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Abstract
In this article, computational bases for finite element spaces S2�

0(Th) and Sr�1(Th)
in each step of the h-adaptive method are derived. We also implement a mixed method
for the Hodge Laplacian equation. In discretization of the mixed method, the pair
which consists of the serendipity elements and the rectangularBrezzi–Douglas–Marini
(BDM) elements are used. The corresponding saddle point matrix, in each step of the
h-adaptive method, is

A =
(

A BT

−B C

)
,

whereC �= 0 and B is rank deficient. Themodified generalized shift-splitting (MGSS)
preconditioner for solving this saddle point matrix is considered. The major advantage
of our approach is that theMGSSpreconditioner can easily be implemented.Numerical
results show the effectiveness of the proposed iteration method and the good behavior
of corresponding splitting preconditioner.

Keywords Serendipity elements · Generalized shift-splitting preconditioners · Mixed
finite element method · Hodge Laplacian equation · h-adaptive method

Mathematics Subject Classification Primary 65N30; Secondary 65F08

1 Introduction

Somemathematical fields such as exterior calculus andmesh generation play an impor-
tant role in finite element analysis. In 2006, Arnold et al. [1] introduced the finite
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element exterior calculus. They applied Hodge theory and De Rham cohomology and
stated conditionswithwhich one can obtain a stable discrete finite element space [2]. In
2011, Arnold et al. [3] formulated the serendipity spaces with a different description.
They gave a geometric decomposition of them. They also obtained the serendipity
finite element subcomplex of De Rham complex and showed that these spaces satisfy
the basic hypotheses of the finite element exterior calculus and hence may be used for
the stable discretization of partial differential equations [5].

Mesh generation is also an important field in finite element analysis. The accuracy
of mesh generation depends on the mesh size in discretization. The h-adaptive finite
element method is a process that refines the mesh size, but allows the polynomial
degree to be fixed.

In this paper, we derive computational bases for h-adaptive finite element spaces
S2�

0(Th) and Sr�1(Th) in two dimensions. S2�
0(Th) is the space of serendipity

elements of superlinear degree 2, and Sr�1(Th) is the space of 1-forms that coincides
with the rectangular Brezzi, Douglas, and Marini (BDM) space [7]. We also consider
the mixed finite element method for solving a Hodge Laplacian equation and use the
stable pair Sr+1�

0(Th) × Sr�1(Th) for its discretization.
Usually, the linear algebraic system derived by discretization of the Hodge Lapla-

cian equation is ill-conditioned and hard to solve. Arnold et al. [1] introduced block
diagonal preconditioners for these problems and showed that they are effective. Also,
alternative blocks diagonal and block triangular preconditioners are proposed by Chen
et al. [10]. Our goal is to use the modified generalized shift-splitting (MGSS) precon-
ditioner [13] for solving the saddle point matrix of the Hodge Laplacian equation with
the discretization S2�

0(Th) × S1�
1(Th).

The outline of this paper is as follows. In Sect. 2, we derive the computational
bases for Sr�1(Th) in R2. In Sect. 3, we study Hodge Laplacian equations. In Sect. 4
, computational bases for the h-adaptive serendipity basis functions of superlinear
degree 2 and rectangular BDM elements are derived. Section 5 deals with the MGSS
preconditioners. In Sect. 6, numerical approximation of the Hodge Laplacian equation
by using the mixed finite element method is presented.

2 Computational Bases forSr3
1
(Ä)

The definition and properties of the spaces Sr�k are completely discussed in [5]. For
k = 1 and � ⊆ R

2 according to equation (17) in [5], we have

Sr�1(�) = Pr�
1(�) ⊕

{
curl

(
xr+1y

)}
⊕
{
curl

(
xyr+1

)}
. (2.1)

As mentioned before, this space coincides with the rectangular Brezzi, Douglas, and
Marini (BDM) space [5]. The BDM finite element spaces approximate the H(div)
space and are used in the mixed finite element method [8]. These spaces are defined
on both triangular and rectangular meshes. For triangular meshes, BDM elements are
formulated by
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BDMr (�) = (Pr (�))2 , (2.2)

and the computational bases for them are derived in [11]. In this section, we derive
the computational bases for space Sr�1(�) on rectangular meshes that satisfy (2.1).
The formulation of the proposed bases is absolutely different from the defined bases
on triangular meshes in [11].

