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Abstract
In this paper, we classify (n + 5)-dimensional nilpotent n-Lie algebras of class two
over an arbitrary field, when n ≥ 3.
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1 Introduction

The classification of low-dimensional Lie algebras is one of the fundamental issues in
Lie algebras theory. The classification of Lie algebras can be found in many books and
papers. In 1950 Morozov [11] proposed a classification of six-dimensional nilpotent
Lie algebras over fields of characteristic zero. The classification of the six-dimensional
Lie algebras on the arbitrary field was shown by Cicalo et al. [4]. Moreover, the
seven-dimensional nilpotent Lie algebras over algebraically closed fields and real
number field were classified in [9]. In 1985, Filippov [8] introduced the notion of
n-Lie algebras. A nonsymmetrical linear vector space A is called an n-Lie algebra if
it satisfies the following Jacoby identity:

[[x1, x2, . . . , xn] , y2, . . . , yn] =
n∑

i=1

[
x1, . . . , xi−1, [xi , y2, . . . , yn] , xi+1, . . . , xn

]
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for all xi , y j ∈ A , 1 ≤ i ≤ n, 2 ≤ j ≤ n. He also classified n-Lie algebras of
dimensions n and n + 1 on the algebraically closed field with characteristic zero.

In 2008, Bai et al. [2] classified n-Lie algebras of dimension n + 1 on fields of
characteristic two. Then, Bai et al. [1] classified n-Lie algebras of dimension n+ 2 on
the algebraically closed fields with characteristic zero.

Assume that A1, . . . , An are subalgebras of an n-Lie algebra A. Then, the sub-
algebra of A generated by all vectors [x1, . . . , xn](xi ∈ Ai ) will be represented by
the symbol [A1, . . . , An]. The subalgebra A2 = [A, . . . , A] is called derived n-Lie
algebra of A. The center of n-Lie algebra A is defined as follows:

Z (A) = {x ∈ A : [x, A, . . . , A] = 0} .

Assume that Z0 (A) = 0; then the i th center of A is defined inductively as

Zi (A)/Zi−1 (A) = Z (A/Zi−1 (A) ) for all i ≥ 1.

The notion of nilpotent n-Lie algebra was defined by Kasymov [10] as follows. We
say that an n-Lie algebra A is nilpotent if As = 0, where s is a non-negative integer
number. Note that Ai is defined as induction by A1 = A , Ai+1 = [Ai , A, . . . , A].
The n-Lie algebra A is nilpotent of class c if Ac+1 = 0 and Ai �= 0 for each i ≤ c, (
for more information see [3,12]).

An important category of n-Lie algebras of class 2, which plays an important role
in nilpotent n-Lie algebras, is the Heisenberg n-Lie algebras. We call n-Lie algebra A,
generalized Heisenberg of rank k, if A2 = Z(A) and dim A2 = k. In [6], the authors
studied the case when k = 1, which is called later special Heisenberg n-Lie algebras.

The rest of our paper is organized as follows. Section 2 includes the results that are
used frequently in the next section. In Sect. 3, we classify (n + 5)-dimensional n-Lie
algebras of class two.

2 Preliminaries

In this section, we introduce some known and necessary results.

Theorem 2.1 [6] Every special Heisenberg n-Lie algebra has dimension mn + 1 for
some natural number m, and it is isomorphic to

H (n,m) = 〈x, x1, . . . , xnm : [xn(i−1)+1, xn(i−1)+2, . . . , xni ] = x, i = 1, . . . ,m〉.

Theorem 2.2 [5] Let A be a d-dimensional nilpotent n-Lie algebra, and let
dim A2 = 1. Then, for some m ≥ 1,

A ∼= H (n,m) ⊕ F (d − mn − 1) .

in which F(d − n − 1) is the abelian n-Lie algebra of dimension d − n − 1.
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Theorem 2.3 [5] Let A be a nilpotent n-Lie algebra of dimension d = n + k for
3 ≤ k ≤ n + 1 such that A2 = Z (A) and dim A2 = 2. Then,

A ∼= 〈e1, . . . , en+k : [ek−1, . . . , en+k−2] = en+k, [e1, . . . , en] = en+k−1〉.

Theorem 2.4 [5] Let A be a nonabelian nilpotent n-Lie algebra of dimension d ≤
n + 2. Then A is isomorphic to H (n, 1) , H (n, 1) ⊕ F (1) , or An,n+2,1, where
An,n+2,1 = 〈e1, . . . , en+2 : [e1, . . . , en] = en+1, [e2, . . . , en+1] = en+2〉.

