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Abstract
In this paper, we explore conditions under which Gorenstein flat modules are Goren-
stein projective.Weprove that all countably presented stronglyGorensteinflatmodules
are Gorenstein projective over perfect rings. Moreover, we show that if the base ring
R is

∑
-pure injective as an R-module, then the class of Gorenstein flat modules

coincides with the class of Gorenstein projective modules, and hence all modules
have Gorenstein projective covers. And as a corollary, we give a characterization of
coherent perfect rings by Gorenstein projective and Gorenstein flat modules.

Keywords Strict Mittag–Leffler module · Gorenstein projective module · Gorenstein
flat module
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1 Introduction

As generalizations of projective and flat modules, Enochs and Jenda [6,8] extended
Auslander and Bridger’s ideas [2] and introduced Gorenstein projective and Goren-
stein flat modules. These modules have many similar properties as projective and flat
modules have, especially when the ring is Gorenstein (see [7]). But at the same time,
some properties of Gorenstein projective and Gorenstein flat modules diverge from
those of their homological algebra counterparts. For example, projective modules are
always flat, but it is not clear whether all Gorenstein projectivemodules are Gorenstein
flat. Similarly, it is known that finitely presented flat modules are projective, but only
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over coherent rings, do we know that all finitely presented Gorenstein flat modules
are Gorenstein projective [3, Proposition 1.3], and whether it is true or not in general
case still remains open. Moreover, it is well known that all flat modules are projective
if and only if all modules have projective covers if and only if the base ring is perfect,
however, it is not clear whether there is a suitable counterpart for Gorenstein projective
and Gorenstein flat modules.

In this paper, we are mainly interested in the question whenGorenstein flat modules
are Gorenstein projective. To this end, we investigate the relations between Gorenstein
projective modules and Gorenstein flat modules by employing strict Mittag–Leffler
conditions and modules. First, we prove that if the base ring is perfect, then all count-
ably presented strongly Gorenstein flat modules are Gorenstein projective, which is
an extention of Bennis andMahdou’s result in [3] over perfect rings. In fact, we obtain
that if the base ring is perfect, a countably presented module is strongly Gorenstein
projective if and only if it is strongly Gorenstein flat. Second, we show that if the
base ring R is

∑
-pure injective as an R-module, then the class of all Gorenstein flat

modules coincides with the class of all Gorenstein projective modules, and hence all
modules have Gorenstein projective covers. Finally, as a corollary of our main result,
we give a characterization of perfect rings by Gorenstein projective and Gorenstein
flat modules under the assumption that the base ring is coherent.

Throughout this paper, R is an associative ring with an identity. All modules are
left R-modules unless stated otherwise. Denote by P and F the classes of projective
and flat R-modules, respectively. The category of all left R-modules is denoted by
R-Mod. For an R-module M , we denote by M+ = HomZ (M, Q/Z) its character
module. We assume that all direct and inverse systems are indexed by directed sets.

2 Preliminary Notions

To examine the exactness of the inverse limit functor, Grothendieck in [10] introduced
the Mittag–Leffler condition for countable inverse systems. Mittag–Leffler conditions
and modules were thorough and systematically studied in [1]. In the past few years,
(strict) Mittag–Leffler conditions and modules were employed to solve kinds of prob-
lems in the homological algebra and the representation theory. For the definitions of
(strict) Mittag–Leffler conditions, the readers are referred to [1]. Here, we presented
some known facts needed in the sequel.

The proof of the following theorem is due to Angeleri Hügel and Herbera [1,
Theorem 8.11]. Emmanouil gave a different proof in [4, Theorem 1.3].

Theorem 2.1 Let M and N be R-modules. The following statements are equivalent:

(1) There is a direct system of finitely presented modules (Fα, uβα)α,β∈I with M =
lim−→ Fα , such that the inverse system

(HomR(Fα, N ),HomR(uβα, N ))α,β∈I

satisfies the strict Mittag–Leffler condition.
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(2) For any divisible abelian group D, the natural transformation

� : HomZ (N , D) ⊗R M −→ HomZ (HomR(M, N ), D)

defined by �( f ⊗ m) : g �→ f (g(m)), f ∈ HomZ (N , D),m ∈ M and g ∈
HomR(M, N ), is a monomorphism.

If the equivalent conditions in the above theorem are satisfied,M is said to be a strict
N -stationary module in [1] or a strict Mittag–Leffler module over N in [4]. Following
Emmanouil’s symbols in [4], we denote by SML(N ) the class of strict N -stationary
modules. Let N be a class of modules. If, for any N ∈ N , M is a strict N -stationary
module, we say that M is a strictN -stationary module and denote by M ∈ SML(N ).
M is called a strict Mittag–Leffler module if N = R-Mod.

