗+d1)
(P∗+U∗+d1)2

−m
e

s
γ

−s 0
2ec2d2P∗V ∗
(P∗2+d2)2

0 0

⎞
⎟⎠ .
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Then, the characteristic equation is given by h(λ) =: λ3 + A∗λ2 + B∗λ + C∗, where

A∗ = −( j11 + j22) = s − j11,

B∗ = ( j11 j22 − j12 j21 − j13 j31),

C∗ = j13 j31 j22 = 2msc2d2P∗V ∗

(P∗2 + d2)2
. (2.9)

First, we notice that, for c2 = c∗
2, V

∗ = 0, and therefore, C∗ = 0. This implies that
one of the eigenvalues of E2 and E∗ is zero and steady states E2 and E∗ coalesce,
and we expect forward bifurcation (see Fig. 1). In addition, we recall that the interior
point E∗ exists when c2 > c∗

2. In this case, it is clear that C∗ > 0. Now, if we assume
that s > j11, that is

s > r − 2r

k
P∗ − c1U∗(U∗ + d1)

(P∗ +U∗ + d1)2
− 2c2d2P∗V ∗

(P∗2 + d2)2
,

thenA∗ > 0. By the Routh–Hurwitz criteria, all of the roots of the equation h(λ) = 0
have negative real parts if and only if D∗ := A∗B∗ − C∗ > 0. However, this holds if
and only if:

−( j11 − s)(−s j11 − j12 j21 − j13 j31) + s j13 j31 > 0.

However, this is equivalent to

k(s) := Âs2 + B̂s + Ĉ :=
(
j11 + j12

γ

)
s2 − j11

(
j11 + j12

γ

)
s − j11 j13 j31 < 0.

Now, we can consider the following cases:

(a) j11 ≤ 0. In this case,A∗ > 0, C∗ > 0, also Â, B̂ and Ĉ are negative, this implies
that D∗ > 0; therefore, E∗ is asymptotically stable.

(b) 0 < j11 < s. Similar to case a, we have A∗ > 0, C∗ > 0. To consider the sign of
D∗, we need to consider two subcases:

(b1) j11 + j12
γ

< 0 ( Â < 0, B̂ > 0 and Ĉ > 0). Let us denote the discriminant

of k by � := B̂2 − 4 ÂĈ , it is easy to see that in this case � > 0 and there

is a unique positive s∗, such that k(s∗) = 0, where s∗ = −B̂+√
�

2 Â
. Therefore,

D∗ = 0 for s = s∗, D∗ > 0 for s > s∗ and D∗ < 0 for s < s∗. Thus, E∗ is
asymptotically stable for s > s∗ and it is unstable for s < s∗.

(b2) j11 + j12
γ

> 0 ( Â > 0, B̂ < 0 and Ĉ > 0). In this case, all roots of k (if any)
are positive:

(i) � < 0, then k(s) has no roots and it is positive for all s. Therefore, E∗ is
unstable.
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(ii) � = 0, then k(s) has a double positive root s = −B̂
2 Â

= j11
2 < j11, but

this is not possible by our assumption. Therefore, k(s) > 0 for all s. This
implies that E∗ is unstable.

(iii) � > 0, then k(s) has two positive roots s± = −B̂±√
�

2 Â
, such that k(s±) =

0. Therefore, k(s) < 0 for all s− < s < s+ and E∗ is asymptotically
stable. However, we show that this can not happen either. By assumption
s − j11 > 0, but we show below that s − j11 < 0, for all s− < s < s+.
For this, we calculate s+ − j11:

s+ − j11 = −B̂ ±
√
B̂2 − 4 ÂĈ

2 Â
− j11

=
− j11 Â ±

√
j211 Â

2 + 4 Â j11 j13 j31

2 Â

= − j11
2

+ 1

2 Â

(√
j211 Â2

(
1 + 4 j13 j31

Â j11

))

< − j11
2

+ 1

2 Â

(√
j211 Â

2(1 + 0)

)
= 0,

where, in the second equality, we used B̂ = − j11 Â and Ĉ = − j11 j13 j31,
also in last inequality, we have used the fact that j13 j31 < 0. Therefore,
s > s+ and at least one of the eigenvalues have positive real parts. Thus,
E∗ is unstable.
In this case, it is impossible to haveA∗B∗ −C∗ = 0 either, since this term
can be zero only if s = s±. However, we can simply see that at s = s±,
A∗ < 0.

(c) j11 > s. Then,A∗ < 0. This implies that at least one of the eigenvalues of E∗ has
positive real parts, and therefore, it is unstable.

Now suppose J (E∗) has a pair of purely imaginary roots λ2,3 = ±iω. Then, h(λ)

should be in the following form:

h(λ) = (λ2 + ω2)(λ + A∗),

It is easy to verify that holds only if B∗ = ω2 and C∗ = A∗ω2. Since C∗ > 0, this
implies that A∗ > 0, B∗ > 0 and D∗ = 0. Therefore, we can easily exclude Cases a
and c.

Now, we consider Case b2; suppose that D∗ = 0; then, s = s±, but, in this case
A∗ < 0, so J (E∗) cannot have a pair of pure imaginary eigenvalues.