For unification of notation, in what follows the tth d-dimensional n-Lie algebra
will be denoted by An,d,t .

Theorem 2.5 [4]

(1) Over a field F of characteristic different from 2, the following is the list of the
isomorphisms types of six-dimensional nilpotent Lie algebras:

– L5,k ⊕ F with k ∈ {1, . . . , 9};
– L6,k with k ∈ {10, . . . , 18, 20, 23, 25, . . . , 28};
– L6,k(ε1) with k ∈ {19, 21} and ε1 ∈ F∗/( ∗∼);

– L6,k(ε2) with k ∈ {22, 24} and ε2 ∈ F/(
∗∼).

(2) Over a field F of characteristic 2, the isomorphism types of six-dimensional nilpo-
tent Lie algebras are

– L5,k ⊕ F with k ∈ {1, . . . , 9},
– L6,k with k ∈ {10, . . . , 18, 20, 23, 25, . . . , 28},
– L6,k(ε1) with k ∈ {19, 21} and ε1 ∈ F∗/( ∗∼),

– L6,k(ε2) with k ∈ {22, 24} and ε2 ∈ F/(
∗+∼),

– L(2)
6,k with k ∈ {1, 2, 5, 6},

– L(2)
6,k(ε3) with k ∈ {3, 4} and ε3 ∈ F∗/(∗+∼),

– L(2)
6,k(ε4) with k ∈ {7, 8} and ε4 ∈ {0, ω}.

Eshrati et al. [7] classified (n + 3)-dimensional nilpotent n-Lie algebras for n >

2. Additionally, they proved the following theorem for (n + 4)-dimensional n-Lie
algebras.

Theorem 2.6 [7] The only (n + 4)-dimensional nilpotent n-Lie algebras of class
two are H(n, 1) ⊕ F(3), An,n+4,1, An,n+4,2, An,n+4,3, H(2, 2) ⊕ F(1), H(3, 2),
L6,22 (ε) , and L2

6,7(η).

Theorem 2.7 [9] The seven-dimensional nilpotent Lie algebras of class two over alge-
braically closed fields and real number field are

H(2, 1) ⊕ F(4), H(2, 2) ⊕ F(2), H(2, 3), and L7,i , 1 ≤ i ≤ 10.
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3 Main Results

In this section, we classify (n + 5)-dimensional nilpotent n-Lie algebras of class two.
An n-Lie algebra A is nilpotent of class two, when A is nonabelian and A2 ⊆ Z (A).
The nilpotent n-Lie algebra of class two plays an essential role in some geometry
problems such as the commutative Riemannian manifold. Additionally, the classifica-
tion of nilpotent Lie algebras of class two is one of the most important issues in Lie
algebras.

We first prove a lemma for three-Lie algebras.

Lemma 3.1 Let A be a three-Lie algebra of dimension eight such that A2 = Z (A)

and dim A2 = 2. Then,

A = 〈e1, . . . , e8 : [e1, e2, e3] = e7, [e4, e5, e6] = e8〉 .

Proof Let A = 〈e1, . . . , e8〉, and let A2 = Z (A) = 〈e7, e8〉. We may assume that
[e4, e5, e6] = e8. So, there are α0, β0, αi, j,k, and βi, j,k of the field F such that

{
[e1, e2, e3] = α0e8 + β0e7[
ei , e j , ek

] = αi, j,ke8 + βi, j,ke7, 1 ≤ i < j < k ≤ 6, (i, j, k) �= (1, 2, 3) , (4, 5, 6) .

Taking I = 〈e7〉, dim (A/I )2 = 1. Therefore, by Theorem 2.2, A/I is isomorphic
to H (3, 1) ⊕ F (3) or H (3, 2) .

(i) Assume that A/I ∼= H (3, 1) ⊕ F (3). In this case, according to the structure
of A/I , we have α0 = αi, j,k = 0. Therefore, the brackets of A are as follows:

{
[e4, e5, e6] = e8, [e1, e2, e3] = β0e7,

[ei , e j , ek] = βi, j,ke7, 1 ≤ i < j < k ≤ 6, (i, j, k) �= (1, 2, 3), (4, 5, 6).