Let nk , 1 ≤ k ≤ 4 denote the outer unit normals to the respective edges on square

I
2 = [−1, 1]2 (Fig. 1). By using equation (21) in [5], the basis functions for each

point a
s,[t]
(0,0)

on the edges must have the following property:

ϕ
p,[q]
(0,0)

(
a
s,[t]
(0,0)

)
· nk = δqkδqtδps, 1 ≤ k, q, t ≤ 4 and 1 ≤ p, s ≤ 2, (2.3)

and the basis functions for the interior points must satisfy the following relation:

ϕ
[q]
(0,0)

· nk = 0, 1 ≤ k ≤ 4 and q > 4. (2.4)

Now for v1 , v2 ∈ R, we define

f̃1
(
v1 , v2

) = 1

v1 − v2

(
1

4

(
1 − x2

)
dx + (y − 1)

2

(
x − v2

)
dy

)
,

f̃2
(
v1 , v2

) = 1

v1 − v2

(
1 + x

2

(−v2 + y
)
dx + 1

4

(
1 − y2

)
dy

)
,

f̃3
(
v1 , v2

) = 1

v1 − v2

(
1

4

(
1 − x2

)
dx + (1 + y)

2

(
x − v2

)
dy

)
,

f̃4
(
v1 , v2

) = 1

v1 − v2

(
1 − x

2

(
v2 − y

)
dx + 1

4

(
1 − y2

)
dy

)
,
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f̃5
(
v1 , v2

) = (1 + y)

v1 − v2

(
1

4

(
1 − x2

)
dx + y − 1

2

(
x − v2

)
dy

)
,

f̃6
(
v1 , v2

) = (1 − x)

v1 − v2

(
1 + x

2

(
y − v2

)
dx + 1

4

(
1 − y2

)
dy

)
. (2.5)

It is clear that f̃i , 1 ≤ i ≤ 6 are linearly independent.

2.1 Basis Functions forS131(I2)

Let g1 = − 1√
3
and g2 = 1√

3
denote the two Gaussian quadrature points on the interval

[− 1,1]. Consider eight points

a
p,[q]
(0,0)

=
⎧⎨
⎩
(
gp , (−1)k

)
, q = 2k − 1, k = 1, 2,

(
(−1)k+1, gp

)
, q = 2k, k = 1, 2,

as shown in Fig. 1. The basis functions for 1 ≤ q ≤ 4 are

ϕ
p,[q]
(0,0)

(x, y) =
⎧⎨
⎩

f̃q (g1, g2), p = 1,

f̃q (g2 , g1), p = 2.

Note that for all 1 ≤ p ≤ 2 and 1 ≤ q ≤ 4, ϕ
p,[q]
(0,0)

(x, y) ∈ S1�
1(I 2) and they

satisfy the property (2.3).

2.2 The General CaseSr31(I
2
)

Let gn , 1 ≤ n ≤ r + 1 denote the r + 1 Gaussian quadrature points on the interval
[−1, 1], gr+n+1 = gn , and

L p (t) =
p+r∏

k=p+2

t − gk
gp − gk

,

denote the Lagrangian polynomials of degree r − 1.

ϕ
p,[q]
(0,0)

(x, y) = L p (x) f̃q
(
gp , gp+1

)
, 1 ≤ p ≤ r + 1, q = 1, 3,

ϕ
p,[q]
(0,0)

(x, y) = L p (y) f̃q
(
gp , gp+1

)
, 1 ≤ p ≤ r + 1, q = 2, 4.

For the interior points it is easy to see that the number of interior nodes in Sr�1(I 2)
is r(r − 1). Now, let

{
νi (x, y) : 1 ≤ i ≤ r(r − 1)

2

}
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denote a set of basis functions for Pr−2(I
2
). We define r(r − 1) independent basis

functions:

ϕ
i,[5]
(0,0)

(x, y) = νi (x, y) f̃5(g1, g2), 1 ≤ i ≤ r(r − 1)

2
,

ϕ
i,[6]
(0,0)

(x, y) = νi (x, y) f̃6(g1, g2), 1 ≤ i ≤ r(r − 1)

2
.