However, in the Case b1,D∗ is zero for s = s∗, all of these conditions are satisfied
and J (E∗) has a pair of pure imaginary eigenvalues. Taking s as a parameter, the roots
of h(λ) = 0 in a neighborhood of s = s∗ will be

λ1(s) = −A∗(s), λ2,3(s) = β(s) ± iω(s) = β(s) ± i
√
B∗(s).
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Fig. 1 One-parameter bifurcation diagrams for system (2.1) produced by Auto, with c2 as the bifurcation
parameter, showing a transcritical bifurcation of E2 and E∗ at c∗2 = 0.68160. Other parameter values are
r = 2, k = 100, d1 = 10, d2 = 10, γ1 = 0.44, e = 0.6, m = 0.4, and s = 0.45. All panels show c2 on the
horizontal axis, while the vertical axes are P , U , and V in the left, middle, and right panels, respectively.
Solid red lines correspond to branches of stable equilibria, and solid black lines to unstable equilibria. The
portions of branches corresponding to V < 0 have no significance in the model, but are shown to clarify
the transcritical bifurcation and change of stability

To consider Hopf bifurcation as s passes through s∗, first, we find (
d Re λ(s)

ds )|s=s∗ . By
differentiating equation h(λ) with respect to s, we obtain

dλ

ds
= −A∗′(s)λ2(s) − B∗′(s)λ(s) − C∗′(s)

3λ2(s) + 2A∗(s)λ(s) + B∗(s)
|λ=iω(s)

= A∗′(s)ω2(s) − iB∗′(s)ω(s) − C∗′(s)
−3ω2(s) + 2iA∗(s)ω(s) + B∗(s)

= A∗′(s)B∗(s) − C∗′(s) − iB∗′(s)
√B∗(s)

−2B∗(s) + 2iA∗(s)
√B∗(s)

.

Therefore

Re

(
dλ

ds

)
|s=scri t = Re

[A∗′(s)B∗(s) − C∗′(s) − iB∗′(s)
√B∗(s)

−2B∗(s) + 2iA∗(s)
√B∗(s)

]

=
[−2B∗(s)

(A∗′(s)B∗(s) − C∗′(s)
) − 2B∗′(s)A∗(s)B∗(s)

4B∗2(s) + 4A∗2(s)B∗(s)

]

=
[−A∗′(s)B∗(s) + C∗′(s) − B∗′(s)A∗(s)

2B∗(s) + 2A∗2(s)

]

= − d
(
A∗(s)B∗(s)−C∗(s)

)
ds

2B∗(s) + 2A∗2(s)
|s=scri t . (2.10)

If we suppose
d
(
A∗(s)B∗(s)−C∗(s)

)
ds |s=scri t �= 0, then (

d(Re λ(s))
ds )|s=scri t �= 0. Therefore,

the system (2.1) will undergo a Hopf bifurcation.
It is easy to verify that using equations h(λ) and k(s), we have

−A∗′(s)B∗(s) − B∗′(s)A∗(s) + C∗′(s) = 2s Â + B̂. (2.11)
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In addition, from A∗B∗ − C∗ = 0, we get s Â + B̂ + Ĉ
s = 0. Then, we can rewrite

(2.11) as follows:

−A∗′(s)B∗(s) − B∗′(s)A∗(s) + C∗′(s) = 2s Â + B̂

= s

(
j11 + j12

γ

)
+ j11 j13 j31

s

= s Â − Ĉ

s
. (2.12)

Therefore, from the above discussion about the stability of E∗, we have one case; if
j11 > 0 and j11 < − j12

γ
, then Â < 0, B̂ > 0 and Ĉ > 0. Since � := B̂2 − 4 ÂĈ > 0,

the equation Âs2 + B̂s + Ĉ = 0 has two real roots s1 and s2 which are negative and
positive, respectively. Let s2 = s∗ be a positive root and the critical value. Then, in
this case, the sign of equation (2.12) is negative, and hence, ( d(Re λ(s))

ds )|s=scri t �= 0 and
by Theorem 11.12 of [20], the system (2.1) undergoes a Hopf bifurcation.

Summarizing the above discussions, we arrive at the following theorem.

Theorem 2.9 There exists a positive number s∗, such that, for s∗ < s, the interior
equilibrium point E∗ = (P∗,U∗, V ∗) is locally asymptotically stable. In addition, if

B∗ = ω2, C∗ = A∗ω2 (or A∗B∗ − C∗ = 0) and
d
(
A∗B∗−C∗)

ds |s=scri t=s∗ �= 0, then the
system (2.1) undergo a Hopf bifurcation about the interior equilibrium point E∗ for
s = scri t .

Remark 2.10 To prove the uniqueness of the bifurcated limit cycle, also we need that
the first Lyapunov coefficient be nonzero (non-degeneracy condition). Here, we only
show that a family of one-parameter limit cycles are bifurcated from the steady state
E∗. Also by numerical simulations, we support our analytical proof and demonstrate
the dynamical behavior of the bifurcated limit cycles.

3 Mathematical Analysis of a DDEModel

In this section, we consider a model with an inherent time delay and analyze the
stability properties. Here, we construct the following delay model. In this model, the
parameter τ represents a time delay and the term c1P(t−τ)U (t−τ)

P(t−τ)+U (t−τ)+d1
denotes the loss

of the prey population to the “specialist” predator:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP
dt = r P

(
1 − P

k

) − c2P2V
P2+d2

− c1P(t−τ)U (t−τ)
P(t−τ)+U (t−τ)+d1

,

dU
dt = sU

(
1 − γU

P

)
,

dV
dt = ec2P2V

P2+d2
− mV .

(3.1)
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In the next section, we are interested in the existence of solutions of Eq. (3.1) which
are bounded by positive functions.