Now, by choosing J = 〈e8〉, and by taking into account dim (A/J )2 = 1, we have

A/J ∼= 〈e1, . . . , e7 : [e1, e2, e3] = β0e7, [ei , e j , ek] = βi, j,ke7〉

for 1 ≤ i < j < k ≤ 6, (i, j, k) �= (1, 2, 3), (4, 5, 6).
According to the above brackets and special Heisenberg n-Lie algebra, A/J is

isomorphic to H (3, 1) ⊕ F (3). So, only one of β0 and βi, j,k is equal to one and the
other coefficients are zero.

If one of the coefficients βi, j,k is equal to one, then the condition A2 = Z (A)

will be false. So, we conclude βi, j,k = 0 for each 1 ≤ i < j < k ≤ 6, (i, j, k) �=
(1, 2, 3) , (4, 5, 6). Thus,

A = 〈e1, ..., e8 : [e1, e2, e3] = e8, [e4, e5, e6] = e7〉. (1)
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(ii) Consider A/I ∼= H (3, 2). According to the structure of A/I , we have α0 = 1
and αi, j,k = 0. Therefore, the brackets of A

{
[e4, e5, e6] = e8, [e1, e2, e3] = e8 + β0e7,

[ei , e j , ek] = βi, j,ke7, 1 ≤ i < j < k ≤ 6, (i, j, k) �= (1, 2, 3), (4, 5, 6).

Now, by choosing J = 〈e8〉, we have dim (A/J )2 = 1. Hence, with respect to the
structure of special Heisenberg n-Lie algebras, this algebra is isomorphic to H (3, 1)⊕
F (3). Thus, only one of coefficients β0 and βi, j,k is equal to one and the other
coefficients are zero. Of course, if one of the coefficients βi, j,k is equal to one, we
have a contradiction. So, we have βi, j,k = 0 for each 1 ≤ i < j < k ≤ 6, (i, j, k) �=
(1, 2, 3) , (4, 5, 6). As a result, the brackets of A are as follows:

[e4, e5, e6] = e8, [e1, e2, e3] = e8 + e7.

By interchanging

e′
i = ei , 1 ≤ i ≤ 8, i �= 7, e′

7 = e8 + e7,

this algebra is isomorphic to A in relation (1). Consequently, the proof is completed.

�

Now, we are going to classify (n+5)-dimensional nilpotent n-Lie algebras of class
two.

Assume that A is an (n+5)-dimensional nilpotent n-Lie algebra of class two, where
n ≥ 3 and A = 〈e1, . . . , en+5〉 (see Theorem 2.7 for the case n = 2). If dim A2 = 1,
then by Theorem 2.2, A is isomorphic to one of the following algebras:

H (n, 1) ⊕ F (4) , H (3, 2) ⊕ F (1) , H (4, 2) .

Now, assume that dim A2 ≥ 2 and that 〈en+4, en+5〉 ⊆ A2. Ergo, A/〈en+5〉 is an
(n + 4)-dimensional nilpotent n-Lie algebra of class 2. It follows from Theorem 2.6
that A/〈en+5〉 is one of the following forms:

H (n, 1) ⊕ F (3) , An,n+4,1, An,n+4,2, An,n+4,3, H (3, 2) .

Case 1 A/〈en+5〉 ∼= 〈e1, . . . , en+4 : [e1, . . . , en] = en+4〉 ∼= H(n, 1) ⊕ F(3).
The brackets of A are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e1, . . . , en] = en+4 + αen+5,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , en, en+3

] = γi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+1, en+2

] = θi j en+5, 1 ≤ i < j ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+1, en+3

] = μi j en+5, 1 ≤ i < j ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+2, en+3

] = λi j en+5, 1 ≤ i < j ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , êk , . . . , en, en+1, en+2, en+3

] = ζi jken+5, 1 ≤ i < j < k ≤ n.
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By changing the base, we can have α = 0. Since dim A2 ≥ 2, we obtain
dim Z (A) ≤ 4.

First, we assume that dim Z (A) = 4. In this case, without loss of generality, we can
assume that Z (A) = 〈en+2, en+3, en+4, en+5〉. Consequently, the nonzero brackets of
A are as follows:

{ [e1, . . . , en] = en+4,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 1 ≤ i ≤ n.

At least one of the αi s is nonzero. Without loss of generality, we can assume that
α1 �= 0. We replace e1 with e1 + ∑n

i=2(−1)i−1 αi
α1
ei and en+5 with α1en+5; we have

[e1, . . . , en] = en+4, [e2, . . . , en+1] = en+5.