Remark 2.2 (1) If the index set I is countable, then an inverse system satisfies the
Mittag–Leffler condition if and only if it satisfies the strict Mittag–Leffler condi-
tion, see [1, Lemma 3.3].

(2) It is easy to see that the class SML(N ) is closed under direct sums and direct
summands. Furthermore, SML(N ) is closed under pure submodules. Note that
the natural transformation in Theorem 2.1(2) is an isomorphism if M is finitely
presented. Thus, P ⊆ SML(R-Mod).

(3) We denote by Add(N ) the class of all direct summands of arbitrary direct sums
of copies of N . If M ∈ SML(N ), then M ∈ SML(Add(N )) by [1, Corollary 8.5],
this implies that M ∈ SML(N ) if and only if M ∈ SML(Add(N )).

Suppose that · · · → P1 → P0 → M → 0 is a projective resolution of an R-
module M , then the natural transformation � in Theorem 2.1(2) induces another
natural transformation

�
(n)
M : TorRn (HomZ (N , D), M) −→ HomZ (ExtnR(M, N ), D).

It is not difficult to verify the following result using Theorem 2.1.

Proposition 2.3 [4, Proposition1.5] The followings are equivalent for the R-modules
M and N:

(1) The map

�
(n)
M : TorRn (HomZ (N , D), M) −→ HomZ (ExtnR(M, N ), D)

is monomorphic for any divisible abelian group D.
(2) The n-th syzygy module �n(M) of M is a strict N-stationary module, i.e.,

�n(M) ∈ SML(N ).

3 Main Results

In this section, we explore conditions under which Gorenstein flat modules are Goren-
stein projective. Following [6–8], an R-module M is called Gorenstein projective, if
there exists an exact sequence
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P = · · · → P1 → P0 → P−1 → P−2 → · · ·

of projective modules with M = ker(P0 → P−1) such that HomR(−, P) leaves
the sequence exact whenever P is projective. The complex P is called a complete
projective resolution. Analogously, an R-module N is called Gorenstein flat, if there
exists an exact sequence

F = · · · → F1 → F0 → F−1 → F−2 → · · ·

of flat modules with N = ker(F0 → F−1) such that I ⊗R − leaves the sequence exact
whenever I is an injective right R-module. The complex F is called a complete flat
resolution.

Bennis and Mahdou introduced in [3] the notion of strongly Gorenstein projective ,
flatmodules, which situate between projective, flatmodules andGorenstein projective,
flat modules, respectively. They called an R-module M strongly Gorenstein projective

if there exists an exact sequence · · · f→ P
f→ P

f→ P
f→ · · · of projective modules

with M ∼= Ker( f ) such that HomR(−, Q) leaves the sequence exact whenever Q is
projective. Strongly Gorenstein flat modules are defined similarly.

We denote by GP , GF , SGP , and SGF the classes of Gorenstein projective,
Gorenstein flat, strongly Gorenstein projective and strongly Gorenstein flat modules,
respectively.

The following lemma will be useful in the sequel.

Lemma 3.1 Let 0 → Ai → Bi → Ci → 0 (i ∈ N) be a countable inverse system
of short exact sequences. If the inverse system (Ai )i∈Nsatisfies the Mittag–Leffler
condition, then

0 → lim←− Ai → lim←− → Bi → lim←− Ci → 0.

is exact.

Proof See [11, Lemma 5.2.11]. 	

Recall that an R-module is said to be countably presented if it is the cokernel of

a homomorphism between two countably generated free modules. It is known that
any countably presented module can be expressed as the direct limit of a countable
direct system of finitely presented modules. For countably presented Gorenstein flat
modules, we have the following result.

Theorem 3.2 Given a complete flat resolution F with Mn = ker(Fn → Fn−1) count-
ably presented for each n ∈ Z, then the following statements are equivalent.

(1) F is a complete projective resolution.
(2) Mn is a strict R-stationary module, i.e., Mn ∈ SML(R) for any n ∈ Z.

Proof (1) ⇒ (2) Since F is a complete projective resolution, we get that each Mn is
Gorenstein projective and can be viewed as the first syzygy module of Mn−1.Note that
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for any divisible abelian group D, TorR1 (HomZ (R, D), Mn−1) = 0. This implies that

the morphism�
(1)
Mn−1

: TorR1 (HomZ (R, D), Mn−1) → HomZ (Ext1R(Mn−1, R), D) is

monomorphic. By Proposition 2.3, Mn = �1(Mn−1) is a strict R-stationary module.
(2)⇒ (1)LetM be a countably presentedGorenstein flatmodule and P a projective

module. If M ∈ SML(R), then we will show that Ext1R(M, P) = 0. In fact, since M
is countably presented, there is a countable direct system

E1
f1→ E2

f2→ E3 → · · · → En
fn→ En+1 → · · ·

of finitely presented modules such that M = lim−→ En . Applying the functor

HomR(En,−) to the pure exact sequence 0 → P → P++ → P++/P → 0,
we get an inverse system of exact sequences

0 → HomR(En, P) → HomR(En, P
++) → HomR(En, P

++/P) → 0.