The following theorem together with Lemma 2.7 will be used to prove the main
results in the next section. The theorem is concerned with the existence of solutions
of a delay differential equation of the form:

ẋ(t) + p(t)x(t) + q(t)x(T (t)) = 0, t ≥ t0. (3.2)

With respect to (3.2), we shall assume the following:

1. T , q ∈ C([t0,∞], [0,∞]), q(t) �= 0, p ∈ C([t0,∞],R),
2. T is increasing, T (t) < t and lim T (t)t→∞ = ∞.

We have the following theorem,which gives the conditions for the existence of positive
solutions for Eq. (3.2).

Theorem 3.1 Suppose that, for t ≥ t0:

1 < k1 ≤ k2, p(t) + k1q(t) ≥ 0,

and

ln k1 ≤
∫ t

τ(t)

[
p(s) + k1q(s)

]
ds and

∫ t

τ(t)

[
p(s) + k2q(s)

]
ds ≤ ln k2. (3.3)

Then, Eq. (3.2) has a positive solution (see [14]).

3.1 Well-Posedness of theModel

The model (3.1) should be associated with nonnegative initial values:

P(θ) ≥ 0, 0 ≤ U (θ) ≤ M, for θ ∈ [−τ, 0] with P(0) > 0,U (0) > 0.

(3.4)

The existence and uniqueness of solutions of (3.1) can be easily established by the
standard method of steps. Now, when the initial values are nonnegative and the com-
patibility condition (3.4) holds, we can confirm the well-posedness in the sense stated
in the following lemma.

Lemma 3.2 If the conditions (3.4) are satisfied, then the solutions of (3.1) are positive
and are ultimately bounded.

Proof Invariance of solutionsU (t) = V (t) = 0 under the flow of system (3.1) implies
thatU (t) and V (t) components of all the solutions with positive initial condition (3.4)
remain positive for all time.
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Using the positivity ofU (t) and V (t), we show that P(t) is bounded. From equation
of P(t) in (3.1) and using the initial condition (3.4), we obtain

Ṗ = r P

(
1 − P

k

)
− c2P2V

P2 + d2
− c1P(t − τ)U (t − τ)

P(t − τ) +U (t − τ) + d1

≤ P

(
r − r P

k

)
for t ∈ [0, τ ].

From Lemma (2.7), we get that there exists a constant T1 > 0, such that P(t)
≤ k + ε1 = μ + ε1 = MP , for any small constant ε1 > 0 and for t ≥ T1. Repeating
the argument, by methods of steps, we obtain the boundedness of P(t) in [τ, 2τ ],
[2τ, 3τ ], …, and hence, for all t ≥ 0.

Since P(t) is bounded, from equation of U in (3.1), we obtain

dU (t)

dt
≤ U

(
s − sγU

MP

)
.

Then, according to Lemma 2.7, there exists a constant T2 > 0, such that U (t)
≤ MP

γ
+ ε2 := MU , for any small constant ε2 > 0 and for t ≥ T2.

Furthermore, by defining χ(t) = P(t) +U (t) + V (t)
e , we get:

χ̇ + mχ ≤ (r + m)P − r

k
P2 + (s + m)U − sγ

MP
U 2

≤ k(r + m)2

4r
+ MP (s + m)2

4sγ
:= W for t ∈ [0, τ ].

Thus, χ̇ + mχ is bounded. According to Lemma 2.6, we have:

χ ≤ W

m
+
(

χ(0) − W

m

)
e−mt for t ∈ [0, τ ].

Therefore, χ(t) is ultimately bounded by W . Hence, there are two positive constants
MV and T3, such that V (t) ≤ MV , for t ≥ T3. Let T = max

{
T1, T2, T3

}
, and then,

we have P(t) ≤ MP , 0 ≤ U (t) ≤ MU and 0 ≤ V (t) ≤ MV for t ≥ T . Repeating the
argument by methods of steps, we obtain the boundedness of V (t) in [τ, 2τ ], [2τ, 3τ ],
…, and hence, for all t ≥ 0 indeed. Thus, it only remains to show the positivity of P(t).
Since we show P(t), U (t), and V (t) are bounded and using the conditions (3.4) and
according to positivity of U (t) and V (t), from equation of P(t) in (3.1), we obtain:

Ṗ = r P

(
1 − P

k

)
− c2P2V

P2 + d2
− c1P(t − τ)U (t − τ)

P(t − τ) +U (t − τ) + d1

≥ r P

(
1 − MP

k

)
− c2MPMV

d2
P − c1MU P(t − τ)

d1

= P

(
r − rMP

k
− c2MPMV

d2

)
− c1MU P(t − τ)

d1
for t ∈ [0, τ ].
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Now, consider the delay differential equation for t ∈ [0, τ ]:

Ṗ(t) +
(
rMP

k
+ c2MPMV

d2
− r

)
P(t) + c1MU P(t − τ)

d1
= 0. (3.5)

Let p(t) = rMP
k + c2MPMV

d2
− r := μ, q(t) = c1MU

d1
:= α, T (t) = t − τ . Using

these assumptions, it is easy to verify that the conditions of Theorem 3.1 are satisfied.
Then, according to Theorem 3.1, there is a positive solution of (3.5) for t ∈ [0, τ ].
Therefore, by these assumptions and repeating the argument by methods of steps, we
obtain the positivity of P(t) in [τ, 2τ ], [2τ, 3τ ], …, and hence, for all t ≥ 0, indeed.
Then, the proof of the lemma is completed. 	