3 Hodge Laplacian Equation

In this section, we consider the Hodge Laplacian equation for 1-forms on a domain
� ⊆ R

2. The discretization method can be found in [1,2].
Let� ⊆ R

2 be a simply connected domain with the Lipschitz continuous boundary
∂�. The mixed formulation is: find (σ, u) ∈ H1(�) × Hdiv(�) such that

σ = rot u, curl rot u − grad div u = f in �

u · s = 0, div u = 0 on ∂�,
(3.1)

where rot u = ∂u2
∂x − ∂u1

∂ y and curl σ =
(

∂σ
∂ y ,− ∂σ

∂x

)
. We use the Galerkin method for

the discretization of the mixed formulation of the Hodge Laplacian equation. At first,
we consider variational or weak formulation by multiplying both sides of the equation
(3.1) by test functions τ and ν. Then we must find (σ, u) ∈ H1(�) × Hdiv(�) such
that

〈σ, τ 〉 − 〈u, curl τ 〉 = 0, τ ∈ H1(�),

〈curl σ, ν〉 + 〈div u, div ν〉 = 〈 f , ν〉 , ν ∈ Hdiv(�).
(3.2)

To perform discretization, Arnold et al. [4] chose finite element spaces 
h of the
Lagrangian elements and Vh of the Raviart–Thomas elements . Here, we consider
another possible choice of stable discretizationSr+1�

0(�) ⊂ H1(�) andSr�1(�) ⊂
Hdiv(�) and determine σh ∈ Sr+1�

0(�) and uh ∈ Sr�1(�) such that

〈σh, τ 〉 − 〈uh, curl τ 〉 = 0, τ ∈ Sr+1�
0(�),

〈curl σh, ν〉 + 〈div uh, div ν〉 = 〈 f , ν〉 , ν ∈ Sr�1(�).
(3.3)

Let dim Sr+1�
0(�) = n, dim Sr�1(�) = l, and {ϕi }mi=1 , {ψi }ni=1 be the sets of

basis functions for Sr�1(�) and Sr+1�
0(�), respectively. Let uh = ∑n

i=1 ciϕi and

σh = ∑l
j=1m jψ j , so {ci }ni=1 and

{
m j

}l
j=1 are unknown coefficients that are to be

determined.By substitutinguh andσh inEq. (3.3) andusingψ1, . . . , ψl andϕ1, . . . , ϕn

as test functions, we have the following saddle point linear system:

Au =
(

A BT

−B C

)(
m
c

)
=
(
0
g

)
≡ b, (3.4)
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Fig. 2 The h-adaptive finite
element method for eight-node
serendipity elements
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Fig. 3 Eight nodes on A(in , jn )

where A =
[ 〈

ψi , ψ j
〉 ]

l×l
is symmetric positive definite,

C =
[ 〈
div ϕi , div ϕ j

〉 ]
n×n

,

is symmetric positive semidefinite,

B =
[

− 〈
curlψi , ϕ j

〉 ]
l×n

and g =
[
〈 f , ϕi 〉

]
n×1

.

4 h-Adaptive Method

The h-adaptive method generate new mesh by refining the mesh size, and there-
fore increasing the number of elements (see Fig. 2). The definition of this method
is described in [14], but in this section we formulate the h-adaptive serendipity basis
functions of superlinear degree 2 and h-adaptive basis functions of rectangular BDM
spaces, which are calculated in Sect. 2. These formulas are useful and efficient in calcu-
lating the mass matrix and the stiffness matrix for solving partial differential equations
in each step of the h-adaptivemethod.Let us first divide the square I 2 = [−1, 1]2 ⊆ R

2

into 2n+1 × 2n+1 subsquares and set

An =
{
(in, jn)

∣∣∣ in, jn = ±2k + 1

2n+1 , k = 0, . . . , 2n − 1

}
. (4.1)

For each (in, jn) ∈ An, n ≥ 0, we define the square A(in , jn) such as in Fig. 3b.
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Fig. 4 Non-conformal mesh