Note that M ∈ SML(R) if and only if M ∈ SML(P), and so the inverse system

(HomR(En, P),HomR( fn, P))

satisfies the strict Mittag–Leffler condition. Thus, we get an exact sequence

0 → lim←− HomR(En, P) → lim←− HomR(En, P
++) → lim←− HomR(En, P

++/P) → 0.

by Lemma 3.1. And hence the sequence

0 → HomR(lim−→ En, P) → HomR(lim−→ En, P
++) → HomR(lim−→ En, P

++/P) → 0

is exact. This gives the exactness of the following sequence,

0 → HomR(M, P) → HomR(M, P++) → HomR(M, P++/P) → 0

Thus, we get that 0 → Ext1R(M, P) → Ext1R(M, P++) ∼= TorR1 (P+, M)+ = 0, so
Ext1R(M, P) = 0. Therefore, we have that Ext1R(Mn, P) = 0 for any n ∈ Z. This
proves that F remains exact by applying HomR(−, P).

Now we prove that each term of F is projective. Since Mn = ker(Fn → Fn−1) is
countably presented for each n ∈ Z, the exact sequence 0 → Mn → Fn → Mn−1 →
0 gives that Fn is countably generated flat. Note that the exact sequence 0 → Mn →
Fn → Mn−1 → 0 remains exact by applying HomR(−, R) and HomZ (R, D) ⊗ −
for any divisible abelian group D, so we obtain the following commutative diagram:

0 → HomZ (R, D) ⊗R Mn

�Mn

HomZ (R, D) ⊗R Fn

�Fn

HomZ (R, D) ⊗R Mn−1

�Mn−1

0 → HomZ (HomR(Mn , R), D) HomZ (HomR(Fn, R), D) HomZ (HomR(Mn−1, R), D).

Since Mn and Mn−1 are both strict R-stationary, we get that �Mn and �Mn−1 are
both monomorphic by Theorem 2.1. Thus, �Fn is monomorphic by diagram chasing,
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and hence Fn is a strict R-stationary module. Following [1, Corollary 5.5], we have
that Fn is projective. So each term of F is projective. Therefore, F is a complete
projective resolution. 	

Remark 3.3 (1) Note that the assumption that each Mn is countably presented is not

necessary in the proof of (1)⇒ (2) in the above theorem. In fact, if the complete flat
resolution F with Mn = ker(Fn → Fn−1), n ∈ Z, is also a complete projective
resolution, then each Mn is a strict R-stationary module.

(2) Note that every flat module is a pure quotient of a suitable projective module, so
[1, Corollary 8.5] gives that Mn ∈ SML(R) if and only if Mn ∈ SML(P) if and
only if Mn ∈ SML(F). This shows that if each Mn satisfies the conditions in the
above theorem, then the complex F remains exact by applying HomR(−, F) for
any F ∈ F .

Let R be a left perfect ring and M a Gorenstein flat module, then there is an exact
sequence 0 → M → P → N → 0 with P projective and N Gorenstein flat. Note
that for any divisible abelian group D, Tor1R(HomZ (R, D), N ) = 0, it follows that
M = �1(N ) is a strict R-stationary module using Proposition 2.3. This shows that
all Gorenstein flat modules are strict R-stationary modules over perfect rings. The
following result is an immediate consequence of Theorem 3.2.

Corollary 3.4 Let R be a left perfect ring, Then every countably presented strongly
Gorenstein flat module is Gorenstein projective.

We proved in [14] that countably presented strongly Gorenstein projective modules
are strongly Gorenstein flat. This shows that if the base ring R is left perfect, then a
countably presented module is strongly Gorenstein flat if and only if it is strongly
Gorenstein projective.

We now give conditions under which all Gorenstein flat modules are Gorenstein
projective.

Theorem 3.5 If the ring R is
∑

-pure injective as a left R-module, then GP = GF .

Proof If R is
∑

-pure injective as an R-module, then R-Mod = SML(R) by [15,
Theorem3.8]. Thus, all Gorenstein projectivemodules are strict R-stationarymodules.
Therefore, GP ⊆ GF by [5, Theorem 2.2].