3.2 Stability Analysis of Equilibria

The equilibria of the system (3.1) are E1 = (k, 0, 0), E2 = (γU2,U2, 0), E3 =
(P3, 0, V3) (refer to Eq. (2.2)) and E∗ = (P∗,U∗, V ∗) (refer to Eq. (2.3)). The
linearization of the above system (3.1) is

⎛
⎝

dP
dt
dU
dt
dV
dt

⎞
⎠ = A1

⎛
⎝P(t)
U (t)
V (t)

⎞
⎠ + A2

⎛
⎝P(t − τ)

U (t − τ)

V (t − τ)

⎞
⎠ ,

where

A1 =

⎛
⎜⎜⎜⎝
r − 2r

k P − 2c2d2PV

(P2+d2)
2 0 − c2P2

P2+d2
sγU2

P2 s − 2sγU
P 0

2ec2d2PV

(P2+d2)
2 0 ec2P2

(P2+d2)
− m

⎞
⎟⎟⎟⎠ ,

A2 =
⎛
⎜⎝

− c1U (U+d1)
(P+U+d1)2

− c1P(P+d1)
(P+U+d1)2

0

0 0 0
0 0 0

⎞
⎟⎠ .

Now, we analyze the stability of the equilibria. First, we consider the equilibria E1 =
(k, 0, 0) and E3 = (P3, 0, V3). We know that the characteristic equation is given by
det(λI − A1 − A2e−λτ ) = 0. However, in these two cases, det(λI − A1 − A2e−λτ ) =
det(λI − A1) = 0, and hence, the delay has no effect on the system and results hold
as before. In other words, the equilibria E1 and E3 remain unstable.
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Now, we discuss the stability of the equilibrium E2 = (γU2,U2, 0). At this equi-
librium, A1 and A2 take the form:

A1 =

⎛
⎜⎜⎝
r − 2r

k γU2 0 − c2(γU2)
2

(γU2)2+d2
s
γ

−s 0

0 0 ec2(γU2)
2

((γU2)2+d2)
− m

⎞
⎟⎟⎠ ,

A2 =
⎛
⎜⎝

− c1U2(U2+d1)
(γU2+U2+d1)2

− c1γU2(γU2+d1)
(γU2+U2+d1)2

0

0 0 0
0 0 0

⎞
⎟⎠ .

It is easy to verify that one of the eigenvalues is

λ3 = ec2P2
2

P2
2 + d2

− m = eP2
2

P2
2 + d2

(
c2 − c∗

2

)
.

Then, for 0 < c < c∗
2, λ3 < 0. The other eigenvalues satisfy

λ2 + aλ + bλe−λτ + c + de−λτ = 0, (3.6)

where

a := s − r + 2rγU2

k
,

b := c1U2(U2 + d1)

(γU2 +U2 + d1)2
,

c := s

(
2r P2
k

− r

)
,

d := sc1U2

(P2 +U2 + d1)2
[
P2 +U2 + 2d1

]
.

For τ = 0, the characteristic Eq. (3.6) becomes

λ2 + (a + b)λ + (c + d) = 0.

We know that a + b = −A and c + d = B, and thus, for c1 > c̃1, c2 < c∗
2, we have

a + b > 0 and (c + d) > 0, and as we expected, E2 is asymptotically stable.
Now, for τ �= 0, if λ = iω is a root of Eq. (3.6), then we have

− ω2 + aiω + biωe−iωτ∗ + c + de−iωτ∗ = 0. (3.7)

Equating the real and imaginary parts of (3.7) to zero, we have

c − ω2 + d cos(ωτ ∗) + bω sin(ωτ ∗) = 0,

aω + bω cos(ωτ ∗) − d sin(ωτ ∗) = 0. (3.8)
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From (3.8), we obtain the fourth-order equation for ω:

ω4 + ω2(a2 − b2 − 2c) + c2 − d2 = 0. (3.9)

The roots are

ω2± = 1

2
(b2 − a2 + 2c) ±

{
1

4
(b2 − a2 + 2c)2 − (c2 − d2)

} 1
2

. (3.10)

There exist two cases of interest [9].

1. If c2 < d2, then there is a pair of one imaginary solution, λ = iω+, ω+ > 0.
2. If c2 > d2, then there exist two pairs of imaginary solutions, λ = iω±, with

ω+ > ω− > 0, provided that b2 −a2 +2c > 0 and (b2 −a2 +2c)2 > 4(c2 −d2),
and no such solutions otherwise.

Now, without loss of generality, we suppose that there is a unique positive solution
ω+ for Eq. (3.9). Substituting ω+ into (3.8) and solving for τ , we get

τ = τn = 1

ω+

{
arccos

(
d(ω2+ − c) − baω2+

d2 + b2ω2+

)}
+ 2nπ

ω+
, n = 0, 1, 2, . . .

(3.11)

Differentiating equation (3.6) respect τ , we obtain

dλ

dτ
[2λ + a + be−λτ − bλτe−λτ − dτe−λτ ] = λ(d + bλ)e−λτ ,

and therefore, we have

(
dλ

dτ

)−1

= (2λ + a)eλτ + b

λ(d + bλ)
− τ

λ
.