A(in,jn)

l

lB

C(in+1,j
∗
n+1)

B(in+1,jn+1)

Let xin = 2n (x − in) , y jn = 2n (y − jn). The serendipity basis functions corre-
sponding to each node in square A(in , jn) are obtained by the following equation:

ψ
kl

(in , jn )
(x, y)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(−1)k+1
(
xin + (−1)k

1

2

)(
y jn + (−1)l

1

2

)(
(−1)k+l+1xin − y jn + (−1)l

1

2

)
, k �= 3, l �= 3,

4

(
xin + 1

2

)(
xin − 1

2

)(
y jn + (−1)l

1

2

)
, k = 3, l �= 3,

4

(
y jn + 1

2

)(
y jn − 1

2

)(
xin + (−1)k

1

2

)
, k �= 3, l = 3.

(4.2)

and the BDM elements in the square A(in , jn) are

ϕ
k,[l]
(in , jn )

(x, y)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)k+1
√
3
4

[(
2x2in − 1

2

)
dx −

(
2xin + (−1)k

√
3

3

)(
2y jn + (−1)[ l

2 ]+1
)
dy

]
, k = 1, 2, l = 1, 3,

(−1)k
√
3
4

[(
2xin − (−1)[ l

2 ]
)(

2y jn + (−1)k
√
3

3

)
dx −

(
2y2jn − 1

2

)
dy

]
, k = 1, 2, l = 2, 4.

(4.3)

To preserve the continuity of ϕ ·n across the interface lB = A∩ B (Fig. 4), we have

ϕA · nA

∣∣
lB

+ ϕB · nB

∣∣
lB

= 0, (4.4)

which means

c1ϕ
1,[2]
(in , jn )

(x, y) + c2ϕ
2,[2]
(in , jn )

(x, y) + b1ϕ
1,[4]
(in+1, jn+1)

(x, y) + b2ϕ
2,[4]
(in+1, jn+1)

(x, y) = 0;
(4.5)

therefore,

c1 =
√
3 + 1

2
b1 −

√
3 + 3

2
b2, c2 =

√
3 − 3

2
b1 + −√

3 + 1

2
b2.

4.1 Mass Matrix and Stiffness Matrix

Let �
r

(in , jn)
be the set of serendipity basis functions of superlinear degree r in square

A
(in , jn )

. For ψ
γ

(in , jn )
∈ �

r

(in , jn )
n ≥ 1, 1 ≤ γ ≤ dim Sr�0(I 2), we have the following

results:
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Lemma 4.1

(i)
∫∫

A
(in , jn )

ψ
α

(in , jn )
· ψ

β

(in , jn )
dx dy =

∫∫
A

(i ′n , j ′n )

ψ
α

(i ′n , j ′n )
· ψ

β

(i ′n , j ′n )
dx dy,

(ii)
∫∫

A
(i

′
n+1, j ′n+1)

ψ
α

(i ′n+1, j ′n+1)
· ψ

β

(i ′n+1, j ′n+1)
dx dy,

= 1

4

∫∫
A

(in , jn )

ψ
α

(in , jn )
· ψ

β

(in , jn )
dx dy

(iii)
∫∫

A
(in , jn )

divψ
α

(in , jn )
· divψ

β

(in , jn )
dx dy = 1

4
.

Proof The proof is straightforward. ��
Now, let M

r

A(in , jn )
= [

mαβ

]
α,β=1,...,dimSr�0(I 2) be the mass matrix of serendipity basis

functions in square A
(in , jn )

, then

Theorem 4.2

(i) M
r

A(in , jn )
= M

r

A
(i ′n , j ′n )

,

(ii) M
r

A(in , jn )
= 1

4
M

r

A
(i ′n+1, j ′n+1)

.

Proof The proof is a consequence of Lemma ( 4.1). ��
Let�

r

(in , jn )
be the set of basis functions of spaceSr�1

(
A

(in , jn )

)
. We have the following

theorem:

Theorem 4.3 If ϕ
(in , jn )

∈ �
r

(in , jn)
and ψ

(in , jn )
∈ �

r

(in , jn)
then

∫
A

(i ′n+1, j ′n+1)

curlψ
(i ′n+1, j ′n+1)

∧ �ϕ
(i ′n+1, j ′n+1)

= 1

2

∫
A

(in , jn )

curlψ
(in , jn )

∧ �ϕ
(in , jn )

.