Now we prove that GF ⊆ GP . Let F = · · · → F1 → F0 → F−1 → F−2 → · · ·
be a complete flat resolution with Mn = ker(Fn → Fn−1), n ∈ Z, then for any
projective left R-module P , we have that Ext1R(Mn, P++) ∼= TorR1 (P+, Mn)

+ = 0.
Note that every projective R-module is a direct summand of R(I ) for some index set I .
Thus, all projective modules are pure injective. This implies that the pure embedding
0 → P → P++ is splitting, and hence Ext1R(Mn, P) = 0. So the complex F remains
exact by applying HomR(−, P). By the assumption on the base ring, we have that
GF ⊆ SML(R), and so R is left perfect by [13, Lemma 4.5]. Thus, F is a complete
projective resolution. Therefore, we have that GF ⊆ GP . 	


It is known that all modules have Gorenstein flat precovers [12], and we have
proven in [13, Theorem 4.7] that if R is

∑
-pure injective, then GP is closed under

direct limits. So Theorem 3.5 gives the following result.
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Corollary 3.6 If R is
∑

-pure injective as a left R-module, then all modules have
Gorenstein projective covers .

It is well known that a ring R is perfect if and only if all flat modules are projective.
Assume further that R is coherent, we can extend this characterization of perfect rings
to the Gorenstein case.

Corollary 3.7 Let R be a right coherent ring, then the following two statements are
equivalent:

(1) R is a left perfect ring.
(2) GP = GF .

Proof (1) ⇒ (2). Let R be right coherent and left perfect, then P(R) is closed under
products. and so R is

∑
-pure injective by [11, Lemma 1.2.23]. Theorem 3.5 applies.

(2) ⇒ (1) By [5, Theorem 2.2], GP = GF yields that all Gorenstein flat modules
are contained in SML(R), and so R is left perfect by [13, Lemma 4.5]. 	


At the end of this paper, we follow the idea of corollary 3.7, investigating the
relations between Gorenstein flat and Gorenstein projective modules over coherent
rings. Recall that an R-module M is called a cotorsion module if Ext1R(F, M) = 0
for any flat module F . The cotorsion dimension of M is defined to be the smallest
integer n ≥ 0 such that Extn+1

R (F, M) = 0 for any flat module F . The following
result generalizes the above corollary to some extent.

Proposition 3.8 If R is a right coherent ring such that all flat modules have finite
cotorsion dimensions, then every complete flat resolution of projective modules is a
complete projective resolution.

Proof Given a flat left R-module F , we assume that F has cotorsion dimension ≤ n.
Note that all pure injectivemodules are cotorsionmodules, we consider a pure injective
resolution 0 → F → F++

0 → F++
1 → · · · → F++

n → F++
n+1 → · · · where F0 = F

and Fn+1 = F++
n /Fn for each n ≥ 0. It is easy to see that each term of the above

sequence is flat, and hence each Fn is flat, since R is right coherent and the above
sequence is pure exact. For any flat module F ′, by dimension shifting, we get that
Ext1R(F ′, Fn) ∼= Extn+1

R (F ′, F) = 0, so Ext1R(Fn+1, Fn) = 0. This implies that the
short exact sequence 0 → Fn → F++

n → Fn+1 → 0 splits. Thus, we obtain a long
exact sequence 0 → F → F++

0 → F++
1 → · · · → F++

n−1 → Fn → 0 where
Fn is a direct summand of F++

n . Note that for any Gorenstein flat left R-module M ,
ExtiR(M, F++

j ) ∼= (TorRi (F+
j , M))+ = 0 for any i ≥ 1 and j ≥ 0. SoExtiR(M, Fn) =

0 for any i ≥ 1. This implies that Extn+i
R (M, F) ∼= ExtiR(M, Fn) = 0.

Let F be a complete flat resolution of projective modules. We assume that N is
a Gorenstein flat module which appears as the kernel of F. Then we conclude that
ExtiR(N , F) = 0 for any F ∈ F and each i ≥ 1. Therefore, HomR(F, F) is exact,
and F is a complete projective resolution. 	

Remark 3.9 (1) Let R be a right coherent and left perfect ring, then all flat modules

are projective, and hence all modules are cotorsion modules. Thus, the conditions
in Proposition 3.8 are satisfied and therefore GF ⊆ GP .
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(2) Recall that a ring R is called left n-perfect if every flat module has projective
dimension ≤ n. Note that over a left n-perfect ring, all modules have cotorsion
dimension ≤ n. Let R be right coherent and left n-perfect, then the hypothesis of
Proposition 3.8 is clearly satisfied. Therefore, a complete flat resolution consisting
of projective modules is a complete projective resolution. This has been proven
by Iacob in [9, Corollary 1].
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