Using eλτ = −(d+bλ)

λ2+aλ+c
, we can obtain

α1(λ) : = sign

{
d(Re λ)

dτ

}
τ=τn

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iω+

= sign

{
Re

[ −(2λ + a)

λ(λ2 + aλ + c)

]
λ=iω+

+ Re

[
b

λ(d + bλ)

]
λ=iω+

}

= sign

{
a2 − 2(c − ω2+)

a2ω2+ + (ω2+ − c)2
− b2

b2ω2+ + d2

}

= sign{a2 − b2 − 2c + 2ω2+},
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which is positive. Therefore, we can say that, when τ crosses τn (τ = τn) for every
n, the characteristic Eq. (3.6) has a pair of purely imaginary roots ±iω+, and α1(λ)

is positive, then a Hopf bifurcation occurs, and a nontrivial periodic solution appears;
when τn < τ < τn+1, the characteristic Eq. (3.6) has n + 1 pair of eigenvalues with
positive real parts, the others with negative real parts. Therefore, the equilibrium E2
becomes unstable at the smallest value of τn .

Theorem 3.3 (See [9]) If there is no imaginary root for (3.6), then the stability of the
solution E2 does not change as τ is increased.

If there is one pair of imaginary roots for (3.6), the stable solution for τ = 0
becomes unstable at the smallest value of τn.

If there are two pairs of imaginary roots for (3.6), then the stability of the trivial
solution can change a finite number of times as τ is increased, and eventually, it
becomes unstable for all sufficiently large τ .

Remark 3.4 Notice that if E2 is an internal equilibrium, when τ = τ j , a Hopf bifurca-
tionwill appear and a nontrivial periodic solution around the equilibrium E2 will arise;
however, we do not know if system (3.1) has a nontrivial periodic solution around the
equilibrium E2 inside the accepted biological region.

We shall now investigate the dynamics of the delay system (3.1) around the internal
equilibrium E∗ = (P∗,U∗, V ∗), which exists if

c1 < r(γ + 1) − rγ d1
k

, and c2 >
m

e
+ (γ + 1)md2

keγ d1
,

(according to Sect. 2), and when τ = 0, E∗ is stable.
At E∗, for τ > 0, A1 and A2 have the following form, respectively:

A1 =

⎛
⎜⎜⎝
r − 2r P∗

k − 2c2d2P∗V ∗
(P∗2+d2)

2 0 − c2P∗2
P∗2+d2

s
γ1

−s 0
2ec2d2P∗V ∗
(P∗2+d2)

2 0 ec2P∗2
(P∗2+d2)

− m

⎞
⎟⎟⎠ ,

A2 =
⎛
⎜⎝

− c1U∗(U∗+d1)
(P∗+U∗+d1)2

− c1P∗(P∗+d1)
(P∗+U∗+d1)2

0

0 0 0
0 0 0

⎞
⎟⎠ .

Then, the characteristic equation is given by the following:

λ3 + a1λ
2 + a2λ

2e−λτ + a3λ + a4λe
−λτ + a5 + a6e

−λτ = 0, (3.12)
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where

a1 := s − r + 2r P∗

k
+ 2c2d2P∗V ∗

(
P∗2 + d2

)2 ,

a2 := c1U∗ (U∗ + d1)

(P∗ +U∗ + d1)2
,

a3 := −rs + 2rsP∗

k
+ 2sc2d2P∗V ∗

(
P∗2 + d2

)2 + 2ec22d2P
∗3V ∗

(
P∗2 + d2

)3 ,

a4 := sc1U∗ (U∗ + d1)

(P∗ +U∗ + d1)2
+ sc1P∗ (P∗ + d1)

γ1 (P∗ +U∗ + d1)2
,

a5 := 2esc22d2P
∗3V ∗

(
P∗2 + d2

)3 ,

a6 := 0.

When τ = 0, the characteristic Eq. (3.12) is given by the following:

λ3 + (a1 + a2)λ
2 + (a3 + a4)λ + (a5 + a6) = 0. (3.13)

By comparison with Eq. h(λ) and according to the conclusion of Sect. 2, we obtain
C ≡ (a5 + a6) = a5. There exist also three eigenvalues with negative real parts for
Eq. (3.13).

When τ > 0, let λ(τ) = α(τ)+ iω(τ) be a root of Eq. (3.12) satisfying α(τ ∗) = 0,
λ(τ ∗) = iω(τ ∗) = iω for some τ ∗ > 0. If λ = iω is a root, then ω �= 0 and

− iω3 − a1ω
2 − a2ω

2e−iωτ∗ + a3iω + a4iωe
−iωτ∗ + a5 + a6e

−iωτ∗ = 0.(3.14)

Equating the real and imaginary parts of (3.14) to zero, we have

{−ω3 + a3ω + (a2ω2 − a6) sinωτ ∗ + a4ω cosωτ ∗ = 0,
−a1ω2 + a5 + a4ω sinωτ ∗ − (a2ω2 − a6) cosωτ ∗ = 0.

(3.15)

It follows from (3.15) that

ω6 + (a21 − 2a3 − a22)ω
4 + (a23 − 2a1a5 − a24 + 2a2a6)ω

2 + a25 = 0. (3.16)

Denote

A1 := (a21 − 2a3 − a22), B1 := (a23 − 2a1a5 − a24 + 2a2a6), C1 := a25,

and let ω2 := ξ , and then, Eq. (3.16) becomes

ξ3 + A1ξ
2 + B1ξ + C1 = 0. (3.17)
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Denote h(ξ) = ξ3 + A1ξ
2 + B1ξ + C1. Then, we have

h
′
(ξ) = 3ξ2 + 2A1ξ + B1. (3.18)

From (3.15), we get

cosωτ ∗ = (a4 − a1a2)ω4 + (a1a6 − a4a3 + a2a5)ω2 − a5a6
a24ω

2 + (a2ω2 − a6)2
,

sinωτ ∗ = a2ω5 + (−a6 + a4a1 − a2a3)ω3 + (a3a6 − a5a4)ω

a24ω
2 + (a6 − a2ω2)2

.