Proof The basis functions on square A
(i ′n+1, j ′n+1)

are obtained by the scaling and trans-

ferring of basis functions on square A
(in , jn )

. ��

Theorem 4.4 If An =
[

An B
T

n
−Bn Cn

]
, and An+1 =

[
An+1 B

T

n+1−Bn+1 Cn+1

]
are the stiffness

matrix of Eq. (3.4) in square A
(in , jn )

and A
(i ′n+1, j ′n+1)

, respetively, then

(i) An+1 = 1
4 An,

(ii) Bn+1 = 1
2 Bn,

(iii) Cn+1 = Cn .
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5 Modified Generalized Shift-Splitting (MGSS) Preconditioner

The generalized shift-splitting (GSS) preconditioner was initially proposed by Bai
et al. [6]. Then it was used by Cao et al. [9] to solve nonsingular saddle point problems

A =
(

A BT

−B C

)
, (5.1)

where A is positive definite, B is full rank and C = 0. For positive definite A, full
rank matrix B and symmetric positive semidefinite C, it was extended as the modified
generalized shift-splitting (MGSS) preconditioner by Salkuyeh et al. [13].

The purpose of this section is to show that the MGSS preconditioner is effec-
tive for the saddle point matrix of the Hodge Laplacian equation with discretization
S2�

0(Th) × S1�
1(Th). In this kind of problem, A ∈ R

n×n is symmetric positive
definite (SPD), B ∈ R

m×n,m ≤ n is rank deficient, and

∃1 ≤ j ≤ n such that
m∑
i=1

bi j �= 0. (5.2)

We also have

C = α

⎡
⎢⎣
1 . . . 1
...

...
...

1 . . . 1

⎤
⎥⎦ �= 0. (5.3)

Now, let

A = Mα,β − Nα,β = 1

2

(
αI + A BT

−B βI + C

)
− 1

2

(
αI − A −BT

B βI − C

)
, (5.4)

whereα, β are two positive real parameters and I is the identitymatrix. In themodified
generalized shift-splitting iterative method [13], the iteration matrix is

�α,β =
(

αI + A BT

−B βI + C

)−1 (
αI − A −BT

B βI − C

)
, (5.5)

and the MGSS preconditioner is

PGSS = 1

2

(
αI + A BT

−B βI + C

)
. (5.6)

Let ρ(�α,β) denote the spectral radius of �α,β . Then the modified generalized shift-
splitting iterative method for every initial guess u0 is convergent if and only if

ρ(�α,β) < 1. Let λ be an eigenvalue of �α,β and

[
x
y

]
be the corresponding eigen-

vector. Then we have
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Table 1 L2 errors and
convergence rates for mixed
finite element approximation of
Hodge Laplacian equation

n ‖ u − uh ‖ Rate ‖ div(u − uh) ‖ Rate

5 3.90e−03 2 2.16e−02 1.9

6 9.75e−04 2 5.40e−03 1.9

7 2.44e−04 2 1.40e−03 2

8 6.10e−05 2 3.38e−04 2

Table 2 The condition number
of matrix P−1

MGSS
A in different

meshes

n α1 α2 Condition number

1 10−2 10−2 1.0819

10−3 10−3 1.008

10−4 10−4 1.0008

10−5 10−5 1.0001

2 10−2 10−2 1.3265

10−3 10−3 1.0321

10−4 10−4 1.0032

10−5 10−5 1.0003

3 10−2 10−2 2.2977

10−3 10−3 1.1283

10−4 10−4 1.0128

10−5 10−5 1.0013

4 10−2 10−2 6.1404

10−3 10−3 1.5130

10−4 10−4 1.0512

10−5 10−5 1.0051

(
αI − A −BT

B βI − C

)(
x
y

)
=
(

αI + A BT

−B βI + C

)(
λx
λy

)
, (5.7)

or equivalently

(αI − A)x − BT y = λ(αI + A)x + λBT y, (5.8)

Bx + (βI − C)y = −λBx + λ(βI + C)y. (5.9)

Lemma 5.1 [13] Let α, β > 0. If λ is an eigenvalue of the matrix �α,β , then λ �= ±1.