We denote this algebra by An,n+5,1. Now, suppose that dim Z (A) = 3. Without loss
of generality, we assume that Z (A) = 〈en+3, en+4, en+5〉. Therefore, the brackets of
A are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

[e1, . . . , en] = en+4,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+1, en+2

] = θi j en+5, 1 ≤ i < j ≤ n.

Since dim (A/〈en+4〉 )2 = 1, we have A/〈en+4〉 ∼= H (n, 1) ⊕ F (3). According to
the structure of n-Lie algebras, we conclude that one of the coefficients

θi j (1 ≤ i < j ≤ n) , βi (1 ≤ i ≤ n) , αi (1 ≤ i ≤ n)

is equal to one, and the others are zero. According to Z (A) = 〈en+3, en+4, en+5〉, the
coefficients of βi (1 ≤ i ≤ n) , and αi (1 ≤ i ≤ n) cannot be equal to one. Without
loss of generality, assume that

θ12 = 1, θi j = 0 (1 ≤ i < j ≤ n, (i, j) �= (1, 2))
βi = 0 (1 ≤ i ≤ n) αi = 0 (1 ≤ i ≤ n) .

So, the brackets of A are as follows:

[e1, . . . , en] = en+4,
[
e3, . . . , en+2

] = en+5.

We denote this algebra by An,n+5,2.
Now, assume that dim Z (A) = 2. Therefore, Z (A) = A2. In the case n ≥ 4, using

Theorem 2.3, the brackets of A are as follows:

[e1, . . . , en] = en+5,
[
e4, . . . , en+3

] = en+4.
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We denote this algebra by An,n+5,3. In the case n = 3, according to Lemma 3.1, the
desired algebra is

A = 〈e1, . . . , e8 : [e1, e2, e3] = e8, [e4, e5, e6] = e7〉 ,

This algebra is the same as An,n+5,3 for n = 3.
Case 2 A/〈en+5〉 ∼= 〈e1, . . . , en+4 : [e1, . . . , en] = en+3, [e2, . . . , en+1] = en+4〉.

In this case dim A2 = 3; so A2 = 〈en+3, en+4, en+5〉. Thus 3 ≤ dim Z (A) ≤ 4.
The brackets of A are as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[e1, . . . , en] = en+3 + αen+5,[
e2, . . . , en+1

] = en+4 + βen+5,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 2 ≤ i ≤ n,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+1, en+2

] = θi j en+5, 1 ≤ i < j ≤ n.

By changing the base, we can take α = β = 0. First, we assume that dim Z (A) = 4.
It follows that Z (A) = 〈en+2, en+3, en+4, en+5〉. Therefore

⎧
⎨

⎩

[e1, . . . , en] = en+3,[
e2, . . . , en+1

] = en+4,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 2 ≤ i ≤ n.

Due to the derived dimension, we conclude that at least one of the αi
′s (2 ≤ i ≤ n)

is nonzero. Without loss of generality, we assume that α2 �= 0. We replace e2 with
e2+∑n

i=3(−1)i αi
α2
ei and en+5 with α2en+5. Accordingly, the nonzero brackets of this

algebra are as follows:

[e1, . . . , en] = en+3,
[
e2, . . . , en+1

] = en+4,
[
e1, e3, . . . , en+1

] = en+5.

We denote this algebra by An,n+5,4.
Now, assume that dim Z (A) = 3; thus A2 = Z (A) = 〈en+3, en+4, en+5〉. Hence,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[e1, . . . , en] = en+3,[
e2, . . . , en+1

] = en+4,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 2 ≤ i ≤ n,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+1, en+2

] = θi j en+5, 1 ≤ i < j ≤ n.

Since dim (A/〈en+3, en+4〉 )2 = 1, we have A/〈en+3, en+4〉 ∼= H (n, 1) ⊕ F (2).
According to the structure of n-Lie algebras, we infer that only one of the coefficients
θi j (1 ≤ i < j ≤ n), βi (1 ≤ i ≤ n), and αi (2 ≤ i ≤ n) is equal to one and the others
are zero. On account of Z (A) = 〈en+3, en+4, en+5〉, the coefficients αi (2 ≤ i ≤ n)

cannot be equal to one. We have two cases.
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(i) Only one of the coefficients βi (1 ≤ i ≤ n) is equal to one and the others are zero.
Without loss of generality, we assume that β1 = 1 and the others are zero. So the
nonzero brackets of algebra are as follows:

[e1, . . . , en] = en+3,
[
e2, . . . , en+1

] = en+4,
[
e2, . . . , en, en+2

] = en+5.