Now, we discuss the stability of the internal equilibrium E∗ according to the number
of positive roots for Eq. (3.16). Notice, if a6 = 0, then C1 = a25 > 0. Therefore, the
number of different imaginary roots of the characteristic Eq. (3.12) can be zero, one
(pair of roots), or two. If Eq. (3.16) has a pair of positive roots with double multiplicity
ω2
1 = ξ1, then h

′
(ξ1) = 0:

sign

{
Re

(
dλ

dτ

)−1
}

λ=iω1

= sign{h ′
(ξ)}ξ=ξ1 = 0,

and the transversality condition does not hold. Thus, the direction of movement of the
eigenvalue with increasing τ depends on the higher derivatives, and we omit details
for this case. Hence, there are two cases of interest:

(I) Equation (3.16) has no positive roots. Then, there are no purely imaginary roots
for characteristic Eq. (3.12) and the number of eigenvalues with positive real parts
of the characteristic Eq. (3.12) does not change when the time delay τ is increased
[9]. For all τ ≥ 0, the linearized equation at the equilibrium E∗ has no eigenvalue
with positive real part, and all the eigenvalues have negative real parts. Therefore,
the equilibrium E∗ is stable.

(II) There are two positive roots

ω1 = √
ξ1, ω2 = √

ξ2

for Eq. (3.16), with
∣∣ω2

∣∣ >
∣∣ω1

∣∣. In this case, using Eq. (3.15), the two sets of
values of τ for which there exist imaginary roots are

τ1,n = 1

ω1
arccos

{
(a4 − a1a2)ω4

1 + (a1a6 − a4a3 + a2a5)ω2
1 − a5a6

a24ω
2
1 + (a2ω2

1 − a6)2

}
+ 2nπ

ω1
,

τ2,n = 1

ω2
arccos

{
(a4 − a1a2)ω4

2 + (a1a6 − a4a3 + a2a5)ω2
2 − a5a6

a24ω
2
2 + (a2ω2

2 − a6)2

}
+ 2nπ

ω2
,

(n = 0, 1, 2, . . .). The quantity of interest is again the sign of the derivative of
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Re λ with respect to τ at the points where λ is purely imaginary. From Eq. (3.12),
we have

α2(λ) :=
(
dλ

dτ

)−1

= eλτ (3λ2 + 2a1λ + a3) + 2a2λ + a4
(a2λ2 + a4λ + a6)λ

− τ

λ
,

eλτ = −(a2λ2 + a4λ + a6)

λ3 + a1λ2 + a3λ + a5
.

Thus

α2(λ) = sign

{
d(Re λ)

dτ

}
τ=τn

= sign

{
Re

(
dλ

dτ

)−1
}

λ=iω

= sign

{
Re

[ −(3λ2 + 2a1λ + a3)

λ(λ3 + a1λ2 + a3λ + a5)

]
λ=iω

+ Re

[
2a2λ + a4

λ(a2λ2 + a4λ + a6)

]
λ=iω

}

= sign

{
(ω2 − a3)(3ω2 − a3) + 2a1(a1ω2 − a5)

ω2(ω2 − a3)2 + (a1ω2 − a5)2
− a24 + 2a2(a2ω2 − a6)

a24ω
2 + (a2ω2 − a6)2

}
.

Now by substituting ω2 = ξ we get

sign

{
3ξ2 + 2(a21 − 2a3 − a22)ξ + (a23 − 2a1a5 − a24 + 2a2a6)

(a2ξ − a6)2 + a24ξ

}

= sign

{
h

′
(ξ)

β

}
= sign{h ′

(ξ)},

where

β := (a2ξ − a6)
2 + a24ξ.

Since h
′
(ξ1) < 0 and h

′
(ξ2) > 0, we have

sign α2(ω1) = sign

{
Re

(
dλ

dτ

)−1
}

λ=iω1

= sign{h ′
(ξ)}ξ=ξ1 < 0,

sign α2(ω2) = sign

{
Re

(
dλ

dτ

)−1
}

λ=iω2

= sign{h ′
(ξ)}ξ=ξ2 > 0.

Since characteristic Eq. (3.12) with τ = 0 has three negative eigenvalues, and
τ2,0 < τ1,0, then, when 0 < τ < τ2,0, the characteristic Eq. (3.12) has three
eigenvalue with negative real parts, and thus, the equilibrium E∗ is stable; when
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P ’ = 2 P (1 − P/100) − (1.1 P2 V)/(P2 + 10)
V ’ = (0.6 1.1 P2 V)/(x2 + 10) − 0.4 V

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

P

V

Fig. 2 Phase plane for the model (2.1), showing the rodent population (P) and the “generalist” predator
population (V ) in the absence of the “specialist” predator (U = 0) with parameter values (4.1). The rate of
predation by the “generalist” predator is c2 = 1.1