Theorem 5.2 Let λ be an eigenvalue of the matrix �α,β , then | λ |< 1.

Proof Let x = 0, (5.8) and Lemma 5.1 imply that BT y = 0. Now, by (5.9) and
(5.3) we have C y = 1−λ

1+λ
β I y and y1 = y2 = · · · = yn ; hence, (5.2) implies that

BT y �= 0. Therefore, x �= 0.
The rest of the proof is similar to the proof of Theorem 1 in [13]. ��
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Fig. 5 Eigenvalues distribution of the saddle point matrixA (left) and the preconditionedmatrix,P−1
MGSSA

where α, β = 0.001 (right) in steps 1,2 and 3 of the h-adaptive method

Theorem 5.3 If we consider the stable pair S2�
0(A

(in , jn )
) × S1�

1(A
(in , jn )

) in dis-
cretization of the Hodge Laplacian equation (3.1) , then for all n ( each step of
h-adaptive method) , the MGSS iterative method of the linear system (3.4) is conver-
gent.

Proof It follows from Theorems 5.2 and 4.4. ��
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Table 3 Numerical results of preconditioned GMRES method for the Hodge Laplacian problem in step n
of the h-adaptive method

PGMRES n = 5 n = 6 n = 7 n = 8

I Condition number 1.6394e+04 6.5546e+04 2.6215e+05 1.0486e+06

CPU – – – –

RES – – – –

MHSS-II α 1.0e−06 1.0e−07 1.0e−08 1.0e−09

Condition number 3.6121 3.6121 3.6120 3.6120

CPU 0.0786 0.0298 0.0291 0.0330

RES 0.011 3.5 4.9e+002 8.8e+004

MGSS α 1.0e−06 1.0e−07 1.0e−08 1.0e−09

β 1.0e−06 1.0e−07 1.0e−08 1.0e−09

Condition number 1.0082 1.0033 1.0013 1.0005

CPU 0.0078 0.0065 0.0061 0.0073

RES 5.3e−013 3.7e−013 5.5e−013 1.5e−013

6 Numerical Results

For numerical experiment, we considered a vector field

f = −π2

2
sin

(πx

2

)
cos

(π y

2

)
dx − (π2) cos

(πx

2

)
sin

(π y

2

)
dy

on domain � = I
2
. We chose S2�

0(�) ⊂ H1(�) and S1�
1(�) ⊂ Hdiv(�) and

determined σh ∈ S2�
0(�) and uh ∈ S1�

1(�) such that they satisfy the linear
system 3.4. The meshes were obtained by dividing the square I 2 into 2n+1 × 2n+1

subsquares according to (4.1). The results which are presented in Table 1 are L2 error
and convergence rates of the numerical solution of Eq. 3.4 for n = 5, 6, 7, 8. All the
numerical experiments presented in this section were computed using MATLAB on a
laptop with Intel Core i7 CPU 1.6 GHz, 4 GB RAM.

The condition numbers of A in different meshes are determined in Table 3. The
results show that the matrix A is ill-conditioned. Next, we used the modified gen-
eralized shift-splitting (MGSS) preconditioner PMGSS , as mentioned in the previous
section. The condition number ofmatrixP−1

MGSS
A in different meshes are determined in

Table 2. The eigenvalues distribution of thematricesA andP−1
MGSS

Awith α, β = 0.001
are displayed in Fig. 5. For further investigation, we took the MHSS-II preconditioner
from [12] to compare with the proposed MGSS preconditioner.

PMHSS-II = 1

2α

(
2αI 0
0 αI + C

)(
A BT

−B αI

)
, (6.1)

where α > 0 is a parameter. We combined these two preconditioners with the
GMRES(m) algorithm.
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In Table 3, the numerical results of the MHSS-II, MGSS, preconditioned GMRES
methods are depicted. The advantages of the MGSS preconditioned GMRESmethods
over the MHSS-II preconditioned GMRES methods, in view of the condition number
and relative residual, can be observed.
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