We denote this algebra by An,n+5,5.
(ii) Only one of the coefficients θi j (1 ≤ i < j ≤ n) is equal to one and the others are
zero. Without loss of generality, we assume that θ12 = 1, and the others are zero. So,
the nonzero brackets of the algebra are as follows:

[e1, . . . , en] = en+3,
[
e2, . . . , en+1

] = en+4,
[
e3, . . . , en+2

] = en+5.

We denote this algebra by An,n+5,6.
Case 3 A/〈en+5〉 ∼= 〈e1, . . . , en+4 : [e1, . . . , en] = en+3, [e3, . . . , en+2] = en+4〉.

In this case, dim A2 = 3, and so A2 = Z (A) = 〈en+3, en+4, en+5〉. The brackets
of A are as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[e1, . . . , en] = en+3 + αen+5,[
e3, . . . , en+2

] = en+4 + βen+5,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+1, en+2

] = θi j en+5, 1 ≤ i < j ≤ n and (i, j) �= (1, 2) .

By changing the base, we can take α = β = 0. So,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[e1, . . . , en] = en+3,[
e3, . . . , en+2

] = en+4,[
e1, . . . , êi , . . . , en, en+1

] = αi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 1 ≤ i ≤ n,[
e1, . . . , êi , . . . , ê j , . . . , en, en+1, en+2

] = θi j en+5, 1 ≤ i < j ≤ n and (i, j) �= (1, 2) .

Since dim (A/〈en+3, en+4〉 )2 = 1, we find A/〈en+3, en+4〉 ∼= H (n, 1) ⊕ F (2).
According to the structure of n-Lie algebras, we conclude that at least one of the
coefficients θi j (1 ≤ i < j ≤ n, (i, j) �= (1, 2)), βi (1 ≤ i ≤ n), and αi (1 ≤ i ≤ n)

is equal to one and the others are zero. Since Z (A) = 〈en+3, en+4, en+5〉, we have
three cases.
(i) Only one of the coefficients αi (1 ≤ i ≤ n) is equal to one and the others are zero.
Without loss of generality, we assume that α1 = 1 and the others are zero. So, we
have

[e1, . . . , en] = en+3,
[
e3, . . . , en+2

] = en+4,
[
e2, . . . , en, en+1

] = en+5.

One can check that this algebra is isomorphic to An,n+5,6.
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(ii) Only one of the coefficients βi (1 ≤ i ≤ n) is equal to one and the others are zero.
Without loss of generality, we assume that β1 = 1 and the others are zero. Hence, the
nonzero brackets of the algebra are

[e1, . . . , en] = en+3,
[
e3, . . . , en+2

] = en+4,
[
e2, . . . , en, en+2

] = en+5.

One can easily see that, this algebra is isomorphic to An,n+5,6.
(iii) Only one of the coefficients of θi j (1 ≤ i < j ≤ n, (i, j) �= (1, 2)) is equal to one
and the others are zero. Without loss of generality, we assume that θ13 = 1 and the
others are zero. Hence, the nonzero brackets of the algebra are

[e1, . . . , en] = en+3,
[
e2, . . . , en+1

] = en+4,
[
e2, e4, . . . , en+2

] = en+5.

Obviously, this algebra is isomorphic to An,n+5,6.
Case 4 A/〈en+5〉 ∼= 〈e1, . . . , en+4 : [e1, . . . , en] = en+1, [e2, . . . , en, en+2] =
en+3〉.

In this case, dim A2 = 4; thus A2 = Z (A) = 〈en+1, en+3, en+4, en+5〉. The
brackets of this algebra are as follows:

⎧
⎪⎪⎨

⎪⎪⎩

[e1, . . . , en] = en+1 + αen+5,[
e2, . . . , en, en+2

] = en+3 + βen+5,[
e1, e3, . . . , en, en+2

] = en+4 + γ en+5,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 3 ≤ i ≤ n.

We change the basis to obtain α = β = γ = 0. Thus, the brackets are

⎧
⎪⎪⎨

⎪⎪⎩

[e1, . . . , en] = en+1,[
e2, . . . , en, en+2

] = en+3,[
e1, e3, . . . , en, en+2

] = en+4,[
e1, . . . , êi , . . . , en, en+2

] = βi en+5, 3 ≤ i ≤ n.