τ = τ2,0, the characteristic Eq. (3.12) has a pair of purely imaginary roots ±iω2,
and sign α2(ω2) is positive, then a Hopf bifurcation occurs, and a nontrivial peri-
odic solution appears; when τ2,0 < τ < τ1,0, the characteristic Eq. (3.12) has
a pair of eigenvalues with positive real parts, the others with negative real parts,
and hence, the equilibrium E∗ is unstable; when τ = τ1,0, the characteristic Eq.
(3.12) has a pair of purely imaginary roots ±iω1, and α2(ω1) is negative, and
hence, another Hopf bifurcation occurs, and a nontrivial periodic solution bifur-
cates from the equilibrium E∗; when τ1,0 < τ < τ2,1, the characteristic Eq. (3.12)
has three eigenvalues with negative real parts, then the equilibrium E∗ is stable;
when τ = τ2,1, the characteristic Eq. (3.12) has a pair of purely imaginary roots
±iω2, and α2(ω2) > 0, the a Hopf bifurcation occurs, and a nontrivial periodic
solution exists for τ near τ2,1, and so on. It may be noted here that sign of α2(λ)

at ±iω2 is positive and sign of α2(λ) at ±iω1 is negative, then after one cycle,
the number of eigenvalues with positive real parts does not change. Therefore, if
there are two imaginary roots, then the stability of the solution can change a finite
number of times, as τ is increased, and eventually for all sufficiently large τ , it
becomes unstable.

4 Numerical Simulations

In this section, we study the complex dynamics of the system (2.1) which are obtained
numerically for a biologically feasible range of parameter values.We set the following
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P ’ = 2 P (1 − P/100) − (2.6 P U)/(P + U + 10)
U ’ = 0.45 U (1 − (0.44 U)/P)
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(a)

P ’ = 2 P (1 − P/100) − (5 P U)/(P + U + 10)
U ’ = 0.45 U (1 − (0.44 U)/P)
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(b)
Fig. 3 Phase planes for the model (2.1), showing the rodent population (P) and the “specialist” predator
population (U ) in the absence of “generalist” predator (V = 0), with parameter values in (4.1) and c1 = 2.6
and c1 = 5, respectively
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Fig. 4 Numerical simulation of the model (2.1) with predation rates c1 = 2.6 and c2 = 0.5 around the
boundary state E2 with the initial conditions (7, 20, 0.001). The time t is plotted along the horizontal axis
and the populations are plotted along the vertical axis. The figure shows stable behavior around E2

Fig. 5 Numerical simulation of the model (2.1) with an increased “generalist” predator rate c1 = 0.8 and
c2 = 1, around the boundary state E2 = (76.626, 174.15, 0) with the initial conditions (76, 175, 0.001).
The time t is plotted along the horizontal axis and the populations are plotted along the vertical axis. The
figure shows unstable behavior around E2 and periodic oscillations

parameters ( [21,37]):

r = 2, k = 100, d1 = 10, d2 = 10, γ1 = 0.44, e = 0.6,m = 0.4, s = 0.45. (4.1)

For these parameter values, we have the steady state E1 = (100, 0, 0). We also put

c1 = 2.6, c2 = 1.1

and have E2 = (21.128, 48.019, 0), E3 = (3.92240, 0, 11.305). We will vary the
parameters c1 and c2 while keeping other parameters fixed as in (4.1). We have also
the unique interior equilibrium E∗ = (3.9224, 8.9145, 5.3346), which is computed
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Fig. 6 Numerical simulation of the model (2.1) with parameter values (4.1) and with predation rates
c1 = 2.6 and c2 = 1.1, and boundary state E3, with the initial condition (3.5, 0.001, 11). The time t is
plotted along the horizontal axis and the populations are plotted along the vertical axis. The figure shows
unstable behavior around E3
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Fig. 7 Numerical simulation of themodel (2.1) with parameter values (4.1) andwith c1 = 2.6 and c2 = 1.8.
The interior state E∗ is (2.4254, 5.5123, 4.1928) and initial conditions are (4, 6.8, 5.8). Panel (a) shows
the trajectory in three dimensions and panel (b) shows populations as function of time t . The simulation
shows the stability of E∗

for these values of c1 and c2. (Let c1 = 0.7 and c2 = 1.35. Then, with these values of
parameter, E1 = (100, 0, 0), E2 = (76.626, 174.15, 0), E3 = (3.1235, 0, 9.0778),
and E∗ = (3.1235, 7.0989, 7.9264)).

In our analytical study, we observed that the U = 0 plane and the V = 0 plane are
invariant. The phase planes of the system (2.1), in the absence of “specialist” (U ) and
“generalist” (V ) predator, are shown in Figs. 2 and 3, respectively.

In Sect. 2, we point out that the two boundary states E2 and E3 and the unique
interior steady state E∗ are the most important equilibrium points from the ecological
perspective. Hence, we put an emphasis on these in our numerical study.
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Fig. 8 Numerical simulation of the model (2.1) with parameter values (4.1) except s = 0.6, and with
c1 = 2.6 and c2 = 1.1. The interior state E∗ is (3.9224, 8.9145, 5.3346) and initial conditions are
(3.9, 8.9, 5.3). Panel (a) shows the trajectory in three dimensions and panel (b) shows populations as
function of time t . The simulation shows instability of E∗
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Fig. 9 Numerical simulation of the model (2.1) with parameter values (4.1) except s = 0.66, and with
c1 = 2.6 and c2 = 1.1. The interior state E∗ is (3.9224, 8.9145, 5.3346) and initial conditions are
(3.9, 8.9, 5.3). Panel (a) shows the trajectory in three dimensions and panel (b) shows populations as
function of time t . The simulation shows the oscillations of E∗

The boundary state E2, which is without the “generalist” predator, will be locally
stable when c1 and c2 satisfy the inequalities (2.7). Thus, with the above parameter
values, we have −1.5360 < c1 and c2 < 0.66781. The time series with c1 and c2
satisfying these inequalities, is shown in Fig. 4 which demonstrates the stability of
E2. We change c1 and c2 over the range of values to see how their values affect the
dynamics. Let c1 = 0.8 and c2 = 1. By Theorem 2.2, with these value of parameters
c1 and c2, the equilibrium E2 is unstable. This is shown in Fig. 5, which exhibits
fluctuations for all the species.