Due to the derived dimension, we conclude that at least one of the βi (3 ≤ i ≤ n)

is nonzero. Without loss of generality, we assume that β3 �= 0. We replace e3 with
e3 + ∑n

i=4(−1)i−1 βi
β3
ei and en+5 with β3en+5. the nonzero brackets of algebra are as

follows:

[e1, . . . , en] = en+1,
[
e2, . . . , en, en+2

] = en+3,[
e1, e3, . . . , en, en+2

] = en+4,
[
e1, e2, e4, . . . , en, en+2

] = en+5.

We denote this algebra by An,n+5,7.
Case 5 A/〈en+5〉 ∼= H(3, 2) ∼= 〈e1, . . . , e7 : [e1, e2, e3] = [e4, e5, e6] = e7〉.

In this case, according to the structure of this algebra,weget A2 = Z (A) = 〈e7, e8〉.
According to Lemma 3.1, we have A = 〈e1, . . . , e8 : [e1, e2, e3] = e7, [e4, e5, e6]
= e8〉. For this algebra A/〈e8〉 � H(3, 2). Therefore, this algebra does not satisfy our
conditions.
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Theorem 3.2 The (n+5)-dimensional nilpotent n-Lie algebras of class two, for n > 2,
over an arbitrary field are

H(n, 1) ⊕ F(4), H(3, 2) ⊕ F(1), H(4, 2), An,n+5,i , 1 ≤ i ≤ 7.

According to the above theorem and Theorem 2.7, the main theorem of this paper is
as follows.

Corollary 3.3 The (n + 5)-dimensional nilpotent n-Lie algebras of class two are as
following

H(n, 1) ⊕ F(4), H(2, 2) ⊕ F(2), H(3, 2) ⊕ F(1), H(2, 3),

H(4, 2), An,n+5,i , 1 ≤ i ≤ 7, L7,i , 1 ≤ i ≤ 10.

These algebras are valid for the case n = 2 on the integers field and algebraically
closed field and for n > 2 on the arbitrary field.

Table 1 The list of algebras which are presented in this article

Nilpotent n-Lie algebra Nonzero multiplications

An,n+4,1 [e1, . . . , en ] = en+3, [e2, . . . , en+1] = en+4

An,n+4,2 [e1, . . . , en ] = en+3, [e3, . . . , en+2] = en+4 (n ≥ 3)

An,n+4,3
[e1, . . . , en ] = en+1, [e2, . . . , en , en+2] = en+3,

[e1, e3, . . . , en , en+2] = en+4

An,n+5,1 [e1, . . . , en ] = en+4, [e2, . . . , en+1] = en+5

An,n+5,2 [e1, . . . , en ] = en+4, [e3, . . . , en+2] = en+5 (n ≥ 3)

An,n+5,3 [e1, . . . , en ] = en+5, [e4, . . . , en+3] = en+4 (n ≥ 3)

An,n+5,4
[e1, . . . , en ] = en+3, [e2, . . . , en+1] = en+4,

[e1, e3, . . . , en+1] = en+5

An,n+5,5
[e1, . . . , en ] = en+3, [e2, . . . , en+1] = en+4,

[e2, . . . , en , en+2] = en+5

An,n+5,6
[e1, . . . , en ] = en+3, [e2, . . . , en+1] = en+4,

[e3, . . . , en+2] = en+5

An,n+5,7
[e1, . . . , en ] = en+1, [e1, e2, e4, . . . , en , en+2] = en+5,

[e1, e3, . . . , en , en+2] = en+4, [e2, . . . , en , en+2] = en+3

L7,1 [e1, e2] = e4, [e1, e3] = e5
L7,2 [e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6
L7,3 [e1, e2] = [e3, e4] = e5, [e3, e4] = e6
L7,4 [e1, e2] = e5, [e3, e4] = e6
L7,5 [e1, e2] = e5, [e2, e3] = e6, [e2, e4] = e7
L7,6 [e1, e2] = e5, [e2, e3] = e6, [e3, e4] = e7
L7,7 [e1, e2] = [e3, e4] = e5, [e2, e3] = e6, [e2, e4] = e7
L7,8 [e1, e2] = [e3, e4] = e5, [e1, e3] = e6, [e2, e4] = e7
L7,9 [e1, e5] = [e3, e4] = e6, [e2, e5] = e7
L7,10 [e1, e2] = [e3, e4] = e6, [e1, e5] = [e2, e3] = e7
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In Table 1 we list the algebras which are presented in this article.
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