Then, we consider E3 and we simulate the equations around this point with the
initial conditions P(0) = 3.5,U (0) = 0.001, and V (0) = 11. According to Theorem
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Fig. 10 Numerical simulation of the model (2.1) with parameter values (4.1) except s = 0.663, and
with c1 = 2.6 and c2 = 1.1. The interior state E∗ is (3.9224, 8.9145, 5.3346) and initial conditions are
(3.9, 8.9, 5.3). Panel (a) shows the trajectory in 3 dimension and panel (b) shows populations as function
of time t . The simulation shows Hopf bifurcation of E∗
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Fig. 11 Numerical simulation of the model (2.1) with parameter values (4.1) except s = 0.9, and with
c1 = 2.6 and c2 = 1.1. The interior state E∗ is (3.9224, 8.9145, 5.3346) and the initial conditions are
(3.9, 8.9, 5.3). Panel (a) shows the trajectory in three dimensions and panel (b) showspopulations as function
of time t . The simulation shows stability of E∗

2.2, the boundary equilibrium E3 is always unstable. In Fig. 6, we have c1 = 2.6 and
c2 = 1.1. The figure shows unstable behavior around this boundary equilibrium point.

We also have simulated the model around the interior steady state E∗ =
(3.9224, 8.9145, 5.3346). The phase portrait around this point with c1 = 2.6 and
c2 = 1.8 is given in Fig. 7 which exhibits a stable behavior around the equilibrium
E∗. Then, we change the value of c2. Let c2 = 1.1. Following the steps described
in Sect. 2 and by direct computation, we have found the critical parameter value
s = 0.66352, which indicates a Hopf bifurcation at this point (Figs. 8, 9, 10, 11 show
the behavior of the system (2.1) for s below and above this critical parameter value.
Note that all these figures are not plotted on the same scales). Therefore, a small
change in the parameters can change the system from stabilizing around the interior
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Fig. 12 Numerical simulation of the DDE model (3.1) with parameter values (4.1) with c1 = 2.6 and
c2 = 1.1 and time delay τ = 0.4. The boundary equilibrium E2 is (21.128, 48.019, 0) and the initial
conditions are (76, 174, 1 × 10−7). The simulation shows periodic oscillations of E2
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Fig. 13 Numerical simulation of the DDE model (3.1) with parameter values (4.1) with c1 = 2.6 and
c2 = 1.1 and time delay τ = 0.2, τ = 0.4, τ = 0.7, and τ = 1, respectively. The interior equilibrium
E∗ is (3.9224, 8.9145, 5.3346) and the initial conditions are (3.9, 8.9, 5.3). The simulation shows Hopf
bifurcation of E∗
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equilibrium to oscillating around it indicating the existence of a supercritical Hopf
bifurcation.

In the following, we consider the system with delay (3.1) and simulate this model
around the boundary steady state E2 and interior equilibrium E∗, respectively. Let
the set of parametric values in (4.1) and c1 = 2.6, c2 = 1.1. According to Sect. 2,
since c2 = 1.1 > c∗

2 = 0.68160, the boundary equilibrium E2, which is without
the “generalist” predator, is unstable (λ3 > 0). For τ > 0, by direct computation,
we obtain ω = 0.71848, τ0 = 0.4871. By Theorems 2.2 and 3.3, we know that, if
c2 > c∗

2 = 0.68160 or c1 < c∗
1 = 1.6899, the equilibrium E2 is unstable for all τ ≥ 0.

In addition, when τ = τ0 = 0.4871, Eq. (3.6) has a pair of purely imaginary roots
λ = ±iω, where ω = 0.71848. This is shown in Fig. 12.

Now, we consider the interior equilibrium E∗. First, suppose that c1 = 0.7 and
c2 = 1.1. By direct computation, and putting these parameter values in Eqs. (3.12)
and (3.16), we conclude that Eq. (3.16) has no positive roots and the case (I) for
this equilibrium point will occur. Next, we change the “specialist” and “generalist”
predator rates (c1 and c2). Let c1 = 2.6 and c2 = 1.1. By direct computation, we get
ω1 = 0.30242, ω2 = 0.55162, τ1,0 = 2.4464, and τ2,0 = 0.43832. Therefore, the
case (II) occurs for this equilibrium point. This is shown in Fig. 13.

5 Conclusion and Discussion

In this paper, a prey–predatormodelwithBeddington–DeAngelis functional responses
has been studied analytically andnumerically. First,wehave found the attracting region
for this model which is ecologically meaningful. Then, the dynamics of the model are
investigated. The sufficient conditions are given to ensure that the positive equilibrium
is locally asymptotically stable. Theorems2.2 and2.9 providesmore information about
asymptotic stability of steady states. Next, we have considered the effect of time delay
on the model, including the local stability and existence of Hopf bifurcation about the
positive equilibrium point. The mathematical and theoretical analysis indicates that if
the time delay is sufficiently small, the type of stability remain the same. However, by
increasing the time delay, the equilibrium points E2 and E∗ are both become unstable.
While they were both stable in the ODE model. Finally, some numerical simulations
are carried out for illustrating the analytic results. All numerical analysis show that
the predation rates of the “specialist” and “generalist” predator or in other words c1
and c2 are the most important parameters to control the existence or extinction of the
rodent population.
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